
Filling the gap between individual-based evolutionary models and
Hamilton-Jacobi equations

Sylvie Méléard

Ecole Polytechnique, Centre de Mathématiques Appliquées

Conference on stochastic analysis and stochastic partial differential equations,
Barcelone, May 2022

Joint work with N. Champagnat (Nancy), S. Mirrahimi (Montpellier) and V.C.
Tran (Marne-la-Vallée).



Evolutionary biology

The population has the capacity to generate as well to select the individual
diversity.

The ability of an individual to survive and reproduce depends on phenotypic
(or genetic) parameters called traits.

The evolution of the trait distribution results from the following mechanisms:

Heredity. (Vertical) transmission of the ancestral trait to the offsprings.

Mutation. Generates variability in the trait values.

Selection. Individuals with traits increasing their survival probability or
their reproduction ability will spread through the population over time.

The selection also results from the competition between individuals.



Asexual populations (cells, bacteria).

Usual biological assumptions:

large populations

rare mutations

small mutation steps

long (evolutionary) time scale.

The main goal:

predict the long term evolutionary dynamics.

model and quantify the successive invasions of successful mutants: by
mutation-selection, the population concentrates on advantageous
mutants.

That is a multi-scale question : different mathematical approaches using
different analytical tools.



Game Theory - Dynamical Systems:
Maynard-Smith 1974, Hofbauer-Sigmund 1990, Marrow-Law-Cannings
1992, Metz-Geritz-Meszéna et al. 1992, 1996, Dieckmann-Law 1996,
Diekmann 2004.

Partial or integro-differential and Hamilton-Jacobi equations (Hopf-Cole
transformation):
Perthame-Barles-Mirrahimi 07-10, Jabin, Desvillettes, Raoul, Mischler
08-10.
Concentration phenomenon on advantageous mutants but evolution
seems too fast.



Stochastic individual-based processes (birth and death processes
with mutation and selection) :
(Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00, Fournier-M. 04,
Ferrière-Champagnat-M. 06, Champagnat 06, Champagnat-M. 10).

Concentration phenomenon on advantageous mutants but evolution
seems too slow (time scale separation between competition phases and
mutation arrivals).



It is not clear how these models are related.

Assume that the trait x ∈ X . For an individual with trait x , the birth rate
is b(x), the mutation rate is p(x) and the mutation kernel is
G(y − x)dy , the death rate is d(x) and the competition pressure is C.

The stochastic population process is a point measure-valued process
belonging to D(R+,MF (X )) taking into account all birth and death
events and renormalized by a parameter K , which is the order of the
population size.

When K tends to infinity, it converges in probability to the solution of the
PDE

∂tn(t , x) =
(

b(x)− d(x)− C
∫

n(t , y)dy
)

n(t , x)

+

∫
X

p(y)G(x − y)n(t , y)dy .



To take into account the biological scales, the analysts (cf. Barles, Mirrahimi,
Perthame 2009) assume that mutations are small and the evolutionary time
scale is long. Therefore, they introduce ε > 0 and study

ε ∂tnε(t , x) =
(

b(x)− d(x)− C
∫

nε(t , y)dy
)

nε(t , x)

+

∫
X

p(y)
1
ε

G(
x − y
ε

)nε(t , y)dy .

Writing

nε(t , x) = exp
(uε(t , x)

ε

)
,

they prove (under technical assumptions) that when ε→ 0, the functions uε

converge to the solution of a Hamilton-Jacobi equation.

But long term evolutionary dynamics may be strongly influenced by small
subpopulations : emergence of new traits, local extinction.

How to keep track of small populations in large population models?



In particular, up to now, there were no results on

a good scaling relying directly the stochastic model to a Hamilton-Jacobi
equation.

Aim of the talk:

To introduce some scalings for which the stochastic population processes
converge to the viscosity solution of a Hamilton-Jacobi equation



The Population Model: a stochastic super-critical birth-death-mutation
process

Large population: the model is parametrized by a carrying capacity
parameter K , K → +∞.

Each individual is characterized by a trait x ∈ T modeling quantitative
genetic or phenotypic information. (It could also model a location).

The trait space is a discretization of the torus T:

XK =

{
iδK : i ∈ {0, 1, · · · , 1

δK
− 1}

}
,

with δK such that 1/δK ∈ N and δK → 0 when K →∞.

We define the stochastic processes:

(NK
i (t), t ≥ 0) : the number of individuals with trait iδK at time t .

The population process ((NK
i (t), i ∈ {0, 1, · · · , 1

δK
− 1}), t ≥ 0) is a

multitype birth-and-death process.



The transitions

Asexual reproduction: an individual with trait x ∈ XK gives birth at rate
b(x) to a new offspring with same trait x .

Natural death: an individual with trait x ∈ XK dies at rate d(x).

Mutation: For all y ∈ XK , an individual with trait x ∈ XK gives birth to a
mutant with trait y at rate

p(x)δK log K G(log K (x − y)).

b, d and p are Lipschitz continuous on T and ∀x ∈ T,

b(x) > d(x) and p(x) > 0.

G is nonnegative, defined on R, satisfies
∫
R G(y) dy = 1 and has

exponential moments of any order.

For instance, G(h) = 1√
2πσ

e−h2/2σ2
.



The assumptions

There exists a1 > 0 such that for all K and ∀i ∈ {0, 1, · · · , 1
δK
− 1},

NK
i (0) ≥ K a1 .

There exists a2 < a1 such that as K →∞,

K−a2/4 � δK �
1

log K
.

That implies
hK := δK log K � 1.

Then for all x ∈ T, the total mutation rate from an individual with trait
xK = iK δK with iK = [x/δK ] to any trait, converges as K → +∞ to a positive
value:

lim
K→+∞

p(xK )

[ 1
δK

]∑
j=0

hK G(hK (ik − j)) = p(x)

∫
R

G(y) dy = p(x).



To sumarize the different scalings:

Population size of order K → +∞.

The individual mutation rate p(x) is of order 1.

The mutations are small: scale 1
log K .

Long time scale: log K .

Discretization mesh: scale� 1
log K .



We wish to capture the sub-populations of size Kα.

In the case where p(x) = 0 for all x ∈ [0, 1] (no mutation), each process
NK

i (t) is a branching process, hence

E[NK
i (t)] = E(NK

i (0))e(b(iδK )−d(iδK ))t .

Therefore, if NK
i (0) = K a1 ,

E[NK
i (t log K )] = K a1+(b(iδK )−d(iδK ))t .

This suggests to introduce

βK
i (t) =

log(NK
i (t log K ))

log(K )
,

(with the convention that βK
i (t) = 0 if NK

i (t log K ) = 0).

We will study the convergence, as K → +∞, of the exponent processes
(βK

i (t), i ∈ {0, 1, · · · , 1
δK
− 1})t≥0 .



For all x ∈ T and K ≥ 1, let i be such that x ∈ [iδK , (i + 1)δK ) and define

β̃K (t , x) = βK
i (t)(1− x

δK
+ i) + βK

i+1(t)(
x
δK
− i),

with the convention βK
1/δK

(t) = βK
0 (t).

The processes β̃K belong to D([0,T ],C(T,R)), endowed with the Skorokhod
topology.

Assumption on the initial condition βK
i (0): there exists A > 0, such that

lim
K→∞

P
(

sup
i 6=j

|βK
i (0)− βK

j (0)|
ρ(jδK , iδK )

> A
)

= 0,

where ρ is the torus distance.



The main result

Theorem
Assume that (β̃K (0, ·))K converges to a deterministic function β0(·) and
assumptions above. Then the processes β̃K converge in probability in
D([0,T ],C(T,R)) to the unique Lipschitz viscosity solution of the
Hamilton-Jacobi equation (HJ){

∂
∂t β(t , x) = b(x)− d(x) + p(x)

∫
R G(h)eh∂xβ(t,x)dh, (t , x) ∈ R+ × T

β(0, x) = β0(x), x ∈ T.

That gives a constructive proof for the existence of a solution of (HJ) and
could give a scheme for its simulation.

In our toy model, we have evacuated the main difficulty: a competition term
which would create extinction events for the stochastic process.



Main steps of the proof

• Compactness-Uniqueness argument:

We prove that the sequence of laws of the processes β̃K is relatively
compact in P(D([0,T ],C(T,R))) and we identify any limiting value as the
unique Lipschitz viscosity solution of (HJ).

• Relative compactness: criterion due to Jakubowski ’86.

(i) ∀ε > 0, there exists a compact Cε ⊂ C(T,R) such that

∀K , P(β̃K ∈ D([0,T ],Cε)) > 1− ε.

(ii) ∀f ∈ C(T,R), the sequence of laws of the processes∫
T
β̃K (., x)f (x)dx

is relatively compact.



Using the characterization of Cε by Ascoli theorem, we need to obtain
equi-boundedness and equi-continuity estimates (uniformly in K and t ≤ T )
for

β̃K (t , x) = x
(βK

i+1(t)− βK
i (t)

δK

)
+ i
(
βK

i+1(t)− βK
i (t)

)
+ βK

i (t).

The main point is to estimate

∆Kβ
K
i (t) =

βK
i+1(t)− βK

i (t)
δK

.

We use the semimartingale decomposition of the processes
βK

i , i ∈ {0, · · · , 1/δK − 1}.

We have that
βK

i (t) = MK
i (t) + AK

i (t)

with MK
i the martingale part and AK

i a finite variation process .



The stochastic processes

AK
i (t) = βK

i (0)

+
1

log K

∫ t log K

0
NK

i (s)
(

b(iδK ) log

(
1 +

1
NK

i (s)

)
+ d(iδK ) log

(
1 −

1
NK

i (s)

))
ds

+
1

log K
p(iδK )

∑
j

hK b(jδK )G(hK (j − i))

∫ t log K

0
NK

j (s) log

(
1 +

1
NK

i (s)

)
ds,

MK
i is a square integrable martingale such that

E
(

sup
t≤T

(MK
i (t)2)

= E
(

1
log2 K

∫ T log K

0
NK

i (s)
(

b(iδK ) log2

(
1 +

1
NK

i (s)

)
+ d(iδK ) log2

(
1 −

1
NK

i (s)

))
ds

+
1

log2 K
p(iδK )

∑
j

hK b(jδK )G(hK (j − i))

∫ T log K

0
NK

j (s) log2

(
1 +

1
NK

i (s)

)
ds.
)



• Let a ∈ (a2, a1) and define

τ ′K = inf{t ≥ 0, ∃i ∈ {0, 1, · · · , 1
δK
− 1}; NK

i (t log K ) < K a},

and for L > 0, we define

τK = τK (L) = inf
{

t ≥ 0 : ∃i, j
∣∣βK

j (t)− βK
i (t)

∣∣ > L ρ(iδK , jδK )
}
.

and
θK (L) = τK (L) ∧ τ ′K .

A key lemma: for all T > 0, there exists L0 large enough such that

lim
K→+∞

P(θK (L0) > T ) = 1.

We will use repeatedly that, for all t ≤ θK (L) and all i, j ≤ 1/δK − 1,

NK
j (t log K )

NK
i (t log K )

= exp(log K
(
βj (t)− βi (t)

)
) ≤ eL log K ρ(iδK ,jδK ).



Proof of tightness

Using

sup
K≥1

1
δK
−1∑

j=0

hK G(hK (ik − j)) eL log K ρ(jδK ,iK δK ) =: G(L) < +∞,

bounds on the quadratic variation and submartingale maximal lemma:

P
(

sup
s≤t∧θK (L)

|∆K MK
i (s)| > ε

)
≤ 1
ε

√
2C(1 + G(L))t
δ2

K K a log K
.

Taking εK = δ−1
K (K a log K )−1/4 → 0, we set

ΩK (L) =

{
sup

0≤i≤1/δK−1;t≤T∧θK (L)

|∆K MK
i (t)| ≤ εK

}

Then there exists C(L) such that

P(Ωc
K (L)) ≤

√
C(L)TεK .

We will work on the probability subspace ΩK (L).



Control of the variation part

One can prove that on the event ΩK (L),

AK
i (t ∧ θK (L))− AK

i (s ∧ θK (L)) ≤ C(b̄ + d̄)(t − s)

+
1

log K

∑
`

hK p((i + `)δK )G(hK `)∫ (t∧θK ) log K

(s∧θK ) log K
eεK log K exp(log K (AK

i+`(u)− AK
i (u)))du.

We divide by (t − s) and let s tend to t ≤ θK (L).

Setting ÃK
i (t) = AK

i (t)− 2C(b̄ + d̄)t − 2p̄t , we deduce that for any t ≤ θK ,

dÃK
i (t)
dt

< p̄eεK log K
∑
`

hK G(hK `) exp
(

log K (ÃK
i+`(t)− ÃK

i (t))
)
− 2p̄. (1)



Maximum principle (ω by ω).

Let us introduce

(iK , tK ) = (iK (ω), tK (ω)) = argmaxi∈{1,··· , 1
δK
−1},t∈[0,θK (L)]Ã

K
i (t).

We have that
tK = 0.

Indeed, if conversely we assume that tK > 0, then the right term of (1) is non
positive for i = iK and then the left term is negative, contradicting the fact
that ÃK

iK (t) is maximal for t = tK .

Then, almost surely on the event ΩK (L), for all t ≤ θK (L) and
0 ≤ i ≤ 1/δK − 1,

AK
i (t) ≤ max

0≤j≤1/δK−1
βK

j (0) + 2C(b̄ + d̄)t + 2p̄t .



We deduce from the previous results that for all T > 0, there exists C(T )
such that,

lim
K→+∞

P

(
sup

0≤i≤1/δK−1
sup

t∈[0,T∧θK (L)]

βK
i (t) ≥ ‖β0‖∞ + C(T )

)
= 0.

Let us now define

gK
i (t) = ∆K AK

i (t ∧ θK ) +
‖p‖Lip

p
AK

i+1(t ∧ θK ).

We prove (tedious computation) that for ω ∈ ΩK (L) and s ≤ t ,

gK
i (t)− gK

i (s) ≤ C(K , L)(t − s)

+ p log K
∫ (t∧θK )

(s∧θK )

∑
`

hK G(hK `)
[
gK
`+i (v)− gK

i (v)
]

+
ehK L|`|dv .

Using again again the maximum principal, we prove that, almost surely on
the event ΩK (L), for all t ≤ θK (L) and 0 ≤ i ≤ 1/δK − 1,

gK
i (t) ≤ max

0≤j≤1/δK−1
gK

j (0) + 2C(K , L)t = A + 2C(K , L)t .



Finally, if Ω̃K is the probability space allowing to control βK
i (0) and ∆Kβ

K
i (0)

when K →∞, then on ΩK (L) ∩ Ω̃K , we have

|∆Kβ
K
i (t ∧ θK )| ≤ C

(
A + ‖β0‖∞ + T + 2 + C̃(K , L)

)
,

with C̃(K , L) < 1 for K large enough (uniformly in L).

Thus the key lemma is proved (L0 = A + ‖β0‖∞ + T + 3).

The tightness of the sequence (β̃K )K follows. More precisely we can prove:

Corollary:
The sequence of laws of (β̃K

t , t ∈ [0,T ])K is C-tight in P(D([0,T ],C(T,R))).

In addition, for all T > 0, for any β distributed as a limiting value of the laws of
(β̃K

t , t ∈ [0,T ])K , we have almost surely

sup
t∈[0,T ]

sup
x,y∈T s.t. x 6=y

|β(t , x)− β(t , y)|
ρ(x , y)

≤ L0.



Identification of the limit

Let β ∈ C([0,+∞)× T,R) be distributed as a limiting value of the laws of
(β̃K

t , t ∈ [0,+∞))K .

Using Skorokhod’s representation theorem, there exist a new probability
space and random variables again denoted by β̃Kp and β on this space, such
that (β̃Kp ) converges almost surely to β on a set Ω̃0.

Then
Ω0 := Ω̃0 ∩ lim sup

K
ΩK (L0) ∩ Ω̃K

has probability 1.

To prove that β is a viscosity solution of (HJ), we work ω by ω in Ω0 and
proceed classically (cf. Mirrahimi-Barles-Perthame-Souganidis 2012).



Let ω ∈ Ω0 and T > 0 be fixed and consider a smooth function
ϕ : [0,T ]× T (depending on ω ) such that β(ω)− ϕ attains a strict global
maximum on [0,T ]× T at the point (̄t(ω), x̄(ω)) such that t̄(ω) > 0 and
x̄(ω) ∈ T.

We prove that

∂

∂t
ϕ(̄t , x̄) ≤ b(x̄)− d(x̄) + p(x̄)

∫
R

G(h)eh∂xϕ(̄t,x̄)dh.

Then β is a viscosity sub-solution of (HJ) in (0,T ]× T.

Following similar arguments, we also prove that β is a viscosity
super-solution of (HJ) in (0,T ]× T.

The theorem follows from the uniqueness of a Lipschitz viscosity solution of
(HJ) (Barles, Mirrahimi, Perthame ’09).



Perspectives

To relax the periodic boundary conditions and to consider a changing
sign growth rate

To include a competition term

To derive a modified Hamilton-Jacobi equation

To study the properties of such an equation and to understand the
population dynamics



Thank you for your attention!


