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ABSTRACT. In the first part of this paper, we constructed a filtered U(r)-equivariant stable
homotopy type called the spectrum of strict broken symmetries sB(L) of links L given
by closing a braid with r strands. Evaluating this filtered spectrum on suitable U(r)-
equivariant cohomology theories gives rise to a spectral sequence of link invariants that
converges to the cohomology of the limiting spectrum sB∞(L). In this paper, we evaluate
our construction on Borel equivariant singular cohomology H∗U(r). We show that the E2-
term of the spectral sequence is isomorphic to an unreduced verision of triply-graded link
homology. More precisely, we show that the E1-term of the spectral sequence is isomor-
phic to the Hochschild-homology of Soergel bimodules that was shown by M. Khovanov
in [10] to compute triply-graded link homology. We also set up the theory that allows
for evaluating our construction on equivariant cohomologies that are twisted by adjoint-
equivariant local systems on U(r). This allows us to apply Borel equivariant cohomology
twisted by a universal power series of the form ℘(x) =

∑
i≥1 bix

i with bi denoting formal
variables. The specialization to ℘(x) = xn gives rise to a link homology that has recently
been shown by T. Mejı́a Gomez [5] to be isomorphic to sl(n)-link homology. In other words,
℘(x) =

∑
i≥1 bix

i can be interpreted as the (differential of the) universal potential function
with no linear term, in the language of matrix factorizations [13].
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1. INTRODUCTION

In [15], we constructed a U(r)-equivariant filtered homotopy type sB(L), called the spec-
trum of strict broken symmetries, which was an invariant of linksL. The aim of this article
is to apply Borel equivariant singular cohomology H∗U(r) to the above construction, and to
invoke the filtration to set up a spectral sequence that converges to the cohomology of the
limiting value sB∞(L) of the fitration. We also allow for twistings on Borel equivariant
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cohomology. The pages of the spectral sequence Eq(L) for q ≥ 2 recover important link
invariants. In the untwisted case, we identify the E2-term of our spectral sequence with
an unreduced, integral form of triply-graded link homology [10]. Indeed, we show that
the E1-term of our spectral sequence can be identified with the complex of Hochschild
homologies of Bott-Samelson Soergel bimodules associated to braid words, so that the
cohomology of the resulting complex computes triply graded link homology as shown
by M. Khovanov in [10]. In the twisted case, we conjecture that one recovers sl(n)-link
homology for any n.

Let us now recall the definition of the spectrum of strict broken symmetries sB(L) as
defined in [15], so as to apply the above construction. In order to make this definition
precise, consider a braid element w ∈ Br(r), whose closure is the link L, and where Br(r)
stands for the braid group on r-strands. For the sake of exposition, in this introduction
we only consider the case of a positive braid that can be expressed in terms of positive
exponents of the elementary braids σi for i < r. The general case will be described later.

Let I = {i1, i2, . . . , ik} denote an indexing sequence with ij < r, so that a positive braid
w admits a presentation in terms of the fundamental generators of the r-stranded braid
group Br(r), w = wI := σi1σi1 . . . σik . Let T denote the standard maximal torus, and let Gi

denote the unitary form in the reductive Levi subgroup having roots±αi. We consider Gi

as a two-sided T -space under the left(resp. right) multiplication.

The equivariant U(r)-spectrum of broken symmetries is defined as the (suspension) spec-
trum corresponding to the U(r)-space B(wI)

B(wI) := U(r)×T (Gi1 ×T Gi2 ×T · · · ×T Gik) = U(r)×T BT (wI),

with the T -action on BT (wI) := (Gi1 ×T Gi2 ×T · · · ×T Gik) given by conjugation

t [(g1, g2, · · · , gk−1, gk)] := [(tg1, g2, · · · , gk−1, gkt
−1)].

The U(r)-stack U(r) ×T (Gi1 ×T Gi2 ×T · · · ×T Gik) is equivalent to the stack of principal
U(r)-connections on the trivial U(r)-bundle over S1, endowed with a reduction of the
structure group to T at k distinct points, and so that the holonomy between successive
points belongs the corresponding group of the form Gi in terms of this reduction.

Definition. (Strict broken symmetries and their normalization), ([15] definition 2.8)
Let L denote a link described by the closure of a positive braid w ∈ Br(r) with r-strands, and let
wI be a presentation of w as w = σi1 . . . σik . We first define the limiting U(r)-spectrum sB∞(wI)
of strict broken symmetries as the space that fits into a cofiber sequence of U(r)-spaces:

hocolimJ∈IB(wJ) −→ B(wI) −→ sB∞(wI).

where I is the category of all proper subsets of I = {i1, i2, . . . , ik}.

The spectrum sB∞(wI) admits a natural increasing filtration by spaces Ft sB(wI) defined as the
cofiber on restricting the above homotopy colimit to the full subcategories It ⊆ I generated by
subsets of cardinality at least (k− t), so that the lowest filtration is given by F0sB(wI) = B(wI).

Define the spectrum of strict broken symmetries sB(wI) to be the filtered spectrum Ft sB(wI)
above. The normalized spectrum of strict broken symmetries of the link L is defined as

sB(L) := Σ−2ksB(wI).
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In ([15] theorem 8.5) we proved the general form of the following result.

Theorem. As a function of links L, the filtered U(r)-spectrum of strict broken symmetries sB(L)
is well-defined up to quasi-equivalence ([15] definition 3.4). In particular, the limiting equivariant
stable homotopy type sB∞(L) is a well-defined link invariant in U(r)-equivariant spectra (see
[15] remark 3.5, and theorem below).

In Section 2 of this paper we will prove, and then generalize the following theorem to
arbitrary braids. Similar ideas have been explored in [29].

Theorem. Given a link L given by the closure of a positive braid word wI of length k in r-strands
as above, then evaluating equivariant singular cohomology on the filtered spectrum sB(L) gives
rise to a cohomologically graded spectral sequence

Et,s
1 =

⊕
J∈It/It−1

Hs
U(r)(B(wJ)) ⇒ Hs+t−2k

U(r) (sB∞(L)).

The terms H∗U(r)(B(wJ)) are isomorphic to the Hoschschild homology of Soergel bimodules in-
dexed by subsets J ⊆ I , and the differential d1 is induced by inclusion of subsets. It follows from
[10, 16] that the E2-term is isomorphic to an integral form of triply-graded link homology, whose
value on the unknot has the form Z[x]⊗Λ(y), with the degrees of x and y being 2 and 1 resp. Fur-
thermore, the terms Eq(L) are invariants of the link L for all q ≥ 2. In particular, H∗U(r)(sB∞(L))
is an integral version of the invariant Rasmussen calls E∞(−1) (see Theorem 3 in [24]), that only
records the number of components of L.

Remark. In ([15] see remark 6.6), we showed that the filtered spectrum sB(wI)∧T S0 obtained by
taking the orbits under the right T -action is invariant under the Braid and inverse relations and
represents a filtered equivariant homotopy type for the complex of Bott-Samelson Soergel bimodules
studied by Rouquier in [25, 26].

In order to describe twistings of equivariant cohomology theories so as to make a connec-
tion with sl(n)-link homology, let us start by noticing that the spaces of broken symme-
tries B(wI) admit a canonical equivariant map to conjugation action of U(r) on itself

ρI : B(wI) −→ U(r), [(g, g1, . . . , gk)] 7−→ g(g1g2 . . . gk)g
−1.

Thinking of the co-domain U(r) as the space of principal U(r)-connections on the circle,
we see that the map ρI is the map that simply composes the holonomies of all the broken
symmetries along the circle. It follows that ρI is compatible under inclusions of subsets
J ⊆ I . We show in section 3 that this compatibility allows us to use the derived equi-
variant local system with values in U(r) to define twists θ of any suitable family EU(r) of
equivariant cohomology theories. We also study the action of symmetries and cohomol-
ogy operations on these twisted theories.

In sections 3 and 4, we also describe a twist of Borel equivariant cohomology, by first ex-
tending it to a multiplicative equivariant theory H , so that H U(r) is obtained from Borel
equivariant singular cohomology HU(r) by adjoining formal variables bi in cohomological
degree −2i. Let ℘(x) =

∑
i≥1 bix

i be the formal power series with the coefficients being
the variables bi with x having cohomological degree 2. We may use the above frame-
work to describe a twist θ℘ of H denoted by θH ∗. In section 5 we use a filtration of
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θH ∗ by powers of the ideal of indecomposables in b1, b2, . . ., so that the total filtration of
θH ∗

U(r)(sB(L)) gives rise to a family of link homology theories defined as the Eq-terms
of the corresponding spectral sequence for any q ≥ 2. Furthermore the first differential
d1 is a sum of two differentials, the first being induced by the inclusion of subsets J as
before, and the second induced by the filtration of θH ∗ by powers of the ideal of inde-
composables in b1, b2, . . .. For any q ≥ 2, the value of these theories on the unknot L is
given by

E0,∗
q (L, θ℘) = E0,∗

2 (L, θ℘) =
Z[b1, b2, . . .]JxK
〈℘(x)〉

,

where Z[b1, b2, . . .]JxK denotes graded power series in xwith coefficients in the variables bi.
This appears to suggest that the E2(L, θ℘)-term gives rise to the sl(n)-link homology with
respect to the universal matrix factorization whose potential has the differential ℘(x).

Conjecture. The algebraic specialization ℘(x) = xn of the E1(L, θ℘) term above leads to homol-
ogy groups that are isomorphic to sl(n)-link homology. See 5.4 for more details.

Expressing E1(L, θ℘) as a bicomplex gives rise to a topological version of the Rasmussen
spectral sequence (see Theorem 2 in [24]), that begins with the Triply graded link ho-
mology of L and converges to E2(L, θ℘) above. In [5], T. Mejı́a Gomez has compared the
topological and algebraic Rasmussen spectral sequences to resolve the above conjecture
in the affirmative.

2. BOREL EQUIVARIANT COHOMOLOGY OF BROKEN SYMMETRIES AND SOERGEL
BIMODULES

Before we start with the main results as stated in the previous section, let us first recall the
general formulation of the statements of the definitions and theorems for arbitrary links
L. Let T = T r ⊆ U(r) denote the standard maximal torus, and let Br(r) denote the braid
group generated by the standard braids σi, 1 ≤ i < r. The weights of T will be denoted
by
∑

i≤r Z〈xi〉, and will be identified with H2
T , so that the simple roots αi are expressed as

xi − xi+1. Let hi, 1 ≤ i < r denote the co-roots, so that αj(hi) = aij are the entries in the
Cartan matrix for U(r). In this article, we often require a basis of weights constructed out
of dual co-roots. This basis {h∗i , 1 ≤ i ≤ r} is defined in term of the generators xj as

h∗i =
∑
j≤i

xj, in particular, we have h∗i (hj) = δi,j for j < r.

Identifying H2
T with H1(T ) via the transgression map, the collection of elements h∗i as well

as the collection xi yield a Z-basis of H1(T,Z). We will use the notation x̂i to indicate the
corresponding basis of H1(T ) if it is not clear from context. The action of the Weyl group
on H2

T , with generators also denoted by σi (since the group is clear from context) is

σiα := α− α(hi)αi.

Notice that by definition h∗r is the central character that is invariant under the Weyl group.
Let Gi ⊆ U(r) denote the unitary form in the reductive Levi subgroup generated by the
roots ±αi. Let ζi denote the virtual Gi representation (gi − rR), where gi is the adjoint
representation of Gi denoted by Ad, and rR is the trivial representation of dimension r.
Notice that the restriction of ζi to T is isomorphic to the root space representation αi (as a
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real representation). Let S−ζi denote the sphere spectrum for the virtual Gi representation
−ζi defined as in ([15] definition 2.3). Consider a general indexing sequence for arbitrary
braid words I := {εi1i1, · · · , εikik}, where ij < r, and εj = ±1. Assume that w = wI :=

σ
εi1
i1
· · ·σεikik . Recall the spectrum B(wI) := U(r)+ ∧T BT (wI) ([15] definition 2.4), with

BT (wI) := Hi1 ∧T . . . ∧T Hik , and Hi = S−ζi ∧ Gi+, if εi = −1, Hi = Gi+ else.

The T × T -action on Hi is defined by demanding that an element (t1, t2) ∈ T × T acts
on S−ζi ∧ Gi+ by smashing the action Ad(t1)∗ on S−ζi with the standard T × T action
on Gi+ given by left (resp. right) multiplication. As before the T -action on BT (wI) is by
conjugation on the first and last factor. It is clear that each bundle ζi above represents a
U(r)-equivariant vector bundle over U(r)×T (Gi1 ×T · · · ×T Gik) := B(wI), where I is the
indexing set obtained from I by replacing each εj with 1. By construction B(wI) is the
corresponding equivariant Thom spectrum over B(wI)

B(wI) = B(wI)
−ζI , where ζI :=

⊕
ij∈I|εij=−1

ζij .

Definition 2.1. (The functor B(wI), [15] defintion 2.6)
Given a braid word wI , for I = {εi1i1, · · · , εikik}, let 2I denote the set of all subsets of I . Let us
define a poset structure on 2I generated by demanding that nontrivial indecomposable morphisms
J → K have the form where either J is obtained from K by dropping an entry ij ∈ K (i.e. an
entry for which εij = 1), or that K is obtained from J by dropping an entry −ij (i.e an entry for
which εij = −1). The construction B(wJ) induces a functor from the category 2I to U(r)-spectra.
More precisely, given a nontrivial indecomposable morphism J → K obtained by dropping −ij
from J , the induced map B(wJ) → B(wK) is obtained by applying the map of ([15] claim 2.5).
Likewise, if J is obtained from K by dropping the factor ij , then the map B(wJ) → B(wK) is
defined as the canonical inclusion.

Definition 2.2. (Strict broken symmetries, [15] definitions 2.7, 2.8, 2.10)
let I+ ⊆ I denote the terminal object of 2I given by dropping all terms −ij from I (i.e. terms for
which εij = −1). Define the poset category I to the subcategory of 2I given by removing I+

I = {J ∈ 2I , J 6= I+}.
The filtered U(r)-spectrum FtsB(wI) of strict broken symmetries is defined via the cofiber se-
quence of equivariant U(r)-spectra

hocolimJ∈It B(wJ) −→ B(wI+) −→ Ft sB(wI),

where It ⊆ I consisting of objects no more than t nontrivial composable morphisms away from
I+. We define F0 sB(wI) = B(wI+), and Fk = ∗ for k < 0. We normalize the spectrum as

sB(L) := Σl(wI)sB(wI)[%I ],

where Σl(wI) denotes the suspension by l(wI) := l−(wI)− 2l+(wI) with l+(wI) being the number
of positive and l−(wI) being the number of negative exponents in the presentation wI for w in
terms of the generators σi. Also, sB(wI)[%I ] denotes the filtered spectrum sB(wI) with a shift in
indexing given by Ft sB(wI)[%I ] := Ft+%I sB(wI), with %I being one-half the difference between
the cardinality of the set I , denoted by |I|, and the mimimal word length |w| of w ∈ Br(r),

%I =
1

2
(|I| − |w|).
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Our goal now is to apply Borel equivariant cohomology H∗U(r) to our construction.

Definition 2.3. (Borel equivariant singular cohomology)
Borel equivariant cohomology of a U(r)-spectrum X is defined as the singular cohomology of the
Borel construction X ∧U(r) EU(r)+, where EU(r) denotes the free contractible U(r)-CW complex.

Definition 2.4. (Bott-Samelson varieties)
Let I = {i1, . . . , ik}. Define the Bott-Samelson variety BtS(wI) as

BtS(wI) = B(wI)/T = U(r)×T (Gi1 ×T · · · ×T Gik/T ).

Notice that BtS(wI) supports two equivariant maps to U(r)/T defined as

π(I) : BtS(wI) −→ U(r)/T, [(g, g1, g2, · · · , gk−1, gk)] 7−→ gT,

τ(I) : BtS(wI) −→ U(r)/T, [(g, g1, g2, · · · , gk−1, gk)] 7−→ gg1 . . . gkT.

These maps endow H∗U(r)(BtS(wI)) with a bimodule structure over the coefficients H∗T .

Let us now explore how this relates to Soergel bimodules.

Theorem 2.5. Given a positive indexing sequence I = {i1, . . . , ik}, the equivariant cohomology
H∗U(r)(BtS(wI)) is isomorphic as bimodules to the “Bott-Samelson” Soergel bimodule [21] given
by a tensor product

H∗U(r)(BtS(σi1))⊗H∗T . . .⊗H∗T H∗U(r)(BtS(σik)).

Furthermore, each term H∗U(r)(BtS(σi)) is isomorphic to the bimodule

H∗U(r)(BtS(σi)) = H∗T ⊗H∗Gi
H∗T ,

where H∗Gi denotes the Gi-equivariant cohomology of a point. Finally, the equivariant cohomol-
ogy H∗U(r)(B(wI)) is isomorphic as H∗T -modules to the Hochschild homology of the bimodule
H∗U(r)(BtS(wI)) with coefficients in the bimodule H∗T . Furthermore, this isomorphism is canonical
if one works over Q.

Proof. Let us begin by noticing that one has a pullback diagram

EU(r)×T (Gi/T )

π

��

τ // EU(r)/T

π

��
EU(r)/T

τ // EU(r)/Gi.

where τ is induced by the right action of Gi on EU(r), and the map π by the projection
Gi/T −→ pt. Now all the spaces in the above diagram have torsion free, evenly graded
cohomology, and so we can invoke the Eilenberg-Moore spectral sequence [28] to calcu-
late the cohomology of the pullback. The spectral sequence collapses to the above tensor
product of the two copies of H∗T over H∗Gi since H∗T is a free module over H∗Gi .

Notice also that H∗U(r)(BtS(σi)) is a free H∗T module under either the left or the right mod-
ule structure as can be verified directly, or by using the fact that the Serre spectral se-
quence of the fibration given by the map π collapses (since both the fiber and base have
evenly graded cohomology).
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Now consider the pullback diagram of definition 7.3. Inductively using freeness over
H∗T , and the Eilenberg-Moore spectral sequence, we get the iterated tensor product de-
composition for H∗U(r)(BtS(wI)) as claimed in the statement of the theorem. It remains to
identify H∗U(r)(B(wI)) with the Hochschild homology of H∗U(r)(BtS(wI)) with coefficients
in H∗T . For this, consider the principal T -fibration given by the canonical projection

EU(r)×U(r) B(wI) −→ EU(r)×U(r) BtS(wI).

It is easy to see that this fibratrion is classified by the map

EU(r)×U(r) BtS(wI)
π(I)×τ(I)−→ BT×BT −→ BT,

where the first map is given by the product of the maps defined in definition 2.4 that
endow H∗U(r)(B(wI)) with a bimodule structure, and the second map represents the map
that classifies the difference map T × T → T , (s, t) 7−→ st−1.

We now consider the Serre spectral sequence for the fibration defined above. Let us pick
generators {ε1, . . . , εr} ⊂ H1(T,Z) so that εi is identified with the dual co-root h∗i (defined
at the beginning of this section) under the identification H1(T ) = H2

T . The E2-term of the
Serre spectral sequence computing H∗U(r)(B(wI)) is given by

Λ(ε1, . . . , εr)⊗H∗U(r)(BtS(wI)), d(εk) = π(I)∗(h∗k)− τ(I)∗(h∗k).

This complex is the standard Koszul complex that computes the Hochschild homology of
the bimodule H∗U(r)(BtS(wI)) with coefficients in H∗T . This Hochschild homology can be
shown to be a free module over H∗T by an induction argument using braid invariance and
the Markov moves (see Lemma 3.5 and Corollary 3.6 in [7], which can easily be checked to
also work over Z). Next, we show that the Serre spectral sequence above collapses at E3

1.
Furthermore, using freeness over H∗T , all extensions problems in the spectral sequence
can be solved.

In order to establish the collapse at E3, let us begin by recalling that the preceding dis-
cussion describes the space EU(r)×U(r) B(wI) inductively via homotopy pullbacks along
maps between classifying spaces of compact Lie groups of semisimple rank one. In par-
ticular, given any odd integer k, one has an unstable Adams operation ψk that acts on
H∗U(r)(B(wI)) [30]. By the naturality of ψk, we see that it induces an action on the Serre
spectral sequence above. Since the fiber and base of the Serre spectral sequence are gen-
erated by degree one (resp. two) classes, one can show that in the (r, s)-grading of the
spectral sequence, ψk acts by scalar multiplication with ks+r/2. Since dn commutes with
ψk, a trivial diagram chase now forces dn to be trivial for n > 2 for grading reasons.

Finally, assume one is working with coefficients in Q. We may decompose the groups
H∗U(r)(B(wI),Q) into the distinct eigenspaces of ψk. The above discussion shows that these
eigenspaces may be canonically identified with elements in homogeneous Hochschild
bidegree as described above. In other words, the extension problems of the Serre spectral
sequence described above can be canonically solved over Q. �

Remark 2.6. The Galois symmetry σ ([15] Section 8) acting on H∗U(r)(B(wI)) extends the Adams
operation ψk used above. The action of σ can be described in terms of the Koszul complex, where σ
acts as −1 on H1(T ) and H2

U(r)(BtS(wI)).

1this is a special case of a conjecture of Kumar [17](11.5.18)
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Remark 2.7. In ([15] see remark 6.6), we pointed out that the filtered equivariant homotopy type
sB(wI) ∧T S0 is independent of the braid and inversion relations, where we take the T -orbits
under the right T -action on sB(wI). In particular, it lifts the chain complexes of Bott-Samelson
Soergel bimodules studied by Rouquier in [25, 26].

It remains to establish the existence of the spectral sequence, whoseE1-term is isomorphic
to an integral form of Hochschild homologies of Soergel bimodules.

Theorem 2.8. One has a cohomologically graded spectral sequence with E1-term given by

Et,s
1 =

⊕
J∈It/It−1

Hs
U(r)(B(wJ)) ⇒ Hs+t+l(wI)

U(r) (sB∞(L)).

The differential d1 is the canonical simplicial differential induced by the functor in ([15] definition
2.6). In addition, the terms Eq(L) are invariants of the link L for all q ≥ 2. Furthermore, the
E2-term of this spectral sequence is isomorphic to an unreduced, integral form of triply-graded
link homology as defined in [10, 16] whose value on the unknot is H∗U(1)(U(1)) = Z[x]⊗ Λ(y).

Proof. In order to prove this theorem, we will require some detailed structure about the
cohomology of Braid varieties and their Hoshschild homology. These results can be found
in the Appendix 7. By ([15] theorem 8.7), in order to prove the above theorem we need
to verify two sets of conditions called the B and M2a/b-type conditions given in ([15]
definition 8.6). The M2a/b-type conditions pertains to the behaviour under the second
Markov move and comes down to verifying that the maps given in ([15] theorems 7.1
and 7.2) are both trivial. This follows easily from the behavior of the cohomology of the
equivariant spectra sB(wI) under inclusion of subsets J ⊆ I as described in theorem 7.6.
The B-type condition is the one flagged in ([15] remark 6.5). We consider it below.

In [15], we considered a certain quasi-equivalence of filtered U(r)-spectra (details will be
given momentarily)

πm : sBSh(i,j,2)(wI) −→ π∗msBSh(i,j,m+1)(wI),

where i, j are indices with 1 < m < mi,j where mij are the exponents in the Artin braid
group for the Lie group G in question. In the case in hand, G = U(r) and so the only
nontrivial exponents are mij = 3.

Let Zm denote the fiber of πm. Then the relevant B-type condition demands that the fiber
inclusion map on the associated graded

Grt Zm −→ Grt sBSh(i,j,m)(wI)

be surjective in Borel equivariant singular cohomology. The only indices that satisfy the
above parameters in the case of U(r) are consecutive indices j = i+1 < r and with m = 2.

Now the spectra Grr sBSh(i,i+1,2)(wI) and Grr sBSh(i,i+1,3)(wI) are coproducts of other
U(r)-spectra indexed on the same set, and so the relevant condition comes down to veri-
fying a condition on the individual summands.

In order to describe the above objects, let us recall the definition of broken Schubert spec-
tra ([15] definition 5.6).
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Given indices i, j < r, let Shiji denote the T × T -space given by the pullback diagram

Shiji

��

ρSh // U(r)

��
Xiji // U(r)/T,

where Xiji is the image if the following canonical map under group multiplication

Xiji = Image of Gi ×T Gj ×T Gi/T −→ U(r)/T.

Notice that Shiji is a T×T -invariant subspace of U(r), where T×T acts onG via left/right
multiplication. Given any positive indexing sequence of the form I = {i1, . . . , ik, i, j, i},
we may construct the spectrum of broken Schubert spectra defined as the suspension
spectrum of the space

BSh(i,j,3)(wI) := U(r)×T (Gi1 ×T · · · ×T Gik ×T Shiji),

with the T -action on Gi1×T · · ·×T Gik×T Shiji being endpoint conjugation as before. Sim-
ilarly, we may define the broken Schubert spectra BSh(i,j,2)(wI). However, these spectra
agree with the spectra of broken symmetries. We now prove a claim that is the heart of
the argument that will feed directly into the proof of theorem 2.8.

Claim 2.9. Let i and j be indices with j = i+ 1 < r. Given a positive sequence J = {i1, . . . , ik},
consider positive indexing sequences

I ′ = {i1, . . . , ik, i}, I ′′ = {i1, . . . , ik, i, i}, I = {i1, . . . , ik+3} := {i1, . . . , ik, i, j, i}
so that J ⊂ I ′ and J ⊂ I ′′ ⊂ I in the obvious fashion. Then one has a diagram of cofiber sequences
of U(r)-equivariant spectra, which is functorial in J and so that the map f is an equivalence

ZI′′
ιI′′ //

f

��

B(wI′′)

g

��

µ1 // B(wI′)

��

ZI
ιI // B(wI)

µ // BSh(i,j,3)(wI)

where µ1 : B(wI′′) −→ B(wI′) is defined by the multiplication in the last two factors. Further-
more, the maps ιI and ιI′′ are surjective in Borel equivariant singular cohomology.

Proof. The existence of the commutative square in the right, and its functoriality in J fol-
lows from the definition of the spaces in question. Furthermore, by ([15] lemma 5.7), the
spaces in the right square form a pushout, and consequently the map f is an equivalence.

Now notice that the map µ1 admits a section and is therefore injective in any cohomology
theory. To prove our claim, it is sufficient to show that µ is also injective in Borel equivari-
ant cohomology. Consider the special case when J is the empty sequence. In that case the
map fibers as a T -fibration over the map

µ : BtS(wiji) −→ U(r)×T Xiji.
In cohomology µ gives rise to a map of H∗T -bimodules

(1) µ∗ : HT (Xiji) −→ H∗U(r)(BtS(wiji)),

9



so that the induced map on Hochschild homology can be identified with µ∗. In order
to recover µ∗ for general sequences J , one simply tensors the map µ∗ on the left with
H∗U(r)(B(wJ)) before taking Hochschild homology. The upshot of this observation is that
in order to show that µ∗ is injective in Borel equivariant cohomology, it is sufficient to
show that the map (1) splits as a map of H∗T -bimodules. This is what we now show.

We begin by observing that there is a pair of pullback diagrams with fiber Gi/T

EU(r)×U(r) BtS(wiji)

��

µ // EU(r)×T Xiji
π

��

// EU(r)/T

��
EU(r)×U(r) BtS(wij)

κ // EU(r)×T Yij // EU(r)/Gi,

where Yij are the Schubert varieties in U(r)/Gi given by the image of Xiji in U(r)/Gi. The
Eilenberg-Moore spectral sequence for both pullbacks collapses since the top row is free
over the bottom in cohomology. In particular, we notice that one gets:

H∗U(r)(BtS(wiji)) = H∗U(r)(BtS(wij))⊗H∗
T (Yij)

H∗T (Xiji).

Let us recall [17] that the left H∗T -module H∗T (Xiji) has a Schubert basis indexed by ele-
ments in the subgroup isomorphic to Σ3 in the Weyl group Σr, generated by reflections σi
and σj . We use δi,k and δj,k to denote the basis elements in degree 2k indexed by the Weyl
elements of Bruhat length k that have a reduced expression ending with the reflections
σi and σj respectively. We will denote δi,1 and δj,1 by δi and δj respectively. Similarly, the
left H∗T -module H∗T (Yij) has a basis δj,k indexed by Weyl elements of length k that have a
reduced expression ending with σj . These basis elements are compatible under π∗.

In order to construct a splitting to µ∗ as bimodules, it is sufficient to construct a splitting
of the map κ in cohomology, in the category of modules over H∗T (Yij).

Notice that we have a lift to κ induced by inclusions of Schubert varieties

κ̃ : EU(r)×U(r) BtS(wij) −→ EU(r)×T Xiji.
It will therefore be more convenient for us to work in the cohomology ring H∗T (Xiji) in
order to make computations before restricting to H∗U(r)(BtS(wij)) along this section.

Since Xiji is the full flag variety for U(3), standard formulas for Schubert multiplication,
(see [17, 11.3.17]) show that exists an element c ∈ H2

T that satisfies the following relation
among the Schubert basis elements:

δjδi = δi,2 + δj,2, δjδj = δj,2 + cδj.

Now consider the class e ∈ H2
T (Xiji) given by:

e := δi − δj + c.

It is easy to see that the restriction of e to H∗U(r)(BtS(wij)) along µ generates a free H∗T -
submodule complementary to the image of H∗T (Yij). It remains to show that this sub-
module is closed under multiplication with H∗T (Yij).

Now, by using the multiplication rules for the Schubert basis, we observe that eδj = δi,2.
In particular, eδj is zero in H∗U(r)(BtS(wij)), since δi,2 restricts to zero along κ̃. Similarly,
recalling the relation δjδj = δj,2 + cδj , it also follows that eδj,2 restricts to zero. The above
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argument shows that the H∗T (Yij)-submodule in H∗U(r)(BtS(wij)) generated by the restric-
tion of the class e is a summand that is a complement to H∗T (Yij). This is what we wanted
to prove. �

Let us now complete the proof of 2.8. As mentioned earlier, the proof follows once we
have verified the B-type condition of ([15] definition 8.6) which comes down to showing
that the map in ([15] claim 6.5) is injective. This is equivalent to claim 2.9 above with
the cosmetic difference that one must allow the subsequence {i, j, i} anywhere in the se-
quence I and not just at the terminating three spots. This is not a problem since we can
always invoke the first Markov property to move the subsequence to the end. �

3. LU(r)-EQUIVARIANT LIFTS OF STRICT BROKEN SYMMETRIES AND TWISTINGS

In this section we would like to describe the framework that allows us to twist equivariant
cohomology theories by local systems on U(r). In order to make this statement precise,
we will first construct LU(r)-equivariant lifts of our spaces of broken symmetries.

Consider the homomorphism that evaluates a loop at the point 1 ∈ S1.

E : LU(r) −→ U(r), E(ϕ) = ϕ(1).

The homomorphism E allows us to descend from LU(r)-spaces to U(r)-spaces by induc-
tion. Namely, given a pointed LU(r)-space Y , we may descend to an U(r)-space YE de-
fined as YE := Y ∧LU(r) U(r)+. Applying this construction to the LU(r)-space Ar of prin-
cipal U(r)-connections on the trivial U(r)-bundle over the circle S1, we notice that the
induced map may be identified with the holonomy map

Hol : Ar −→ (Ar)E ∼= U(r),

with the induced U(r)-action on U(r) being the conjugation action. In fact, the holonomy
map above is a principal ΩU(r)-bundle and gives rise to an equivalence of stacks between
Ar//LU(r) and U(r)//U(r).

The above example also suggests a way one may reverse the procedure by starting with an
U(r)-spaceX endowed with an equivariant map, with U(r) acting on itself by conjugation

ρX : X −→ U(r),

and define XE by pulling back the holonomy map along ρX . Since LU(r) is generated by
the groups U(r) and ΩU(r), both of which act on XE (by the naturality of the pullback
construction), we see that XE is an LU(r)-space.

We now describe a proper LU(r)-action on a spaceAr that is a smaller model for the space
Ar of principal U(r)-connections on a circle. First let SAr denote the space of principal
SU(r)-connections on the circle. Let ZU(r) denote the center of U(r). Now notice that the
canonical map SU(r) × ZU(r) −→ U(r) is an r-fold cover. We may therefore define the
space underlying Ar to be

Ar := SAr × R.
We would now like to endowAr with a proper action of LU(r). We first choose an appro-
priate model for LU(r) of the form LU(r) = LSU(r)oLU(1), where LSU(r) is the subgroup
of smooth loops with values in SU(r), and for LU(1) we take the smaller subgroup of Lau-
rent polynomials with values in U(1).
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Claim 3.1. With the above model for LU(r), the action of LSU(r) on Ar = SAr × R extends to
an action of LU(r).

Proof. To extend the action of LSU(r) on Ar to an action of LU(r), we simply need to
describe an action of LU(1) that is compatible with the action of LSU(r). Recall that
LU(1) = U(1)× Z, where Z = π1(U(1)).

Let us begin by fixing an isomorphism between U(1) and a subtorus Tr ⊆ SU(r) ∩ T r so
that Tr contains the center of SU(r) (the final answer will be equivalent for all choices of
Tr). As such, we may define the action of an element z ∈ U(1) on (∇, x) ∈ SAr × R by

z ∗ (∇, x) = (Ad
z

1
r
(∇), x).

It is easy to check that this action is well defined. Similarly, given a generator σ ∈ π1(U(1))
seen as an element in LU(1), the action of σ on the element (∇, x) is given by

σ ∗ (∇, x) =
(
Ad

σ
1
r
(∇) +

1

r
dθ,

1

r
+ x
)
,

where θ represents the fundamental one-form on the circle with values in the Lie algebra
of the subtorus Tr ⊆ SU(r) and σ

1
r denotes any pointwise r-th root of σ ∈ LU(1). As

before, it is easy to check that this formula is well defined and that it describes an action
of our chosen model for LU(r) extending the action of LSU(r). �

Claim 3.2. The space Ar is a proper LU(r)-space with a free ΩU(r)-action. Furthermore, the
induced U(r)-space Ar+ ∧LU(r) U(r)+ is equivalent to the conjugation action of U(r) on itself.

Proof. For any simply connected, compact Lie group G, it is well-known [19] that the
space of principal G-connections A over a circle is a proper LG-space, where LG denotes
the Loop group of G. The pointed gauge group Ω(G) is known to act freely on the space
of connections A. Furthermore, the holonomy map establishes an equivalence between
the induced space A+ ∧LG G+ and the conjugation action of G on itself. Applying this to
our example Ar = SAr × R, it follows that the pointed loop group ΩU(r) := ΩSU(r) o Z
acts freely onAr, with the orbit space being SU(r)×Z/rZ (R/Z). Identifying this orbit space
with U(r), it is straigforward to see that the residual action of U(r) on this orbit space is
equivalent to the conjugation action. Hence, the stack Ar//LU(r) is a proper LU(r)-space
equivalent to U(r)//U(r). �

We consolidate the previous claims into the following definition

Definition 3.3. (The universal proper LU(r)-space Ar)
Taking the small model for LU(r), we define the universal proper LU(r)-space to be the space Ar.
The subgroup ΩU(r) := ΩSU(r) o Z acts freely on Ar so that there is principal ΩU(r)-fibration
defined as the “holonomy’ map

Hol : Ar −→ U(r).

Furthermore, the induced space Ar+ ∧LU(r) U(r)+ is equivalent to the conjugation action of U(r)
on itself.

Remark 3.4. As the definition suggests, it is in fact true that Ar is the terminal proper LU(r)-
space (up to equivariant homotopy), even though we don’t really need that fact.
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Now let I = {i1, i2, . . . , ik} denote an indexing sequence with ij < r. Let T denote the
standard maximal torus, and let Gi denote the unitary (block-diagonal) form in the re-
ductive Levi subgroup having roots ±αi. We consider Gi as a two-sided T -space under
the canonical left(resp. right) multiplication. For the (positive) braid word wI , recall the
spaces B(wI) of broken symmetries

B(wI) := U(r)×T (Gi1 ×T Gi2 ×T · · · ×T Gik) = U(r)×T BT (wI),

with the T -action on BT (wI) := (Gi1 ×T Gi2 ×T · · · ×T Gik) given by conjugation

t [(g1, g2, · · · , gk−1, gk)] := [(tg1, g2, · · · , gk−1, gkt
−1)].

Definition 3.5. (Lifts of the spectra B(wI) to LU(r)-spectra)
Given a positive braid word wI , let ρI denote the canonical U(r)-equivariant map on B(wI) in-
duced by group multiplication on the factors and with values in the space U(r) acting on itself by
conjugation

ρI : B(wI) = U(r)×T (Gi1×TGi2×T · · ·×TGik) −→ U(r), [(g, gi1 , . . . , gik)] 7→ ggi1 . . . gikg
−1.

We define the space B(wI)
E to be the pullback of the universal proper LU(r)-space Ar along ρI ,

and denote HolI : B(wI)
E −→ B(wI) to be the induced holonomy map. Note that we may

identify B(wI) with B(wI)
E
+ ∧LU(r) U(r)+.

Given an arbitrary indexing sequence I = {εi1i1, · · · , εikik}, we define the LU(r)-equivariant
spectrum of broken symmetries B(wI)

E as the Thom spectrum of the pullback of −ζI (section 2)

B(wI)
E := (B(wI)

E)−ζI ,

where I is the indexing sequence obtained from I by replacing each εj with 1. The pullback is
performed along HolI : B(wI)

E −→ B(wI)

In order to extend the above definition to the filtered spectrum of strict broken symme-
tries, we will need to reconsider a LU(r)-equivariant variant of the Pontrjagin-Thom con-
struction ([15] claim 2.5).

Claim 3.6. If the set J is obtained from I by dropping an entry −ij , then the Pontrjagin-Thom
construction induces a canonical LU(r)-equivariant map

πEij : B(wI)
E −→ B(wJ)E .

Proof. The Pontrjagin-Thom construction that gives rise to the map πEij is performed at the
level of the spaces B(wI)

E . In order to study this, recall the U(r)-equivariant principal
ΩU(r)-bundle

Hol : Ar −→ U(r).

One may pick a U(r)-invariant connection ∇E on the bundle Hol by first taking any con-
nection and then averaging over U(r) to get an invariant connection (in fact, there is even
a canonical choice for such a connection). The connection∇E induces compatible connec-
tions∇EI on all U(r)-equivariant principal ΩU(r)-bundles HolI : B(wI)

E −→ B(wI).

Now consider the special case of the above claim where I has a single entry−ij for which
εij = −1, and so that J is the set obtained by dropping −ij . It is straightforward to
see that the restriction of ζij to B(wJ) is the normal bundle of the canonical inclusion
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B(wJ) ⊂ B(wI). Let ηJ denote the U(r)-equivariant tubular neighborhood of B(wJ) in
B(wI) identified with ζij via the exponential map. Parallel transport via the connection
∇EI along linear paths in in the neighborhood ζij allows us to canonically identify a LU(r)-
equivariant tubular neighborhood of the inclusion B(wJ)E ⊂ B(wI)

E with the pullback
of ζij along HolJ . We may therefore perform the Pontrjagin-Thom construction to get a
map B(wI)

E −→ (B(wJ)E)ζij . Twisting with −ζij gives rise to the expected map

πEij : B(wI)
E −→ B(wJ)E .

From this special case, it is straightforward to deduce the general case since the remaining
bundles do not interfere with the Pontrjagin-Thom construction for ij . �

Definition 3.7. (The functor B(wI)
E , compare [15] defintion 2.6)

Given a braid word wI , for I = {εi1i1, · · · , εikik}, let 2I denote the set of all subsets of I . Let us
define a poset structure on 2I generated by demanding that nontrivial indecomposable morphisms
J → K have the form where either J is obtained from K by dropping an entry ij ∈ K (i.e. an
entry for which εij = 1), or that K is obtained from J by dropping an entry −ij (i.e an entry for
which εij = −1).

The construction B(wEJ) induces a functor from the category 2I to LU(r)-spectra. More precisely,
given a nontrivial indecomposable morphism J → K obtained by dropping −ij from J , the in-
duced map B(wJ)E → B(wK)E is obtained by applying the map πEij of claim 3.6. Likewise, if J
is obtained from K by dropping the factor ij , then the map B(wJ)E → B(wK)E is defined as the
canonical inclusion.

Definition 3.8. (LU(r)-equivariant strict broken symmetries, compare [15] definitions 2.7, 2.8)
let I+ ⊆ I denote the terminal object of 2I given by dropping all terms −ij from I (i.e terms for
which εij = −1). Define the poset category I to the subcategory of 2I given by removing I+.

I = {J ∈ 2I , J 6= I+}.

We first define the equivariant LU(r)-spectrum sB∞(wI)
E via the cofiber sequence of equivariant

LU(r)-spectra
hocolimJ∈IB(wJ)E −→ B(wI+)E −→ sB∞(wI)

E .

We endow sB∞(wI)
E with a natural filtration as LU(r)-spectra giving rise to the filtered spectrum

of strict broken symmetries sB(wI)
E as follows. The lowest filtration is defined as

F0 sB(wI)
E = B(wI+)E , and Fk sB(wI)

E = ∗, for k < 0.

Higher filtrations Ft for t > 0 are defined as the cone on the restriction of π to the subcategory
It ⊆ I consisting of objects no more than t nontrivial composable morphisms away from I+. In
other words Ft sB(wI)

E is defined via the cofiber sequence

hocolimJ∈It B(wJ)E −→ B(wI+)E −→ Ft sB(wI)
E .
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Remark 3.9. As before, it is straightforward to see that the associated graded of this filtration is
given by

Grt(sB(wJ)E) =
∨

J∈It/It−1

B(wJ)E .

Having constructed the filtered LU(r)-equivariant homotopy type sB(wJ)E , we now pro-
ceed to show that this homotopy type is independent of the presentation wI , up to quasi-
equivalence, and can be normalized to give rise to an invariant of the link L obtained
by closing the braid wI . The proof of this fact follows formally from the proofs given in
sections 4, 5, 6 and 7 of [15]. One simply invokes the following technical claim that allow
one to lift properties of broken symmetries over to their LU(r)-lifts.

Claim 3.10. Let P be a pushout of U(r)-spaces X , Y and Z over the U(r)-space U(r) as follows

X

g
��

h // Z

��
Y // P

Then the above diagram lifts to a pushout diagram of LU(r)-spaces over Ar

XE

gE
��

hE // ZE

��
Y E // P E

Proof. By definition, we express P as the quotient space of Y
∐
Z under the relations

indexed by X that identify g(x) with h(x) for any point x ∈ X . Now notice that P E is
a principal ΩU(r)-bundle over P . As such we may express P E as the quotient space of
the induced ΩU(r)-bundles over Y and Z, with identifications indexed by the induced
bundle over X . This is precisely the content of the claim. �

It is now a simple matter of going through the statements in sections 4, 5, 6 and 7 in [15]
sequentially to show why the same statements formally hold for the LU(r)-equivariant
lifts. We sketch the details for the benefit of the interested reader.

Let us begin by addressing why B(wI)
E is independent of the presentation wI . This in-

volves two properties. Namely, invariance under the braid relations and invariance un-
der the inverse relation. We start by indicating why sB(wI)

E is invariant under the braid
relations.

In ([15] theorem 5.1), given a pair of indices (i, j), we considered an indexing sequence
I(i,j) which contains a subsequence of consecutive terms given by the braid sequence
{i, j, i, j, . . .}with mi,j-terms. Then the filtered U(r)-spectrum of strict broken symmetries
sB(wI(i,j)) was connected to the spectrum sB(wI(j,i)) by a zig-zag of elementary quasi-
equivalences, where I(j,i) represents the same sequence with the subsequence {i, j, i, j, . . .}
replaced by the sequence {j, i, j, i, . . .} with the same number of terms. The method of
proof entailed constructing a sequence of filtered U(r)-spectra ([15] definition 5.6) known
as strict broken Schubert spectra sBSh(i,j,m)(wI) for integers 1 ≤ m ≤ mi,j . These filtered
spectra were constructed as homotopy colimits of functors BSh(i,j,m)(wJ) over certain
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quotient poset categories. Furthermore, we had sBSh(i,j,1)(wI) = sB(wI(i,j)) (and the same
for (j, i)), and that the terminal filtered spectra sBSh(i,j,mi,j)(wI) and sBSh(j,i,mi,j)(wI) at
the end of each sequence agreed. In addition, we showed that all the filtered U(r)-spectra
sBSh(i,j,m)(wI) were connected by zig-zags of elementary quasi-equivalences. This quasi-
equivalence was constructed by mean of a comparison map between broken Schubert
spectra BSh(i,j,m)(wJ) −→ BSh(i,j,m+1)(wJ) for subsets J ⊆ I(i,j) and 1 ≤ m < mi,j .

Let us now proceed to demonstrate how the above argument extends to the LU(r)-lifts of
these filtered spectra.

Let J denote the set obtained by replacing all εj by 1. From the definition of Schubert
spectra, it is straightforward to check that the canonical map ρJ : B(wJ) −→ U(r) of 3.5
factors through the spectra BSh(i,j,m)(wJ) for all 1 < m < mi,j .

B(wJ)

ρJ

��

// BSh(i,j,m)(wJ)

ρ
(i,j,m)
J
��

// BSh(i,j,m+1)(wJ)

ρ
(i,j,m+1)
J
��

U(r)
= // U(r)

= // U(r).

It follows that the comparison maps lift to yield comparison maps of equivariant spectra

(2) B(i,j,m)(wJ)E −→ BSh(i,j,m+1)(wJ)E

The next step in the proof of braid invariance is to show that the fiber of the comparison
map induces a zig-zag of maps of filtered spectra, with acyclic fibers. The key point in
showing acyclicity comes down to showing that the fibers of a particular pair of maps
of the form given in equation (2) are equivalent. These maps fit into a pushout diagram
before taking the LU(r)-equivariant lift and so we may invoke claim 3.10 to observe that
the equivalence of fibers remains true on taking the lift. The rest of the argument is formal.

We now move to invariance under the inverse relation. This relation involves show-
ing that for any index i and a sequence I of the form {. . . , i,−i, . . .}, the filtered LU(r)-
spectrum B(wI)

E admits an elementary quasi-equivalence with B(w′I)
E , where I ′ is ob-

tained from I by dropping the pair {i,−i}. Of course, we require invariance under the
pair {−i, i} as well.

The key construction in the argument given in ([15] section 6) involves splitting the two
maps

B(wI1) −→ B(wI), B(wI) −→ B(wI2), where I1 = I/{i}, I2 = I/{−i}.
It is straightforward to check that the splitting described in ([15] claims 6.2 and 6.3) are
maps over U(r), and can therefore be lifted to splittings of the maps

B(wI1)E −→ B(wI)
E , B(wI)

E −→ B(wI2)E .

Again, the rest of the argument is purely formal.

Being done with showing that sB(wI)
E is independent of presentation, let us now indi-

cate why sB(wI)
E is an invariant of links. This requires showing invariance under first

Markov property, and the second Markov property. The LU(r)-equivariant versions of
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these are straightforward given the U(r)-equivariant versions shown in ([15] section 4
and 7). The map τ ([15] theorem 4.2) that establishes invariance under the first Markov
property is easily seen to be a map over the space U(r) and therefore lifts to the LU(r)-
equivariant strict broken symmetries.

Similarly, for invariance under the second Markov property, one simply observes that the
relevant cofibration sequences described in ([15] claim 7.3 and 7.5) admit canonical lifts.
The above discussion allows us to define invariants of braids and links resp. sB(w)E and
sB(L)E as in ([15] definitions 2.10 and 8.4).

Theorem 3.11. Let L denote a link described by the closure of a positive braid w ∈ Br(r) with
r-strands, and let wI be a presentation of w as wI = σε1i1 . . . σ

εk
ik

, with I = {ε1i1, . . . , εkik}. Let the
LU(r)-equivariant normalized spectrum of strict broken symmetries sB(L)E be defined as

sB(L)E := Σl(wI)sB(wI)
E [%I ],

where Σl(wI) denotes the suspension by l(wI) := l−(wI)− 2l+(wI) with l+(wI) being the number
of positive and l−(wI) being the number of negative exponents in the presentation wI for w in
terms of the generators σi. Also, sB(wI)

E [%I ] denotes the filtered spectrum sB(wI)
E with a shift

in indexing given by Ft sB(wI)
E [%I ] := Ft+%I sB(wI)

E , with %I being one-half the difference
between the cardinality of the set I , |I|, and the minimum word length |w|, of w ∈ Br(r)

%I =
1

2
(|I| − |w|).

Then, as a function of the link L, the filtered LU(r)-spectrum sB(L)E is well-defined up to quasi-
equivalence ([15] definition 3.4).

Remark 3.12. In ([15] theorem 6.8) we showed that sB(L) was equivalent to sB(LR), where
R was a reflection symmetry that was induced by reversing the order of braids. This symmetry
also lifts to a levelwise (honest) equivalence between sB(L)E and sB(LR)E and corresponds to the
automorphism of the space of connections induced by complex conjugation acting on S1.

Remark 3.13. The holomomy maps ρI are equivariant with respect to the Galois symmetry σ
defined in [15] (Section 8). In particular, σ can be shown to lift to a Galois symmetry on the
LU(r)-equivariant spectrum sB(L)E , with σ acting on LU(r) by pointwise complex conjugation.
The action of σ on the normalization factor Σl(wI) is as described in [15] (Remark 8.7).

We now study how one might use the LU(r)-equivariant lift of strict broken symmetries
to compute link invariants by applying suitable twisted equivariant cohomology theories.
Towards this end, assume that EU(r) is a family of U(r)-equivariant associative (i.e. A∞),
and homotopy commutative cohomology theories endowed with a compatible family of
maps ∆r,s of associative cohomology theories for all pairs (r, s) with r + s = t

∆r,s : EU(r) ∧EU(s) −→ ι∗r,s EU(r+s), where ιr,s : U(r)× U(s) −→ U(t).

Let ιr : U(r) = U(r) × 1 ⊂ U(r + 1) denote the standard inclusion. Further assume that
the map ∆r : EU(r) −→ ι∗r EU(r+1) is an equivalence, where ∆r is defined as the composite

∆r : EU(r)
id∧1−→ ι∗r(EU(r) ∧EU(1))

∆r,1−→ ι∗r EU(r+1) .
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Definition 3.14. (Twistings for the family of equivariant cohomology theories E)
Given a family of sufficiently multiplicative cohomology theories E as above, a twisting θ for E is
a family θr of U(r)-equivariant action maps in the category of right EU(r)-module spectra

θr : ΩU(r)+ ∧ EU(r) −→ EU(r),

where ΩU(r) is a U(r)-space under conjugation. We demand that the action maps are U(r)×U(s)-
equivarianty compatible for all pairs r + s = t

(ΩU(r)× ΩU(s))+ ∧ EU(r) ∧EU(s)
ι∧∆ //

θr∧θs
��

ΩU(t)+ ∧ ι∗r,s EU(t)

θt
��

EU(r) ∧EU(s)
∆ // ι∗r,s EU(t)).

In particular, a twist θ extends a U(r)-spectrum EU(r) to a LU(r)-spectrum. We make this
precise as follows

Definition 3.15. (LU(r)-equivariant spectra and LU(r)-equivariant cohomology theories)
An LU(r)-equivariant spectrum is a collection of LU(r)-spaces E(V ) indexed on complex rep-
resentations V in a complete G-universe for the group G = U(r). Notice that these represen-
tations may be considered as representations of the loop groups LU(r) via the evaluation map
E : LU(r) −→ U(r). We require these spaces to be related by compatible collection of LU(r)-
equivariant maps E(W ) −→ ΩV E(W ⊕ V ) that are U(r)-equivariant equivalences.

Even though we will be primarily interested in integer graded cohomology, an LU(r)-equivariant
spectrum E represents a U(r)-representation graded cohomology theory in the usual way: Given
any LU(r)-equivariant spectrum Z, the value of the E-cohomology of Z in grading given by a
U(r)-representation V is defined by

EV (Z) := π0 MapLU(r)(Z,E(V )).

We observe that a twisting θ on a family {EU(r)} of U(r)-equivariant cohomology theories allows
for an extension of {EU(r)} to LU(r)-equivariant cohomology theories.

Remark 3.16. Given a twist θ as in definition 3.14, consider the subspace GL(EU(r)) ⊂ Ω∞ EU(r)

consisting of components whose underlying element in the ring π0(E\) is a unit, where E\ denotes
the spectrum EU(r) with the U(r)-action forgotten. GL(EU(r)) is a group-like monoid with a U(r)-
action. We see that θr restricts to a U(r)-equivariant map of monoids ΩU(r) −→ GL(EU(r)) which
we can classify by a U(r)-equivariant map (denoted by the same name)

θr : U(r) −→ BGL(EU(r)).

Such a classification would allow us to recover the twist if we knew that the group completion map

GL(EU(r)) −→ Ω BGL(EU(r))

was a U(r)-equivariant weak equivalence. Such an equivalence is not true in general, but would
indeed be true if we were to make a technical assumption that for any compact subgroupH ≤ U(r),
a homotopy class x ∈ πH0 (EU(r)) is a unit if the underlying class x ∈ π0(E\) is a unit.
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Definition 3.17. (Z-graded twisted cohomology of the spectra of broken symmetries)
Given a twisting θ for the family E, we define the twisted cohomology of the spectra B(wI) by

θEk
U(r)(B(wI)) := π0 MapLU(r)(B(wI)

E ,Σk EU(r)),

where the mapping space MapLU(r)(B(wI)
E ,Σk EU(r)) denotes the space of LU(r)-equivariant

maps from B(wI)
E to Σk EU(r). Note that if I is a positive indexing sequence, so that B(wI) is a

U(r)-space, then θE∗U(r)(B(wI)) is a right module over the untwisted cohomology E∗U(r)(B(wI)).

As a consequence of definition 3.8 we obtain

Theorem 3.18. Assume {EU(r), θr, r ≥ 1} is an INS-type twisted equivariant cohomology theory
(see [15] definition 8.6 for INS-type theories). Then given a link L described as a closure of a braid
word wI on r-strands, the filtration on sB(L)E gives rise to a cohomologically graded spectral
sequence converging to the θ-twisted E-cohomology θE∗U(r)(sB∞(L)) and with E1-term

Et,s
1 =

⊕
J∈It/It−1

θEs
U(r)(B(wJ)) ⇒ θE

s+t+l(wI)
U(r) (sB∞(L)).

The differential d1 is the canonical simplicial differential induced by the functor in ([15] definition
2.6). Furthermore, the terms Eq(L, θ) are invariants of the link L for all q ≥ 2.

Verifying if a twisted theory {EU(r), θr, r ≥ 1} is an INS-type theory appears to be a rather
delicate problem. In subsequent sections of this article, we will describe several exam-
ples of twisted theories. The verification that these theories are INS-type theories will
be addressed in future work [6]. Nonetheless, these theories may still give rise to link
invariants as we shall see in the next two sections.

4. THE THEORY H AND ITS TWIST θ℘

Let us get to the main example of twisted spectra that interests us. Let H denote the
(non-equivariant) Eilenberg-MacLane spectrum, and let BU denote the infinite complex
Grassmannian classifying vector bundles of virtual dimension zero, seen as an infinite
loop space under the direct sum of virtual vector bundles. The infinite loop structure of BU
induces the structure of a commutative ring spectrum on H∧BU+. The homotopy groups
of H∧BU+ are (by definition) the homology groups of BU, with an algebra structure
induced by the h-space structure on BU. This algebra is a graded polynomial algebra on
a collection of generators with one generator in each even degree. One may choose the
Z-module spanned by these generators to be the image of

ι∗ : H∗(BU(1),Z) −→ H∗(BU,Z),

where ι : BU(1) −→ BU is the canonical inclusion. In particular, we have

π∗(H∧BU+) = H∗(BU) = Z[b1, b2, . . .], |bi| = 2i,

where bi is the image of the fundamental generator of H2i(BU(1)) under ι∗. We now define
an equivariant theory H for which we subsequently construct a natural twist.
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Definition 4.1. (Borel-equivariant singular cohomology H with parameters)
Define an equivariant cohomology theory H U(r) by first constructing the naive U(r)-equivariant
theory given by the Borel completion Map(EU(r),H∧BU+), and then inducing up from the
trivial to the complete universe.

Definition 4.2. (A twist θ℘ for H )
One checks that H satisfies the conditions of remark 3.16. Hence we may classify a twist by an
equivariant map from U(r) to BGL(H U(r)). The group structure of BU canonically extends to
an equivariant map ℘ of group-like monoids, which we may classify

℘ : Map(EU(r),BU) −→ GL(H U(r)), B℘ : Map(EU(r), SU) −→ BGL(H U(r)).

Now let U(r) be seen as a space with an U(r)-action by conjugation. Consider the composite map

λr : EU(r)×U(r) U(r) −→ EU×U U = LBU
πU−→ U

πSU−→ SU,

where the map πU : LBU −→ U is the projection under the h-space splitting LBU = U×BU.
Similarly, πSU : U −→ SU is the projection under the h-space splitting U = SU×U(1). Let us
denote by λ̌r : U(r) −→ Map(EU(r), SU)) the equivariant map given by the adjoint of the map
λr given above. Our twisting class θ := {θr} is defined as the composite

θr = B℘ ◦ λ̌r : U(r) −→ Map(EU(r), SU)) −→ BGL(H U(r)).

Since the maps πU and πSU are maps of h-spaces, and since this h-space structure is compatible
with block-diagonal sums ir,s : U(r)×U(s) −→ U(t), it follows that the family θ℘ := {θr} serves
as a twisting for H as required by definition 3.14 in light of remark 3.16.

Claim 4.3. Consider the map induced by θ1 on the level of fundamental groups

π1(θ1) : Z = π1(U(1)) −→ π1(BGL(H U(1))
U(1)) = π0(GL(H U(1))

U(1)) ⊂ [BU(1),H∧BU+].

Then the image of 1 ∈ Z under π1(θ1) is the canonical map ι : BU(1) −→ BU −→ H∧BU+. Al-
ternatively, interpreting [BU(1),H∧BU+] as (H∧BU+)0(BU(1)) = (H∧BU+)0JxK, the image
of 1 ∈ Z is given by the invertible power series 1 + ℘(x), where

1 + ℘(x) :=
∑
i≥0

bix
i, b0 = 1, so that ℘(x) =

∑
i≥1

bix
i.

Proof. Consider the map λr for r = 1

λ1 : BU(1)× U(1) −→ EU×U U
π−→ SU,

where π = πSUπU in terms of the projections defined in definition 4.2. One may describe π
explicitly as follows. First, we identify EU×U U as the direct limit of the spaces EU(r)×U(r)

U(r). Consider an equivalence class [(F,A)] ∈ EU(r)×U(r) U(r), where F is an r-frame in
C∞, and A is a element in U(r). Given the pair (F,A), one may construct a unitary matrix
in U which is defined as the matrix A in the frame F , and as the identity matrix in the
complement of the subspace spanned by F . Taking the limit as r grows, we obtain a map

π̃ : EU×U U −→ U,

which is easily seen to be a map of h-spaces, with the h-space structure being induced by
the block-diagonal sum of matrices. The homomorphism π defined above is obtained by
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projection to SU. The map λ1 given by restricting π to BU(1)×U(1) is easily seen to factor
through a map (which we also denote by the same name)

λ1 : Σ BU(1) −→ SU .

The image of 1 ∈ Z under π1(θ1) is precisely the map induced by the adjoint of λ1. On the
other hand, the geometric description of λ1 given above is well known (in the context of
Bott periodicity) to be the map whose adjoint is ι (see [22] for instance). The proof of the
claim follows. �

An easy computation that one can make at this point is the twisted cohomology of the
spectra of broken symmetries in the abelian case of U(1). Since B(1) = U(1), we see that
B(1)E = R, and that the twisted cohomology is a quotient of a graded power series with
coefficients in Z[b1, b2, . . .] which is only non-trivial in odd degrees

θH 2∗+1
U(1) (U(1)) =

Z[b1, b2, . . .]JxK
〈℘(x)〉

, θH 2∗
U(1)(U(1)) = 0.

To see this, we may express R explicitly as a LU(1)-CW complex in terms of a homotopy
pushout

LU(1)+ ∧U(1) (S0 ∨ S0)

id∨id
��

σ∨id // LU(1)+ ∧U(1) S
0

��
LU(1)+ ∧U(1) S

0 // R.

where the left vertical map is induced by the standard map id ∨ id : S0 ∨ S0 → S0, and
the top horizontal map is the standard map twisted by the right-action of σ on one of the
factors LU(1)+ ∧U(1) S

0. Applying twisted cohomology and identifying σ with 1 + ℘(x),
we get a Mayer-Vietoris sequence which reduces to the computation given above.

The extension to U(1)×r is straightforward

θH 2∗+r
U(1)×r(U(1)×r) =

Z[b1, b2, . . .]Jx1, . . . , xrK
〈℘(x1), . . . , ℘(xr)〉

, θH 2∗+r−1
U(1)×r (U(1)×r) = 0.

We direct the reader to theorem 7.7 that generalizes the above computation to spaces
of broken symmetries for redundancy free positive sequences I . For arbitrary positive
sequences, the twisted cohomology θH ∗

U(r)(B(wI)) will be studied in [6].

The main tool that comes in handy is a spectral sequence induced by a filtration of H
by ideals which we now describe. Recall from [8] that the spectrum Σ∞ BU+ has a A∞-
multiplicative stable splitting, with associated graded object given by

∨
k MU(k). This

splitting induces a E2-monoidal splitting of H∧BU+ realizing the splitting of Z[b1, b2, . . .]
into homogeneous summands in the generators bi.

Consider the (split) filtration of BU+ by ideals

Fk(BU+) =
∨
k≤m

MU(m), where MU(0) = S0.
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Since the filtration is by ideals, each associated quotient MU(k) is a module over the ring
spectrum Σ∞ BU+. We make a straightforward observation

Claim 4.4. The induced Σ∞ BU+-module structure on the associated quotient MU(k) factors
through the augmentation map Σ∞ BU+ −→ S0.

Proof. In terms of the filtration, we notice that Σ∞ BU+ = F0. Since the splitting of the
filtration is multiplicative, the F0-module structure on MU(k) = Fk/Fk+1 factors through
the ring spectrum F0/F1. The map F0 −→ F0/F1 is nothing other than the augmentation.

�

Corollary 4.5. Let Map(EU(r),H∧MU(k)) denote the factor of H U(r) induced by the splitting
of Σ∞ BU+. Then the induced action of Map(EU(r),BU) on this summand is trivial.

The filtration Fk of Σ∞ BU+ gives rise to an induced LU(r)-equivariant filtration of H U(r)

given by Fk H U(r) := Map(EU(r),H∧Fk(BU+)) fitting into a tower of LU(r)-spectra

H U(r) −→ · · · −→H U(r) /Fk H U(r) −→ · · · −→H U(r) /F1 H U(r) = HU(r) −→ ∗
so that homogeneous layers are of the form Map(EU(r),H∧MU(k)). Given a positive
indexing sequence I , we may take LU(r)-equivariant maps from B(wI)

E into this tower
to get a spectral sequence of H ∗

U(r)(B(wI))-modules. Now using corollary 4.5 we notice
that (H∧MU(k))U(r) := Map(EU(r),H∧MU(k)) has a trivial ΩU(r)-action. Hence, all
ΩU(r)-equivariant maps from B(wI)

E into any homogeneous layer factor through U(r)-
equivariant maps from B(wI).

The above observations lead to a useful theorem

Theorem 4.6. There is a cohomologically graded spectral sequence of H ∗
U(r)(B(wI))-modules

Ek,j
1 = H k,j

U(r)(B(wI)) ⇒ θH k+j
U(r)(B(wI)),

where H k,j
U(r)(B(wI)) denotes (H∧MU(k))k+j

U(r)(B(wI)). Furthermore, the H ∗
U(r)(B(wI))-module

structure of the spectral sequence shows that the differential d1 is uniquely determined by its value
on the class 1 ∈H 0,0

U(r)(B(wI)) = H0
U(r)(B(wI)).

Remark 4.7. Note that by theorem 2.5, the groups H k,∗
U(r)(B(wI)) are the Hochschild homology

groups of the Soergel bimodule H∗U(r)(BtS(wI)) after one extends the coefficients by homogeneous
terms of degree k in the variables bi.

Our next order of business is to describe the differential d1 in a universal example. Recall
that for a positive indexing sequence I , the space B(wI) admits a U(r)-equivariant map

ρI : B(wI) −→ U(r).

From the construction of ρI , we see that it factors through the map

ρ̂I : B(wI) −→ U(r)×T U(r), [(g, g1, . . . , gk)] 7−→ [g, g1g2 . . . gk],

where the T -action on the second factor of U(r) is by conjugation. Moreover, the maps ρ̂I
are compatible under inclusions of subsets J ⊆ I . We therefore define
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Definition 4.8. (A universal LU(r)-lift, and a universal spectral sequence)
Define the U(r)-space U (r) to be U(r) ×T U(r) with T acting on the right factor of U(r) by
conjugation. Note that U (r) supports a U(r)-equivariant map U (r) −→ U(r) with U(r) acting
on itself by conjugation. This endows U (r) with a LU(r)-lift U (r)E supporting compatible maps
from the spaces B(wI)

E . Moreover, one has a (universal) spectral sequence of H ∗
U(r)(U (r))-

modules
Ek,j

1 = H k,j
U(r)(U (r)) ⇒ θH k+j

U(r)(U (r)).

We now proceed to describe the differential d1(1) in the universal spectral sequence.

Theorem 4.9. Let Bi ∈ H2i+1(SU) denote the canonical primitive generator. Let g denote the
composite map

g : ET×T U(r) −→ EU(r)×U(r) U(r)
λr−→ SU,

where the first map above is the extension of the T -action to U(r), and the second map is the one de-
fined in 4.2. By identifying H∗U(r)(U (r)) with H∗T (U(r)), we obtain classes g∗Bi ∈ H2i+1

U(r) (U (r))

which we also denote by Bi. Then the differential d1 in the universal spectral sequence in 4.8 is
determined by

d1(1) =
∑
i≥1

biBi ∈H 1,0
U(r)(U (r)).

Furthermore, one may restrict d1(1) to H 1,0
U(r)(U(r)×T T ), along an injection f ∗ induced by

f : U(r)×T T −→ U(r)×T U(r), with f ∗d1(1) =
r∑
j=1

℘(xj) x̂j,

where x̂j and xj are the standard generators of H1(T ) and H2
T respectively.

Proof. Since f is the inclusion of the T -fixed points, and H∗T (U(r)) is free over H∗T , it fol-
lows from standard facts that f ∗ is injective. Now f induces a map of spectral sequences,
and so f ∗d1(1) is the first differential for the spectral sequence corresponding to U(r)×T T .
The formula for f ∗d1(1) follows from claim 4.3, and the additive defining property of the
twist. Now consider the following factorization

ET×TT
λr1
��

f // ET×T U(r)

��

g

vv
SU EU(r)×U(r) U(r).

λroo

The map λ1 is well known in the context of Bott periodicity and has the property that
λ∗1Bi = xi x̂, where we express H∗U(1)(U(1)) as Λ(x̂)⊗ Z[x] in terms of standard generators
x̂ and x in degrees 1 and 2 respectively. Since Bi is primitive, we see that

f ∗Bi = (λr1)∗Bi =
r∑
j=1

xij x̂j.

Now using the formula f ∗d1(1) =
∑r

j=1 ℘(xj) x̂j =
∑r

j=1

∑∞
i=1 bi x

i
j x̂j , and interchanging

the order of summation, we see that f ∗d1(1) is equal to
∑

i≥1 bi f
∗Bi. By the injectivity of

f ∗, we have established the result for U (r). �
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5. sl(n)-LINK HOMOLOGY AND RELATED SPECTRAL SEQUENCES

In the last section we constructed a twist θ℘ of the equivariant theory H . As mentioned
earlier, we leave the verification that {H , θ℘} is an INS-type theory to future work [6]. It
is therefore not apriori obvious that we are allowed to invoke theorem 3.18 to construct
link invariants as the pages of the spectral sequence induced by applying the twisted
theory {H , θ℘} to the filtration of sB(L)E . We get around this problem by constructing
link invariants using the spectral sequence induced by a hybrid (or total) filtration that
incorporates two filtrations; the filtration sB(L)E and a filtration of H we describe below.

Recall that the tower of LU(r)-spectra

H U(r) −→ · · · −→H U(r) /Fk H U(r) −→ · · · −→H U(r) /F1 H U(r) = HU(r) −→ ∗.

Recall also from 3.8 that ifwI is a braid word in the braid group in r-strands, then sB(wI)
E

has its own filtration by LU(r)-spectra FjsB(wI)
E . Hence, one obtains a double tower of

mapping spectra

F k,j H (sB(wI)) := MapLU(r)(FjB(wI)
E ,H U(r) /Fk H U(r)).

Define {F n H (sB(wI))} as the tower with limit MapLU(r)(sB∞(wI)
E ,H U(r)) given by the

totalization (see [8] Lemma 5.9) of the double tower F j,k H (sB(wI)) above. Recalling the
terminology of definition 3.8, we see that the layers of the total tower are of the form∨

k+j=n, J∈Ij/Ij−1

MapU(r)(ΣjB(wJ)+,Map(EU(r),H∧MU(k)).

Applying homotopy to the total tower F n H (sB(wI)) gives rise to a spectral sequence.
After normalizing sB(wI) where L is a closure of wI , (see 3.11), we get

Theorem 5.1. Let L denote a link given by the closure of a braid word wI in r-strands. Then there
is a cohomologically graded spectral sequence induced by the tower F n H (sB(L)) with E1-term

Et,s
1 (L, θ℘) =

⊕
r+k=t, J∈Ir/Ir−1

H k,s
U(r)(B(wJ)) ⇒ θH s+t+l(wI)

U(r) (sB∞(L)).

The first differential d1 is the bicomplex differential d1 = dB + dH , where dB denotes the first
differential of theorem 2.8, and dH denotes the first differential in theorem 4.6. Furthermore, all
terms of the spectral sequence Eq(L, θ℘) are invariants of the link L for q ≥ 2, with the value of
the unknot, for all q ≥ 2, being

Z[b1, b2, . . .]JxK
〈℘(x)〉

.

Proof. The construction of the spectral sequence via the totalization of a double tower
shows that the first differential is a bicomplex differential as described. So the only thing
we need to show is that the spectral sequence gives rise to link invariants starting with the
second page. This can easily be seen by filtering the bicomplex so as to obtain a spectral
sequence (this is a version of the Rasmussen spectral sequence; see [5] for details) that
converges to the page E2(L, θ℘), and whose second page is a sum of terms of the form

H(H(H k,s
U(r)(B(wJ), dB), dH ).
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By remark 4.7 and theorem 2.8, the inner homology term is a link invariant. It follows
from the naturality of the construction of broken symmetries, that the algebraic spectral
sequence converges to a link invariant. In particular, E2(L, θ℘) is a link invariant. Again
by naturality, all subsequent terms are link invariants as well. �

Remark 5.2. The Galois symmetry σ (see remark 3.13 and example 6.1 below) gives rise to a
symmetry of all pages Eq(L, θ℘). Its action on the value of the unknot is given by the following

σ(x) = −x, σ(bi) = (−1)i+1bi.

Remark 5.3. Notice that one may have run the algebraic spectral sequence in the proof of theorem
5.1 in the other direction so that the second page of the algebraic spectral sequence is a sum of terms
of the form

H(H(H k,s
U(r)(B(wJ), dH ), dB).

By theorem 4.6, the inner term in the above double homology computes the twisted cohomology of
the spectra B(wJ). Even though this spectral sequence converges to the link invariant E2(L, θ℘),
it is not obvious that cohomology taken in the order described above gives rise to link invariants.

In light of theorem 5.1, we propose the following conjecture (see [5] for recent progress)

Conjecture 5.4. The E2(L, θ℘) page in the spectral sequence of theorem 5.1 is a universal sl(n)-
link homology for any n ≥ 1. More precisely, setting bn = 1 and bi = 0 for i 6= n (i.e. the
specialization to ℘(x) = xn) in the E1(L, θ℘)-term, gives rise to homology groups isomorphic to
sl(n)-link homology. Furthermore, the bicomplex spectral sequence starting with Triply-graded
link homology (with parameters bi) and converging to E2(L, θ℘) is equivalent to a universal
Rasmussen-type spectral sequence (see Theorem 2 in [24]).

Remark 5.5. E2(L, θ℘)⇒ θH s+t+l(wI)
U(r) (sB∞(L)) is a twisted version of Ek(−1) in [24].

6. SYMMETRIES AND COHOMOLOGY OPERATIONS

Let us now inquire into the framework that describes the structure of symmetries and
cohomology operations on the twisted theories. In principle, such symmetries and coho-
mology operations may “act” on the actual twist θ, and so one must be careful in making
sure that these operations are well defined. Let us take the example of the Galois sym-
metry σ as defined in remark 3.13 that acts on sB(L). This symmetry acts by pointwise
complex conjugation on LU(r). Using definition 3.14 we may apply σ to the twist θ for a
twisted cohomology theory {EU(r), θr, r ≥ 1}. Since σ may not preserve θ, we see that σ
does not give rise to a symmetry of the twisted theory. It is often the case that EU(r) admits
a Galois symmetry σE of its own, so that σEθσ = θ. In such situations, one indeed obtains
a Galois symmetry on {EU(r), θr}. We given examples below and in section 8.

Example 6.1. (The Galois symmetry on H )

Consider the theory H U(r) = Map(EU(r),H∧BU+). Consider the Galois symmetry in-
duced by complex conjugation on the spaces EU(r) and SU. The Galois symmetry on SU
induces a symmetry on BU = ΩSU2. These together give rise to a Galois symmetry σH

σH (z) = (−1)k if z ∈ H2k
U(r)(pt), σH (bi) = (−1)i+1bi.

2It is important to note that the Galois symmetry on BU when seen as ΩSU is not the usual Galois
symmetry on BU when one regards it as an infinite Grassmannian.
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Now one checks that σH θ℘ σ = θ℘, where σ is the Galois symmetry of remark 3.13, so that
conjugation by the pair of Galois symmetries is seen to preserve the twist θ℘ as defined
in 4.2. This gives rise to a well-defined (conjugate) action of the Galois symmetry on the
link invariants Eq(L, θ℘).

Let us now discuss cohomology operations. As with symmetries, these operations may
not preserve the twist. In such situations one may work with universal theories where
this action is incorporated into the coefficients. Let us describe two important examples.

Example 6.2. (The Landweber-Novikov algebra)

Recall that the equivariant theory H was defined as the Borel equivariant completion
of H∧BU+. By Thom isomorphism, it is easy to see that H∧BU+

∼= H∧MU, where
MU denotes the (non-equivariant) complex cobordism spectrum. The theory H∧MU is
universal in the sense that its homotopy Z[b1, b2, . . .] represents (as functors from rings to
sets) the data given by a formal group law F , endowed with an isomorphism eF (x) from
the additive group law to F [1]. In other words, eF (x) is the “universal exponential”

eF (x) :=
∑
i≥0

bix
i+1, b0 = 1, note that eF (x) can be identified with x+ x℘(x).

Consider the map η : H∧MU −→ H∧MU∧MU that includes MU into the right factor.
As before, the theory H∧MU∧MU also has a universal description in that its homotopy
Z[bi, sj, i, j ≥ 1] represents a pair of formal group laws (F,G), and a pair of isomorphisms

eF (x) :=
∑
i≥0

bix
i+1, f(x) :=

∑
i≥0

six
i+1, b0 = s0 = 1

with eF (x) being the universal exponential for F , and f(x) being an isomorphism from
F to G. As such, the map η represents the composite isomorphism f(eF (x)) from the
additive group law to G, i.e. the exponential for G. Invoking Thom isomorphism, the
map η represents a map of multiplicative cohomology theories

η : H∧BU+ −→ H∧BU+ ∧BU+ .

Performing the Borel equivariant completion along η gives rise to a map of equivariant
theories endowed with twisting classes θ℘ and θ̃℘ respectively

η : H −→ H̃ , η(θ℘) := θ̃℘,

where H̃ is given by equivariantly completing H∧BU+ ∧BU+. Using the description in
terms of formal group laws gives us an explicit description of the power series ℘̃(x) for
the equivariant theory H̃ . By the definition of η, we have

x+ x ℘̃(x) = η(x+ x℘(x)) =
∑
i≥0

η(bi)x
i+1 =

∑
i≥0

si (
∑
j≥0

bjx
j)i+1, b0 = s0 = 1.

We claim that the map of twisted theories η incorporates the data that amounts to a rep-
resentation of the so-called Landweber-Novikov algebra [20]. In particular, one obtains a
representation of the positive Witt algebraW (which is a sub algebra of the Landweber-
Novikov algebra). To see this, let us consider the finite-type Z-dualW of Z[s1, s2, . . .]. In
other words W is a free Z-module on the duals of the monomials in si. Then it follows
from the above formulas that the map η turnsW into an algebra of operators on H ∗

U(1). To
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get a sense of this algebra, let Lm denote the primitive element inW given by Lm(sm) = 1,
and defined to evaluate trivially on all other monomials in sj . By the above formula for η,
we get a formula for the action of the operator Lm on the class y := x+ x℘(x) defined as

Lm(y) := Lm(η(x+ x℘(x))) = (
∑
i≥0

bix
i+1)m+1 = ym+1 ∂

∂y
(y).

This suggests that the sub algebra of W generated by the elements Lm is isomorphic to
the positive Witt algebra. This is indeed the case. We expect this action is related to [11].

Example 6.3. (The even Steenrod Algebra)

In the previous example, we studied the twisting on the Borel equivariant completion
H of H∧MU. Let us now define the equivariant theory H (Fp) as the Borel equivariant
completion of H(Fp) ∧MU, where p is a prime, and H(Fp) denotes the mod p Eilenberg-
MacLane spectrum. Since we have a map of multiplicative theories

ζ : H∧MU −→ H(Fp) ∧MU,

induced by the canonical maps on the respective factors, the map ζ induces a map of
equivariant cohomology theories, each endowed with a twist

ζ : H −→H (Fp) ζ(θ℘) := θp

Notice that π∗(H(Fp) ∧MU) = Fp[b1, b2 . . .] induced by ζ . Now consider the inclusion of
H(Fp) as the left factor ηA : H(Fp) ∧MU −→ H(Fp) ∧H(Fp) ∧MU inducing a map

ηA : H (Fp) −→ A (Fp), ηA (θp) := θA ,

where A (Fp) is the equivariant theory obtained on completing H(Fp) ∧H(Fp) ∧MU. The
homotopy of H(Fp) ∧H(Fp) ∧MU is of the form

π∗(H(Fp) ∧H(Fp) ∧MU) = π∗(H(Fp) ∧H(Fp)) [b1, b2, . . .],

where the homotopy groups of the spectrum H(Fp) ∧ H(Fp) is none other than the dual
mod-p Steenrod algebra. As such π∗(H(Fp) ∧H(Fp)) is an algebra on free variables ξi for
i ≥ 1 in homological degree 2(pi − 1), as well as a family of free variables in odd degree.
As in the previous example, the subalgebra of π∗(H(Fp) ∧H(Fp) ∧MU) generated by the
classes ξi and bj represents the data given by a pair of isomorphisms a(x) and eF (x) of
formal group laws over Fp, where eF (x) is as before, and a(x) is an automorphism of the
additive formal group law [9, 31]

a(x) =
∑
i≥0

ξix
pi , ξ0 = 1.

As in the previous example, ηA represents composition of isomorphisms. We may apply
ηA to H (Fp)∗U(1) and describe ηA applied to the class x+ x℘(x) by a formula

x+ x℘A (x) = ηA (x+ x℘(x)) =
∑
i≥0

ηA (bi)x
i =

∑
i≥0

bi (
∑
j≥0

ξjx
pj)i, ξ0 = b0 = 1.

The reader may verify that this formula describes a co-action of the dual even Steenrod
algebra on H (Fp)∗U(1) extending the standard co-action on H(Fp)∗U(1) = Fp[x].
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7. APPENDIX: CALCULATIONS IN BOREL EQUIVARIANT COHOMOLOGY

The task we aim to achieve in the Appendix is to study the Borel equivariant cohomology
of spaces of the form B(wI) for some positive indexing sequence I . The answer will
be expressed in terms of the Borel equivariant cohomology of the Bott-Samelson spaces
BtS(wI). And so we will begin with the structure of the latter. Consider the Bott-Samelson
variety BtS(σi) = U(r)×T (Gi/T ), where σi ∈ Br(r) is the standard generator for 1 ≤ i < r.

Theorem 7.1. H∗U(r)(BtS(σi)) is a rank two free module over H∗T , generated by classes {1, δ},
where δ ∈ H0

U(r)(BtS(σi)) is uniquely defined by the property δ2 + αδ = 0, where α ∈ H2
T is the

character xi − xi+1 corresponding to the root α.

Proof. The proof of theorem 7.1 is classical. Consider the two T -fixed points ofGi/T given
the the cosets T/T and σiT/T . The normal bundle of σiT in Gi/T is isomorphic to the T -
representation with linear character given by the dual α of α. The two fixed points T/T
and σiT/T give rise to two sections s and sσi respectively of the bundle

U(r)×T (Gi/T ) −→ U(r)/T.

Pinching off the section s gives rise to a cofiber sequence which splits into short exact
sequences in equivariant cohomology

0 −→ H∗T (Σα)
f∗−→ HU(r)(BtS(σi))

s∗−→ H∗T −→ 0.

Let λ ∈ HU(r)(BtS(σi)) be the class given by the image to the Thom class of the representa-
tion α under the map f ∗. We see from from the above sequence that {1, λ} are H∗T -module
generators of H∗U(r)(BtS(σi)). Consider the map induced by the inclusion of fixed points

s t sσi : (U(r)/T ) t (U(r)/T ) −→ BtS(σi).

The above short exact sequence shows that λ is uniquely determined by the fact that
it restricts trivially along s∗ (by construction) and restricts to the element −α along s∗σi
since −α is the Euler class of the representation α. The generator 1 ∈ H0

U(r)(BtS(σi))

clearly restricts to 1 ∈ H0
T along both fixed points. It now follows that any element in

H∗U(r)(BtS(σi)) is uniquely determined by its restrictions along these two fixed points.
Applying this observation to λ2 yields the relation λ2 +αλ = 0. Our generator δ is simply
defined as λ. It is straightforward to see that δ is the unique class that satisfies

δ2 + α δ = 0.

�

Remark 7.2. Consider the map

τi : U(r)×T (Gi/T ) −→ U(r)/T, [(g, giT )] 7−→ ggiT.

Then, given γ ∈ H∗U(r)(U(r)/T )) = H∗T , we my ask to express the element τ ∗i (γ) in terms of
our generators {1, δ}. This is easily done by using the restrictions along the two fixed points.
Expressing τ ∗i (γ) as τ ∗i (γ) = a + b δ, we may restrict along s∗ to deduce that a = γ. Then
restricting along s∗σi says that

b =
γ − σ(γ)

α
.
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Definition 7.3. Recall the definition 2.4 of Bott-Samelson varieties and their Schubert classes.
Given I = {i1, . . . , ik}, and any j ≤ k, let Jj = {i1, . . . , ij}. Define maps π(j) and τ(j)

π(j) : BtS(wJj) −→ BtS(σij), [(g, gi1 , . . . , gij)] 7−→ [(gg1 · · · gij−1
, gij)]

τ(j) : BtS(wJj) −→ U(r)/T, [(g, gi1 , . . . , gij)] 7−→ [gg1 · · · gij ].
Notice that one has a pullback diagram with vertical maps being canonical projections

BtS(wJj)

��

π(j)
// BtS(σij)

��
BtS(wJj−1

)
τ(j−1)

// U(r)/T.

Since BtS(wI) projects canonically onto BtS(wJj), we will use the same notation to denote the
maps π(j) and τ(j) with domain BtS(wI). Define δj ∈ H2

U(r)(BtS(wI)) as the pullback class
π(j)∗(δ), where δ ∈ H2

U(r)(BtS(σij)) is the (unique) generator of H2
U(r)(BtS(σij)) as a H∗T -module

that satisfies δ2 = −α δ. Here ij = s, and α := xs − xs+1 denotes the character of the standard
positive simple root αs of U(r) that corresponds to the subgroup Gij . In particular, we have

δ2
j + [α]j δj = 0, where we define [x]j := τ(j − 1)∗(x).

Definition 7.4. (The redundancy set ν(I), its complement ν(I), and the blocks of I)
Let I = {i1, i2, . . . , ik} denote a positive indexing sequence with each ij < r. Let ν(I) be the
(unordered) set of integers s < r such that s occurs somewhere in I and denote by ν(s) the
number of times s occurs in I . We say I is redundancy free if ν(s) = 1 for all s ∈ ν(I). Define
Is ⊂ I as the indexing subsequence Is = {is1 , is2 , . . . , isν(s)

} of all elements it ∈ I so that it = s.

Let WI ⊆ Σr to be the subgroup of the Weyl group of U(r) generated by the reflections σs for
s ∈ ν(I). WI is a standard subgroup in Σr of the form Σr1 × . . . × Σrm , where m is the number
WI-orbits in {1, . . . , r}, and ri is their sizes. Note that this block decomposition corresponds to the
fact that the groupsGi for i ∈ I generate the block diagonal subgroup U(r1)×. . .×U(rm) ⊆ U(r).

We call the WI-orbits in {1, . . . , r} the blocks of I , and define ν(I) as the collection of all blocks.
Since all non-maximal elements s in a block belong to ν(I), we see that ν(I) is in bijection with
the complement of the set ν(I) in {1, . . . , r}, and hence the notation. Given s ≤ r, we denote l(s)
the block in which s belongs. For s ∈ ν(I), we also define dual co-roots within the block l(s) as

τs :=
∑

j≤s, j∈l(s)

xj.

Theorem 7.5. Let I = {i1, i2, . . . , ik} denote a positive indexing sequence with ij < r. Then

H∗U(r)(BtS(wI)) =
H∗T [δ1, δ2, . . . , δk]

〈δ2
j + [αs]j δj, if ij ∈ Is.〉

.

Moreover, for any weight α, the character α ∈ H2
T satisfies the following recursion relations

[α]1 = α and [α]j = [α]j−1 + α(hu) δj−1, where ij−1 = u,

with α(hu) denoting the value of the weight α evaluated on the coroot hu. Furthermore, the
behaviour under inclusions J ⊆ I , is given by setting all δt = 0 for it ∈ I/J .
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Proof. The proof of the above theorem is a simple induction argument. Let I = {i1, . . . , ik}
as above. Assume that the classes {δ1, . . . , δk} have been constructed as in definition 7.3.
Now consider the indexing subsequence Jk−1 = {i1, . . . , ik−1}. One has Gik/T -bundles

BtS(wI) −→ BtS(wJk−1
), [(g, gi1 , . . . , gik)] 7−→ [(g, gi1 , . . . , gik−1

)].

As before, the above fibration supports two sections sJ and sJ,σk induced by the two cosets
{T/T, σikT/T} ⊂ Gik/T . Furthermore, using definition 7.3 one has a diagram of cofiber
sequences induced by the inclusion of the section sJ

BtS(wJk−1
)

sJ //

τ(k−1)

��

BtS(wI) //

π(k)

��

ΣαikBtS(wJk−1
)

τ(k−1)
��

U(r)/T
s // BtS(wik)

// Σαik U(r)/T.

By induction, the classes {δ1, . . . , δk−1} restrict to generators of H∗U(r)(BtS(wJk−1
)). So by

degree reasons, we see that the above diagram gives rise to a diagram of short exact
sequences in equiariant cohomology. In particular, we see that H∗U(r)(BtS(wI)) is a free
module of rank two on H∗U(r)(BtS(wJk−1

)) generated by the classes {1, λk}, where λk is the
image of the Thom class in H∗U(r)(Σ

αikBtS(wJk−1
)). By theorem 7.1, and using naturality,

we see that this class is δk. This completes the induction argument. It remains to prove the
recursive relation formula. This follow from unraveling the formula in remark 7.2. �

Theorem 7.6. Let I = {i1, i2, . . . , ik} denote a positive indexing sequence with each ij < r. Then,
for any s ∈ ν(I), with ν(s) = 1, there exists a canonical class βs ∈ H3

U(r)(B(wI)). Likewise, for
any block l ∈ ν(I), there exists a canonical class γl ∈ H1

U(r)(B(wI)) so that there is a map of
H∗U(r)(BtS(wI))-algebras where l and s range over all such elements

$I :
H∗U(r)(BtS(wI))⊗ Λ(βs)⊗ Λ(γl)

〈 δ̂s 〉
−→ H∗U(r)(B(wI)), where δ̂s :=

∑
ij∈Is

δj.

Moreover, $I is an isomorphism if I is redundancy free. More generally, H∗U(r)(B(wI)) is free
over the algebra H∗T ⊗Λ(βs) ⊗ Λ(γl), with the generators βs and γl as above. Given a positive
sequence I , and a subset J ⊂ I obtained by deleting an index ij so that s = ij and ν(s) = 1, the
restriction map from H∗U(r)(B(wI)) to H∗U(r)(B(wJ)) extends to an isomorphism

H∗U(r)(B(wI))⊗ Λ(γs, )

〈 βs − [αs]jγs 〉
∼=−→ H∗U(r)(B(wJ)), γs 7−→ γl(s).

In the above isomorphism, if k > s is any integer in the same WI-block as s, with ν(k) = 1 and
it = k, then βk restricts to βk + [αk]tγl(s). Finally, γl(s) restricts to γl(s) +γl(s+1). Other generators
restrict to their namesakes.

Proof. In order to construct the map$I , we first establish the relation δ̂s = 0 in H∗U(r)(B(wI)),
as well as construct the classes βs and γl. Since the classes γl and βs are in odd degree, and
our Z-modules are torsion free, we know that the map $I is well defined.

We begin with the relations. In order to see this, recall from the proof of theorem 2.5 that
one has a Serre spectral sequence converging to H∗U(r)(B(wI)) with E2-term

Λ(ε1, . . . , εr)⊗H∗U(r)(BtS(wI)), d(εk) = π(I)∗(h∗k)− τ(I)∗(h∗k).
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This complex is the standard Koszul complex that computes the Hochschild homology
of the bimodule H∗U(r)(BtS(wI)) with coefficients in H∗T . Since this spectral sequence col-
lapses at E3, and is free over H∗T , we recover the cohomology ring H∗U(r)(B(wI)) up to
choices of lifts. We will show in what follows that one may make canonical choices for
the classes βs and γl. The differentials above show that the horizontal edge homomor-
phism factors through the quotient by the classes τ(I)∗(h∗s) − π(I)∗(h∗s) ∈ H∗U(r)(BtS(wI))
giving rise to a relation in H∗U(r)(B(wI)) where τ(I) and π(I) were the maps defined in
definition 2.4. From the recurrence relation given in theorem 7.5, we may write the above
difference as

d(εs) = τ(I)∗(h∗s)− π(I)∗(h∗s) =
∑
ij∈Is

δj := δ̂s.

This shows that the classes δ̂s yield relations. Notice that we could have replaced εs by
the co-root τs for the block l(s) (see definition 7.4) to give rise to the same relation. In
particular, given s ∈ ν(I) with ij = s and ν(s) = 1, we see that the class βs := τs(δj + [αs]j)
is a permanent cycle. This class βs is bidegree (2, 1) of the Serre spectral sequence. There
are no degree three classes in lower filtration, therefore βs lifts uniquely to H∗U(r)(B(wI)).

Let us now define the classes γl for any block l ∈ ν(I). Given an block l, let m(l) ∈ l
denote the maximal index. Let e denote the cardinality of the set ν(I), so that one has
a standard sub torus T e ⊆ T r corresponding to these chosen maximal indices. Now, let
GI denote the subgroup generated by the subgroups Gs for s ∈ ν(I). In particular, we
have a decomposition of the form GI = LI oT e where LI is the semi-simple factor in
GI . It follows that the maximal torus T r can be factored as T r = TI × T e, where TI is
the maximal torus of GI generated by all the rank-one tori of the co-roots exp(iRhs) for
s ∈ ν(I). In particular, we have an equivalence of T -spaces

(3) ET×T (LI,i1 ×TI . . .×TI LI,ik)× T e ' ET×T (B(wI)),

where LI,i := LI ∩Gi. The classes γl that we seek are defined by pulling back the standard
generators of the cohomology of T e. By construction, we see that H∗U(r)(B(wI)) is free
over the algebra H∗T ⊗Λ(γl). Restricting to H1(ET×TT ), one can easily check that that the
restriction of the classes γl can be expressed explicitly in terms of the standard generators
{x̂i} of H1(ET×TT ) as the class

∑
i∈l x̂i. Similarly, βs restricts to the class

∑
j≤s,j∈l(s) αsx̂j .

We therefore have succeeded in constructing the map $I . In the case when I is redun-
dancy free, the E3-term of the Serre spectral sequence above can easily be computed to
show that $I is an isomorphism.

Now consider a subset J ⊂ I obtained by deleting an index ij so that s = ij and ν(s) = 1.
It follows that removing the index s from ν(I) generated two new blocks in ν(J) given
by l(s) and l(s + 1). Furthermore, the orbit l(s) ∈ ν(I) decomposes into the WJ orbits
l(s) + l(s + 1). It follows that the class γl(s) restricts to γl(s) + γl(s+1) under the restriction
from H∗U(r)(B(wI)) to H∗U(r)(B(wJ)). Similarly, comparing Serre spectral sequences, we
see that the class βs restricts to [αs]jγl(s). The restriction for βk for k > s with ν(k) = 1, and
sharing a block with s is proved in the same fashion.

It remains to show that H∗U(r)(B(wI)) is free over the algebra H∗T ⊗Λ(βs)⊗ Λ(γl), and that
the restriction map from H∗U(r)(B(wI)) to H∗U(r)(B(wJ)) has the form described. By the use
of the first Markov property, we may work with the special case where J is obtained from
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I by dropping the last index so that J = {i1, . . . , ik−1}. Let us express the block-diagonal
groupGik ⊆ U(r) as the group T r1×U(2)×T r−r1−2 in the standard basis of Cr for some r1.
We consider the new basis of the diagonal torus T r ⊂ U(r) of the form T r−1 × ∆, where
∆ is the standard diagonal maximal torus in SU(2) ⊂ Gik , and T r−1 is the rank-(r − 1)
standard maximal torus of the block diagonal subgroup U(r1 + 1)×SU(r− r1−1) ⊂ U(r).
Let us consider the projection map

T r = T r−1 ×∆ −→ ∆.

Having chosen the above basis, notice that we may express any block-diagonal group Gij

for ij 6= ik as the form G0,ij o ∆, where G0,ij has maximal torus T r−1. In particular, we
have a decomposition as topological-spaces

BT (wJ) = Gi1×TGi2 . . .×TGik−1
= (G0,i1×T r−1G0,i2 . . .×T r−1G0,ik−1

)×∆ := BT r−1(wJ)×∆.

Equivariantly, the above decomposition results in a product decomposition of T -spaces

BT (wI) = (G0,i1 ×T r−1 G0,i2 . . .×T r−1 G0,ik−1
)× SU(2) = BT r−1(wJ)× SU(2)

with T -acting by conjugation on both factors. Next, let us consider the pullback diagram
of fibrations, with the vertical fibers being the space ETr−1×T r−1(BT r−1(wJ))

ET×T (BT (wJ))

��

// ET×T (BT (wI))

��
E∆×∆∆ // E∆×∆ SU(2).

The horizontal map at the bottom is straightforward to analyze using the Serre spectral
sequence described earlier in the proof. One sees that H∗∆(SU(2)) is an exterior algebra
over H∗∆ on a generator βk−1 that restrict to the classes αk−1x̂k−1 in H∗∆(∆), where x̂k−1 is
identifed with H1(∆). In particular, H∗∆(∆) is free over H∗∆(SU(2)). This freeness tells us
that the Eilenberg-Moore spectral sequence for the pullback collapses to give

H∗U(r)(B(wJ)) = H∗∆(∆)⊗H∗
∆(SU(2))

H∗U(r)(B(wI)),

which is equivalent to the second part of the theorem. Notice also that freeness of the
bottom horizontal map of the above pullback in cohomology also shows that the Serre
spectral sequence for the right vertical map collapses. This yields an isomorphism

H∗U(r)(B(wI))
∼=−→ H∗T r−1(BT r−1(wJ))⊗H∗∆⊗Λ(βk−1).

Proceeding by induction shows that H∗U(r)(B(wI)) is free over H∗T ⊗Λ(βs)⊗ Λ(γl) with βs
and γl as defined in the theorem. �

The twisted cohomology of the spaces B(wI) is subtle. We may describe the twisted
cohomology for redundancy free positive sequences I and leave the general case to [6].
Given a simple positive root for U(r), of the form αi = xi− xi+1, we begin by defining the
formal expression

℘(αi) :=
℘(xi)− ℘(xi+1)

xi − xi+1

.
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Theorem 7.7. Let I = {i1, i2, . . . , ik} be a redundancy free positive indexing sequence with each
ij < r. Then we have a canonical isomorphism

$I : θH ∗+r+2|ν(I)|
U(r) (B(wI))

∼=−→
H ∗

U(r)(BtS(wI))

〈℘(αs), δs if s ∈ ν(I), ℘(xm(l)), if l ∈ ν(I) 〉
,

where m(l) denotes the maximal element in the block l ∈ ν(I), and H denotes the Borel equivari-
ant completion of H∧BU+. For I as above, let J = I−{it} with it = s. Then the restriction map
θH ∗

U(r)(B(wI)) −→ θH ∗
U(r)(B(wJ)) injects onto the submodule of elements divisible by αs.

Proof. We recall from theorem 4.6 the spectral sequence of modules over H ∗
U(r)(B(wI))

that converges to θH ∗
U(r)(B(wI)). This spectral sequence starts with the untwisted equi-

variant cohomology theory H ∗
U(r)(B(wI)), which we completely understand by virtue of

theorem 7.6. To construct this spectral sequence, recall that we filter H∗(BU+) by powers
of the ideal generated by the elements b1, b2, . . .. This filtration is induced by a stably-
split topological filtration of BU+ by ideals that give rise to a filtration of θH ∗

U(r)(B(wI))
whose associated quotient is H ∗

U(r)(B(wI)), since the twisting is trivial under the associ-
ated quotient. The first differential is determined by what it does on the class “1”, which
we express in terms of the generators defined in theorem 7.6

d(1) =
∑

s∈ν(I), l∈ν(I)

cs βs + dl γl,

for some coefficients cs and dl. Recall from 7.6 that the restriction of H ∗
U(r)(B(wI)) to

H ∗
T (T ) is injective. Hence, we can identify the coefficients cs and dl by unraveling the

equality equality in H ∗
T (T )∑
s∈ν(I), l∈ν(I)

(cs αs τs + dl γl) =
∑
i

℘(xi) x̂i,

where the right hand side is seen to the be differential using theorem 4.9. Since the classes
τs and γl are linearly independent over the ring H ∗

T (pt), an elementary calculation using
remark 7.9 shows that dl = ℘(xm(l)), where m(l) is the maximal element in the block l.
Similarly, cs = ℘(αs). We may now compute the cohomology under the first differential,
and verify that it is a quotient of the ideal in H ∗

U(r)(B(wI)) generated by the product
class

∏
s,l βsγl in degree r+2|ν(I)|. By parity reasons, the spectral sequence collapses. The

result is easily seen to be a cyclic submodule for H ∗
U(r)(BtS(wI)) with a shift in degree

given by r + 2|ν(I)|, and is canonically isomorphic to
(4)

H ∗
U(r)(BtS(wI))

〈℘(αs), δs if s ∈ ν(I), ℘(xm(l)), if l ∈ ν(I) 〉
∼=

Z[b1, b2, . . .]Jx1, . . . , xrK
〈℘(αs), if s ∈ ν(I), ℘(xm(l)), if l ∈ ν(I) 〉

.

Naturality under restriction also follows from the above description. Hence we have
proven the theorem. �

Example 7.8. In certain instances, one may explicitly compute the cohomology of spaces
B(wI) even when I is not redundancy free. For instance, consider the indexing sequence
of the form Is = (s, s, · · · , s) with only one index repeated k times. In this special case,
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one has a pullback diagram

B(wIs)

��

M // B(σs)

��
BtS(wIs)

M // BtS(σs).

where the vertical maps the the canonical maps from the spaces of Broken symmetries
to the Bott Samelson spaces and the horizontal maps M are induced by the k-fold group
multiplication in Gs. It is straightforward to see that the maps M are split, and that the
map M : BtS(wIs) −→ BtS(σs) has the property

M∗(δ) = δ̂ := δ1 + δ2 + · · ·+ δk.

It follows from the Eilenberg-Moore spectral sequence that

H∗U(r)(B(wIs)) = H∗U(r)(B(σs))⊗H∗
U(r)(BtS(σs))

H∗U(r)(BtS(wIs)).

A similar argument shows that in the twisted case
θH ∗

U(r)(B(wIs)) = θH ∗
U(r)(B(σs))⊗H∗

U(r)(BtS(σs))
H∗U(r)(BtS(wIs)).

This example easily generalizes to the case when I is an indexing sequence with the prop-
erty that given any s ∈ ν(I), all occurances of s are in consecutive order. In such a case,
one can use sequential multiplication to construct a map M on B(wI) taking values in
B(wI0), for some redundancy free sequence I0 with ν(I0) = ν(I).

Remark 7.9. Consider the restriction map H∗U(r)(B(wI)) −→ H∗T (T ). The kernel of this map is
given by the ideal generated by the elements δi. In particular, the restriction map is injective if
ν(s) = 1 for all s ∈ ν(I), namely if I is redundancy free. The discussion in the proof of theorem
7.6 described the restriction applied to the classes γl and βs

γl 7−→
∑
i∈l

x̂i, βs 7−→ αs τs =
∑

i≤s, i∈l(s)

αs x̂i.

8. APPENDIX: EXAMPLES OF TWISTED THEORIES

In this section, we will give two examples of twisted theories in addition to the one we
have already studied. We begin with a simple example of twisted cohomology in the
usual sense, and then we construct a twist on equivariant K-theory.

Consider equivariant singular cohomology HU(r)[Z] with coefficients in the group-ring of
Z, which we identify with Laurent polynomials Z[b±1

0 ] on a class b0 in degree zero. In
other words

HU(r)[Z] = Map(EU(r),H∧Z+), HU(r)[Z]∗(pt) = H∗U(r)(pt)[b
±
0 ], |b0| = 0.

HU(r)[Z] admits a Galois symmetry σ[Z] that acts by −1 on Z. In particular σZ(b0) = b−1
0 .

We define a twist θr on HU(r)[Z] in terms of definition 3.14 by the action

θr : ΩU(r)+ ∧HU(r)[Z] −→ HU(r)[Z],

that is given by the projection map ΩU(r) → Z followed by the canonical action of Z
on HU(r)[Z]. It is straightforward to check that σZθσ = θ. In other words, the twist θ
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is invariant under the conjugate Galois symmetry. It is straightforward to check that
the twisted cohomology of a space B(wI) is none other than the equivariant singular
cohomology of B(wI) with twisted coefficients:

π1(ρI) : π1(B(wI)) −→ π1(U(r)) = Z ⊂ AutZ(Z[b±1
0 ]).

In other words, we have θrH∗U(r)(B(wI)) = H∗U(r)(B(wI),Z[Z]). This twisted cohomology
of B(wI) is given by imposing the relation

∑
l∈ν(I) γl = 0 (see theorem 7.6) in exchange

for shifting the cohomological degree up by one. As such it appears to be an INS-type
equivariant theory whose corresponding link homology is a reduced version of triply
graded link homology.

Remark 8.1. The above example can be interpreted in terms of the univerersal twisting ℘(x) as
defined in claim 4.3, where we allow a constant term (1− b0) and set all other variables bi as 0. In
other words, we can interpret it as “sl(0)-link homology.”

Let us now move on to an example of a twist on U(r)-equivariant K-theory, K U(r). This
twist has been of interest lately due to work of Freed-Hopkins-Teleman [2, 4] in which
they relate this twisted K-theory for arbitrary compact Lie groups G to the Grothendieck
group of representations of the smooth Loop group LG. Indeed, one can think of this
twisted K-theory of G as an equivariant K-theory for LG, One may develop that idea for
a more general class of groups known as Kac-Moody groups, that extend Loop groups.
This direction has been explored in [14] where these theories go by the name Dominant
K-theory. In this section, we prefer to use the expression twisted K-theory of U(r) instead
of Dominant K-theory of LU(r).

To define the twisting of K U(r) we start with the construction of a suitable Hilbert space
of LU(r) representations, and model the representing objects of the twisted theory as a
space of Fredholm operators on that Hilbert space. The representations of LU(r) we will
consider in this section are known as positive-energy representations [23]. These repre-
sentations are infinite dimensional Hilbert representations. Since the theory of positive-
energy representations requires us to fix a integral level n > 0, we do so henceforth.

Let us get a sense of what these positive-energy representations look like. Consider the
(real) Hilbert space Trigr defined as the closure of the trignometric functions with values
in the real 2r-dimensional vector space underlying Cr. This space has a (dense) basis:

{ei cos(kt), ei sin(st), k ≥ 0, s > 0, 1 ≤ i ≤ 2r, 0 ≤ t ≤ 2π}.

The Euclidean inner product on Trigr is given by integrating the standard Euclidean inner
product:

〈f(t), g(t)〉 =
1

2π

∫
〈f(t), g(t)〉 dt.

We may extend the Euclidean inner product on Trigr complex linearly to a non-degenerate
bilinear form on Trigr⊗RC.

One can now define the C∗-algebra C generated by the Clifford relations:

f(t) g(t) + g(t) f(t) = 〈f(t), g(t)〉.
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Notice that one has a canonical identification of Trigr⊗RC as the completion of Laurent
polynomials on Cr ⊗R C:

Trigr⊗RC = L2(S1,Cr ⊗R C) = Cr⊗̂RC[z, z−1], z = eit.

Let J denote the complex structure on Cr. Notice that the ±i-eigenspaces of the complex
linear extension of J yields an isotropic decomposition: Cr⊗RC = W ⊕W 3. This induces
an isotropic decomposition of Cr ⊗R C[z, z−1] = Hr

+ ⊕Hr
− with

Hr
+ = W [z]⊕ zW [z], Hr

− = W [z−1]⊕ z−1W [z−1].

We will denote by Λ∗(Hr
+) the irreducible unitary representation of C given by the Hilbert

completion of the exterior algebra on Hr
+ , with Hr

+ ⊂ C acting by exterior multiplication,
and Hr

− ⊂ C acting by extending the contraction operator using the derivation property.
By construction, LU(r) preserves the inner product on Trigr, and hence it acts on C by
algebra automorphisms. Since Λ∗(Hr

+) is the unique representation of C4 , Schur’s lemma
says that we get a canonical projective action of LU(r) on Λ∗(Hr

+) that intertwines the
action of C twisted by the action of LU(r). The induced map ρ(r) : LU(r) −→ PU(Λ∗(Hr

+))
may be lifted over U(Λ∗(Hr

+)) giving rise to the universal level n = 1 central extension
L̃U(r) −→ LU(r). This representation is called the fermionic Fock space representation.

Definition 8.2. (The universal central extension L̃U(r) and the fermionic Fock space)

Let L̃U(r) denote the universal central extension of LU(r) defined by virtue of the homomorphism
ρ(r) : LU(r) −→ PU(Λ∗(Hr

+)) above. This central extension L̃U(r) splits over the constant loops
U(r) ⊂ LU(r). Since the representation ring of U(r) is generated by the representations Λk(Cr),
it follows from the construction that Λ∗(H+) contains all irreducible representations of U(r) under
the restriction U(r) ⊂ L̃U(r). It is also straightforward to see that Λ∗(Hr

+) = Λ∗(Hs
+)⊗̂Λ∗(H t

+)

under the central extension of the diagonal map LU(s)×̃LU(t) −→ L̃U(r), where r = s+ t.

Remark 8.3. Let T denote the rotation group acting on LU(r) by reparametrizing S1. This action
lifts to an action on L̃U(r). Furthermore, the action of L̃U(r) on Λ∗(Hr

+) extends to an action of the
group Tn L̃U(r). Let x1, x2, . . . , xr denote the diagonal characters of the standard representation
of U(r) on Cr, and let u denote the central character of L̃U(r). Also, let q denote the fundamental
character of T. Then it is easy to see that the character of the fermionic Fock space is given by:

Ch(Λ∗(Hr
+)) = u

∞∏
m=0

r∏
i=1

(1 + xiq
m)(1 + x−1

i qm+1).

One may define a complex linear Galois symmetry σK on the fermionic Fock space that has the
property σK (xi) = x−1

i q and σK (q) = q. Then σK induces a symmetry on the space of Fredholm
operators on the fermionic Fock space (by conjugation with σK ).

3W is canonically isomorphic to Cr as a U(r)-representation
4Strictly speaking, for this to be true, we must first fix a polarization or equivalence class of maximal

isotropic subspaces equivalent to Hr
±
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Definition 8.4. (Level n positive-energy representations)

We define an irreducible level n positive-energy representation of L̃U(r) to be any irreducible
L̃U(r)-representation that is a sub-representation of the n-fold (completed) tensor product of Λ∗(Hr

+)
(see [23] Thm. 10.6.4). There are only finitely many irreducible positive-energy representations of
level n, and that any extensions of two irreducible positive-energy representations splits [23]. In
particular, one has a semi-simple category of positive-energy level n representations of L̃U(r).

Before we define twisted K-theory, let us first recall that usual two-periodic K-theory is
represented by homotopy classes of maps into the space of Fredholm operators F(H)
(with the norm topoogy) in a separable Hilbert space H. This space of operators has the
homotopy type of the infinite Grassmannian Z×BU. The theorem of Bott periodicity en-
sures that Z×BU is an infinite loop space, thereby defining a (two-periodic) cohomology.

The construction K-theory described above has an equivariant analog as well [27]. Given
a compact Lie group G, the object that represents G-equivariant K-theory is the G-space
of Fredholm operators (under G-conjugation) in a Hilbert G-representation that contains
all G-representations, with infinite multiplicity. With this as motivation, we define

Definition 8.5. (The LU(r)-equivariant theory nK U(r))
Let Hn denote the Hilbert space completion of countable copies of all level n positive-energy rep-
resentations of L̃U(n). Let F(Hn) denote the space of Fredholm operators on Hn. By choosing a
suitable variation of the norm-topology (see [2] section 3), the underlying homotopy type ofF(Hn)

is given by the infinite loop-space Z × BU and the group L̃U(r) admits a continuous action on
F(Hn) by conjugation of operators which factors through LU(r). Furthermore, the infinite loop-
space structure on F(Hn) is compatible with respect to this action (see [2] sections 3, 4) giving
rise to an LU(r)-equivariant cohomology theory denoted by nK U(r).

Remark 8.6. By definition 8.2, Hn contains all U(r)-representations with infinite multiplic-
ity, hence the U(r)-equivariant theory underlying nK U(r) is simply U(r)-equivariant K-theory
K U(r). In particular, nK U(r) represents a twist θr on K U(r) indexed by the level n representa-
tions of LU(r). The twists of K U(r) have been classified by H3

U(r)(U(r)) [2], where U(r) is seen as
a U(r)-space under conjugation. As such, θ = {θr} represents the class nB1 (see theorem 4.9).

Notice that one also has a Galois symmetry σ on LU(r) by pointwise complex conjugation. This
action is compatible with the symmetry σK on nK U(r) induced by the Galois symmetry on the
fermionic Fock space (see remark 8.3). In other words, the twist θ is invariant under the conjugate
symmetry, giving rise to a Galois symmetry on the twisted equivariant K-theory groups of B(wI).

Example 8.7. Consider the simplest space of Broken symmetries U(r) ×T r T r. As with
twisted equivariant cohomology, one may easily compute its twisted K-theory

nK r
U(r)(U(r)×T r T r) =

Z[x±1 , . . . , x
±
r ]

〈xn1 − 1, . . . , xnr − 1〉
, nK r−1

U(r)(U(r)×T r T r) = 0.

The action of the conjugate Galois symmetry σ is given by σ(xi) = x−1
i .

As in the case of the twisted theory {H , θ℘}, computing nK U(r) on more general spaces
B(wI) and verifying that one has an INS-type theory is a non-trivial problem. This re-
mains work in progress.
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