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ABSTRACT. Given a compact connected Lie group G endowed with root datum, and an el-
ement w in the corresponding Artin braid group for G, we describe a filtered G-equivariant
stable homotopy type, up to a notion of quasi-equivalence. We call this homotopy type
Strict Broken Symmetries, sB(w). As the name suggests, sB(w) is constructed from the stack
of principal G-connections on a circle, whose holonomy is broken between consecutive sec-
tors in a manner prescribed by a presentation of w. We show that sB(w) is independent of
the choice of presentation of w, and also satisfies Markov type properties. Specializing to
the case of the unitary group G = U(r), these properties imply that sB(w) is an invariant
of the link L obtained by closing the r-stranded braid w. As such, we denote it by sB(L).
In the follow up to this article [7], we will show that the construction of strict broken sym-
metries allows us to incorporate twistings. Under suitable conditions, U(r)-equivariant
(twisted) cohomology theories EU(r) applied to sB(L) give rise to a spectral sequence of
link invariants converging to E∗U(r)(sB∞(L)), where sB∞(L) is the direct limit of the fil-
tration. For instance, in [7] we describe Triply-graded link homology as the E2-term in the
spectral sequence one obtains on applying Borel-equivariant singular cohomology HU(r) to
sB(L). We also study a universal twist of HU(r). Here one recovers sl(n)-link homologies
for any value of n (depending on the choice of specialization of the universal twist).
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1. INTRODUCTION

The main result of this article is the construction of a filtered U(r)-equivariant stable ho-
motopy type sB(L) for links L that can be described as the closure of r-stranded braids,
namely, elements of the braid group Br(r). We call this spectrum the spectrum of strict
broken symmetries because it is built from the stack of principal U(r)-connections on a circle
with prescribed reductions of the structure group to the maximal torus at various points
on the circle. Even though we have invoked the category of equivariant spectra, for links
L that can be expressed as the closure of a positive braid, our spectrum sB(L) can be de-
scribed entirely by the geometry of an underlying U(r)-equivariant space of strict broken
symmetries.

For the convenience of non-experts, all the results in the introduction will be formulated
for links given by the closure of a positive braid, with the general result for arbitrary
braids described in later sections.

We also point out that several results in this article will be shown to hold for arbitrary
compact connected Lie groups G. We have chosen to highlight the case G = U(r) in the
introduction because of the natural interpretation of our results in terms of link homol-
ogy. Broadly speaking, the interpretation of our homotopy type in terms of Khovanov-
Rozansky homology as constructed in [15] can be described as follows. Details can be
found in [7].

Given a link L that is expressed by the closure of a braid diagram, Khovanov-Rozansky
homology of L is traditionally described by first constructing a triply-graded complex
C (L) with three commuting differentials d+, d−, dv. The two differentials d+ and d− are
known as the “Matrix Factorization” differentials, and the remaining differential dv is
known as the “cubical” or ”resolution of crossings” differential. With the above setup,
the Khovanov-Rozansky triply graded homology of the link L is defined as the successive
homology H(H(C (L), d+), dv). Similarly, the Khovanov-Rozansky sl(n)-link homology of
L is defined as the successive homology H(H(C (L), d+ + d−), dv), where the definition of
the differential d− depends on n.

Ignoring gradings for now, we may recover the above algebraic framework using our ho-
motopy type sB(L) as follows. The filtration on sB(L) gives rise to an associated graded
equivariant homotopy type Gr(sB(L)) (see section 3). In [7] we prove that the equivariant
singular cohomology of Gr(sB(L)) is isomorphic to H(C (L), d+). Furthermore, by virtue
of being an associated graded object, Gr(sB(L)) admits a differential ∂ in the homotopy
category. The induced differential ∂∗ on H∗U(r)(Gr(sB(L)) can be identified with dv. This
allows us to recover Khovanov-Rozansky triply graded link homology of L in terms of
the equivariant singular cohomology of sB(L).

A final piece of topological structure we will describe in [7] is a “derived local system” on
sB(L) which allows us to define a version of twisted equivariant singular cohomology.
This twisting gives rise to a differential on the equivariant cohomology of sB(L) which
we conjecture in [7] to be the differential d− in terms of the above identification. This
conjecture has recently been proven by T. Mejı́a Gomez [6], thereby showing how our ho-
motopy type sB(L) can also be used to recover Khovanov-Rozansky sl(n)-link homology
in terms of the twisted equivariant cohomology of sB(L).
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The above discussion hopefully motivates why one is justified in thinking of sB(L) as
an equivariant stable homotopy type for links. Even though we have described the eval-
uation of sB(L) on equivariant singular cohomology, sB(L) can be evaluated under ar-
bitrary equivariant cohomology theories potentially giving rise to other interesting link
homologies. In addition, the derived local system alluded to above is well know to twist
many interesting equivariant cohomology theories (for instance equivariant K-theory).
This is discussed further in [7] and remains an active direction of our research.

Before we proceed, let us say a few words about the category of G-spectra that will be
used in this article. The main results of this article can be understood with very little back-
ground on equivariant spectra. It is helpful to bear in mind that G-spectra may be seen
as a natural localization of the category of G-spaces where one is allowed to desuspend
by arbitrary finite dimensional G-representations. As with G-spaces, one may evaluate
G-spectra on G-equivariant cohomology theories. Given a subgroup H < G, one has re-
striction and induction functors defined respectively by considering a G-spectrum as an
H-spectrum, or by inducing up an H-spectrum X to the G-spectrum G+ ∧H X . As one
would expect, the induction from H-spectra to G-spectra is left adjoint to restriction. For
those somewhat familiar with the language, by an equivariant G-spectrum we mean an
equivariant spectrum indexed on a complete G-universe [12].

The spectra we study in this article are filtered by a finite increasing filtration FtX . The
associated graded object Grt(X) of such a spectrum has a natural structure of a chain
complex in the homotopy category of G-spectra. In particular, one may define an acyclic
filtered G-spectrum X so that the associated graded object Grr(X) admits stable null ho-
motopies. The notion of acyclicity allows us to define a notion of quasi-equivalence on our
category of filtered G-spectra by demanding that two filtered G-spectra are equivalent if
they are connected by a zig-zag of maps each of whose fiber (or cofiber) is acyclic.

Returning to the main application of this article, we show that a braid w on r-strands
gives rise to a filtered equivariant U(r)-spectrum of strict broken symmetries, denoted by
sB(w), which is well defined up to quasi-equivalence. Before we get to the definition of
strict broken symmetries, let us first offer a geometric description of the U(r)-spectrum
of broken symmetries. Consider a braid element w ∈ Br(r), where Br(r) stands for the
braid group on r-strands. For the sake of exposition, consider the case of a positive braid,
i.e. one that can be expressed in terms of positive exponents of the elementary braids
σi for i < r. Let I = {i1, i2, . . . , ik} denote an indexing sequence with ij < r, so that
a positive braid w admits a presentation in terms of the fundamental generators of the
braid group Br(r), w = wI := σi1σi1 . . . σik . Let T , or T r (if we need to specify rank), be
the standard maximal torus, and let Gi denote the unitary (block-diagonal) form in the
reductive Levi subgroup having roots ±αi. We consider Gi as a two-sided T -space under
the left (resp. right) multiplication.

The equivariant U(r)-spectrum of broken symmetries is defined as the (suspension) spec-
trum corresponding to the U(r)-space B(wI) that is induced up from a T -space BT (wI)

B(wI) := U(r)×T (Gi1 ×T Gi2 ×T · · · ×T Gik) = U(r)×T BT (wI),

with the T -action on BT (wI) := (Gi1 ×T Gi2 ×T · · · ×T Gik) given by conjugation

t [(g1, g2, · · · , gk−1, gk)] := [(tg1, g2, · · · , gk−1, gkt
−1)].
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As mentioned above, the U(r)-stack U(r) ×T (Gi1 ×T Gi2 ×T · · · ×T Gik) is equivalent to
the stack of U(r)-connections on a circle with k marked points, with the structure group
being reduced to T at the points, and symmetry being broken to Gi along the i-th sector.

One may heuristically relate the connections to links in the following way. Assume the
existence of a U(r)-connection∇ as above whose holonomy along any sector between suc-
cessive points is a permutation matrix that belongs to the corresponding block-diagonal
subgroup. Now consider the parallel transport under ∇ of the standard orthonormal
frame in Cr. Projecting this frame onto a generic line bundle C× S1 ⊆ Cr × S1 gives rise
to the associated (geometric) link L(∇) in the trivial line bundle (C×S1) ⊂ R3. In this con-
text, connections whose holonomy preserves the T -structure in any sector do not induce a
braiding in that sector. In particular, to recover links with a prescribed braid presentation,
one needs to factor out those connections whose holonomy preserves the T -structure in
any sector. Homotopically, this factoring out of redundant connections is achieved by the
construction of a homotopy colimit which we recall in detail in the Appendix. The resulting
object is called the equivariant spectrum of strict broken symmetries.

Definition. (Strict broken symmetries and their normalization)
Let L denote a link described by the closure of a positive braid w ∈ Br(r) with r-strands, and let
wI be a presentation of w as w = σi1 . . . σik . We first define the limiting U(r)-spectrum sB∞(wI)
of strict broken symmetries as the space that fits into a cofiber sequence of U(r)-spaces:

hocolimJ∈IB(wJ) −→ B(wI) −→ sB∞(wI).

where I is the category of all proper subsets of I = {i1, i2, . . . , ik}.

The spectrum sB∞(wI) admits a natural increasing filtration by spaces Ft sB(wI) defined as the
cofiber on restricting the above homotopy colimit to the full subcategories It ⊆ I generated by
subsets of cardinality at least (k− t), so that the lowest filtration is given by F0sB(wI) = B(wI).

Define the spectrum of strict broken symmetries sB(wI) to be the filtered spectrum Ft sB(wI)
above. The normalized spectrum of strict broken symmetries of the link L is defined as

sB(L) := Σ−2ksB(wI).

In order for the normalized definition to make sense, one would require proving that the
construction of sB(L) is independent (up to quasi-equivalence) of the braid presentation
wI used to describe L. This comes down to checking the braid group relations, and the
first and second Markov property. The first Markov property and the braid group rela-
tions are established in sections 4 and 5-6 resp. Results of these sections in fact admit a
generalization to any compact connected Lie group G, and we work with that generality
in the first six sections. However, as mentioned earlier, we have chosen to highlight the
case G = U(r) in this introduction.

The second Markov property imposes a stability condition on the construction, requiring
that it be invariant under the augmentation ofw by the elementary braid σr (or its inverse)
so as to be seen as a braid in Br(r+1). This is equivalent to the observation that the link L
is unchanged on adding an extra strand that is braided with the previous one. In proving
invariance under the second Markov property, we encounter a subtle point. Notice that
sB(L) is induced up from a T r-spectrum we shall denote by sBT r(L). Proving invariance

4



under the second Markov property would therefore require showing that the U(r + 1)-
spectrum obtained by considering L as the closure of wσ±r is induced from sBT r(L) along
the standard inclusion T r < U(r + 1). This requirement is almost true but for a small
subtlety. We show in section 7 that when L is seen as the closure of the (r + 1)-stranded
braidwσ±r , the corresponding U(r+1)-spectrum, sB(L) is induced up from sBT r(L) along
a different inclusion ∆r : T r −→ U(r+1). This inclusion differs from the standard inclusion
in the last entry. We proceed to resolve this issue in section 7 by inducing up to a larger
group. The upshot is that sB(L) is a link invariant up to a notion of quasi-equivalence.

Theorem. As a function of links L, the filtered U(r)-spectrum of strict broken symmetries sB(L)
is well-defined up to quasi-equivalence. In particular, the limiting equivariant stable homotopy
type sB∞(L) is a well-defined link invariant in U(r)-equivariant spectra (see remark 3.5). We
discuss sB∞(L) below.

In section 8 we show that the construction of the link invariant sB(L) admits an internal
symmetry given by the Galois action by complex conjugation on all Levi subgroups.

An obvious way to obtain (group valued) link invariants from the filtered homotopy type
sB(L) is to apply an equivariant cohomology theory and invoke the filtration to set up
a spectral sequence. Let EG denote a family of equivariant cohomology theories indexed
by the collection G = U(r), with r ≥ 1, and naturally compatible under restriction

EU(r)
∼= ι∗ EU(r+1), where ι : U(r) −→ U(r + 1).

Therefore, given a family of equivariant cohomology theories EU(r) as above that satisfies
the conditions described in definition 8.8, the filtration of sB(L) described above does
indeed give rise to a spectral sequence that converges to E∗U(r)(sB∞(L)). The E2-term of
this spectral sequence is itself a link invariant, and is given by the cohomology of the
associated graded complex for the filtration of sB(L). We have

Theorem. Assume that EU(r) is a family of U(r)-equivariant cohomology theories as above that
satisfy the conditions of definition 8.8. Then, given a link L described as a closure of a positive
braid presentation wI on r-strands, one has a spectral sequence converging to E∗U(r)(sB∞(L)) and
with E1-term given by

Et,s
1 =

⊕
J∈It/It−1

Es
U(r)(B(wJ)) ⇒ Es+t−2k

U(r) (sB∞(L)).

The differential d1 is the canonical simplicial differential induced by the functor described in defi-
nition 2.6. In addition, the terms Eq(L) are invariants of the link L for all q ≥ 2.

The Galois symmetry mentioned above descends to an induced Galois symmetry of the
link invariants Eq(L) for q ≥ 2.

In [7], we will relate special cases of the above spectral sequence to various well-known
link homology theories. The limiting spectrum sB∞(L) can actually be described explic-
itly, and so we know exactly what the above spectral sequence converges to. More pre-
cisely, in section 8 we will prove a generalization of the following theorem for arbitrary
compact connected Lie groups G, and for braid words that are not necessarily positive.
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Theorem. Let I = {i1, . . . , ik} be an indexing set so that wI = σi1σi2 . . . σik is a braid word that
closes to the link L. Let VI denote the representation of T given by a sum of root spaces

VI =
∑
j≤k

wIj−1
(αij), where wIj−1

= σi1 . . . σij−1
, wI0 = id,

and where wIj−1
(αij) denotes the root space for the root given by the wIj−1

-translate of the simple
root αij . Then the U(r)-equivariant homotopy type of sB∞(L) is given by the equivariant Thom
space (suitably desuspended)

sB∞(L) = Σ−2k U(r)+ ∧T (SVI ∧ T (w)+),

where SVI denotes the one-point compactification of the T -representation VI , and T (w) denotes
the twisted conjugation action of T on itself

t(λ) := w−1twt−1 λ where w = σi1 . . . σik , t ∈ T, λ ∈ T (w).

Remark. Note that the structure group T of the above Thom spectrum can be reduced to a sub
torus Tw ⊆ T that is fixed by the Weyl element w that underlies wI . The torus Tw is isomorphic to
a product of rank one tori indexed by the components of L. More precisely, the factor corresponding
to a particular component of L is the diagonal in the standard sub torus of T r indexed by the
strands belonging to that particular compoment. Since the cohomology of sB∞(L) (assuming
Thom isomorphism) depends only on the number of components of L, we may think of sB∞(L) as
a stable lift of the invariant E∞(−1) (see Theorem 3 in [15]). Studying the rich internal structure
of the spectrum sB∞(L) is work in progress. If L has a presentation as the closure of a positive
braid, then sB∞(L) appears to be closely related to the Braid Varieties studied in [3].

Let us point out an important piece of structure that is relevant to our framework. Notice
that each space of broken symmetries B(wI) admits a canonical map (given by composing
the holonomies along the sectors) to the stack of principal connections on a circle, which
is equivalent to the adjoint action of U(r)-action on itself

ρI : B(wI) −→ U(r), [(g, gi1 , . . . , gik)] 7−→ g(gi1 . . . gik)g
−1.

These maps ρI are clearly compatible under inclusions J ⊆ I . In particular, the spec-
tra sB(L) can be endowed with a U(r)-equivariant “local system” by pulling back U(r)-
equivariant local systems on U(r). We will use this structure in [7] to twist the equivariant
cohomology theories EU(r) considered above and relate it to sl(n)-link homology.

The author is indebted to Mikhail Khovanov and Lev Rozansky for their interest and pa-
tience during several discussions. We thank David Gepner, Eugene Gorsky, Matt Hogan-
camp, Jack Morava, Dale Rolfsen, Jacob Lurie and Paul Wedrich for helpful discussions
related to this article. The author is also indebted to Vitaly Lorman, Tomás Mejı́a Gomez,
Apurva Nakade and Valentin Zakharevich for a thorough reading, especially with respect
to the coherence properties encountered in section 5. Finally, we thank Aaron Mazel-Gee
for bringing to our attention an error in an earlier version of the proof of theorem 5.1.

6



2. (STRICT) BROKEN SYMMETRIES AND THE G-EQUIVARIANT HOMOTOPY TYPE

Let G be a compact connected Lie group of rank r, and semisimple rank rs ≤ r.1 Let us
fix a root datum, and let T ⊂ G denote the maximal torus acted upon by the Weyl group
W . Let σi ∈ W for i ≤ rs, be the generators corresponding to the simple roots αi, where
rs ≤ r is the semisimple rank of G. The Artin braid group for this root datum is a lift of
the Coxeter presentation of W , and is defined by

Br(G) = 〈σi, 1 ≤ i ≤ rs, σiσjσi . . .mij terms = σjσiσj . . .mij terms〉,
where the integers mij are determined by the entries of the Cartan matrix corresponding
to the root datum. In the special case of G = U(r), the semisimple rank rs is r − 1 and the
braid group is the classical braid group Br(r) of braids with r strands.

In this section we will construct a G-equivariant filtered stable homotopy type called the
strict broken symmetries. All our G-spectra are genuine, by which we mean they are in-
dexed on the completeG-universe. We first begin by defining the equivariantG-spectrum
of broken symmetries given a presentation of an element w ∈ Br(G). Broken symmetries
will then be assembled to construct strict broken symmetries. We begin with the defini-
tions for positive braids.

Definition 2.1. (Broken symmetries: Positive braids)
Let I = {i1, i2, . . . , ik} denote an indexing sequence with ij ≤ rs, so that a positive braid w admits
a presentation in terms of the fundamental generators of Br(G), w = wI := σi1σi1 . . . σik . Let Gi

denote the unitary form in the reductive Levi subgroup having roots ±αi. We consider Gi as a
two-sided T -space under the canonical left(resp. right) multiplication.

Define the equivariant G-spectrum of broken symmetries to be the suspension spectrum of

B(wI) := G×T (Gi1 ×T Gi2 ×T · · · ×T Gik) = G×T BT (wI),

where the T -action on BT (wI) := (Gi1 ×T Gi2 ×T · · · ×T Gik) is given by endpoint conjugation

t [(g1, g2, · · · , gk−1, gk)] := [(tg1, g2, · · · , gk−1, gkt
−1)].

Remark 2.2. As was already mentioned in the introduction, let us point out again that theG-stack
G×T (Gi1×TGi2×T · · ·×TGik) is equivalent to the stack of principalG-connections on the trivial
G-bundle over S1, endowed with a reduction of the structure group to T at k distinct marked
points, and with the property that the holonomy along the i-th sector belongs to the subgroup
Gi in terms of this reduction. The stack of strict broken symmetries, which we will encounter
later, should be interpreted as the stack obtained from broken symmetries by factoring out those
connections whose holonomy preserves the T -structure in some sector.

Let us now address the matter of braid elementsw that admit a presentation with negative
exponents. Let ζi denote the virtual Gi representation (gi − rR), where gi is the adjoint
representation ofGi, and rR is the trivial representation of dimension r (rank ofG). Notice
that the restriction of ζi to T is isomorphic to the root space representation αi (as a real
representation).

1In fact, all results in the first six sections of this paper hold for G being the unitary form of an arbitrary
symmetrizable Kac-Moody group.
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Definition 2.3. (The dual Adjoint sphere spectrum)
Let S−ζi denote the sphere spectrum for the virtual real Gi representation−ζi. In what follows, we
may pick any model for this sphere. For instance, one may choose to define S−ζi to be the dual of
Σ−rSgi , and denote the left Gi action on it by Ad(g)∗

S−ζi := Map(Sgi , Sr), Ad(g)∗ ϕ := g ◦ ϕ ◦ Ad(g−1), ϕ ∈ Map(Sgi , Sr).

Definition 2.4. (Broken symmetries: Arbitrary braids)
Consider the more general indexing sequence expressed as I := {εi1i1, · · · , εikik}, where ij ≤ rs as
before, and εj = ±1. Assume that w = wI := σ

εi1
i1
· · ·σεikik . We define the equivariant G-spectrum

B(wI) := G+ ∧T BT (wI), where

BT (wI) := Hi1 ∧T . . . ∧T Hik , and Hi = S−ζi ∧ Gi+, if εi = −1, Hi = Gi+ else.
The T×T -action onHi is defined by demanding that an element (t1, t2) ∈ T×T acts on S−ζi∧Gi+

by smashing the action Ad(t1)∗ on S−ζi with the standard T ×T action on Gi+ given by left (resp.
right) multiplication. As before the T -action on Hi1+ ∧T Hi2+ ∧T . . . ∧T Hik is by conjugation
on the first and last factor. Notice that B(wI) is an equivariant Thom spectrum over the stack of
broken symmetries G×T (Gi1 ×T · · · ×T Gik).

Our eventual goal is to study the naturality properties of the construction B(wI) in terms
of subwords. In order to study this, we will require to make certain constructions known
as Pontrjagin-Thom constructions that require studying tubular neighborhoods. In order
to do so, let us fix a G-binvariant metric on G.

Claim 2.5. The Pontrjagin-Thom construction along T ⊂ Gi induces a canonical map of equi-
variant T × T -spectra

πi : S−ζi ∧ Gi+ −→ T+,

where the T × T -action on T is induced by left (rep. right) group multiplication.

Proof. Let us describe the construction of the Pontrjagin-Thom construction along T ⊂ Gi

in some detail. First notice that the normal bundle of T in Gi is canonically trivial (using
the right T -translation of the complement of the Lie algebra of T , which we have denoted
by ζi. The conjugation action of T on this normal bundle can therefore be identified with
the standard root-space action of T on ζi. Performing the Pontrjagin-Thom construction
amounts to collapsing a complement of a epsilon neighborhood of T (for some small
epsilon fixed throughout). Doing so gives rise to the map

πi : S−ζi ∧ Gi+ −→ S−ζi ∧ Sζi ∧ T+.

We would like to identify S−ζi ∧ Sζi with S0 so as to identify the codomain with T+. This
is clearly the case non-equivariantly but we must verify the required equivariance. Recall
the action of (t1, t2) ∈ T × T -action on S−ζi ∧ Gi+ defined by smashing the action Ad(t1)∗
on S−ζi with the standard T × T action on Gi+ given by left (resp. right) multiplication.
Notice that t1git2 = t1git

−1
1 t1t2 = (Ad(t1)gi) t1t2. In particular, performing the Pontrjagin-

Thom construction on the inclusion T ⊂ Gi turns the T×T -action onGi+ into the expected
action on Sζi ∧ T+. It follows that the T × T -action on the product S−ζi ∧ Sζi is trivial, and
amounts to group multiplication on the factor T+ as we require. �
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Definition 2.6. (The functor B(wJ))
Given a braid word wI , for I = {εi1i1, · · · , εikik}, let 2I denote the set of all the subsets of I . Let us
define a poset structure on 2I generated by demanding that nontrivial indecomposable morphisms
J → K have the form where either J is obtained from K by dropping an entry ij ∈ K (i.e. an
entry for which εij = 1), or that K is obtained from J by dropping an entry −ij (i.e an entry for
which εij = −1).

The construction B(wJ) induces a functor from the category 2I to G-spectra. More precisely,
given a nontrivial indecomposable morphism J → K obtained by dropping −ij from J , the in-
duced map B(wJ)→ B(wK) is obtained by applying the map πij of claim 2.5 in the corresponding
factor. Likewise, if J is obtained fromK by dropping the factor ij , then the map B(wJ)→ B(wK)
is defined as the canonical inclusion induced by the map T+ → Gij+

in the corresponding factor.

For the functor B(wJ) defined above, we will require the construction of a derived notion
of a colimit over subcategories of 2I . This construction is known as the homotopy colimit
(definition 10.1), which we take as a black-box construction for now, and review in the
Appendix.

We now define the equivariant G-spectrum of strict broken symmetries as follows

Definition 2.7. (Limiting strict broken symmetries)
let I+ ⊆ I denote the terminal object of 2I given by dropping all terms −ij from I (i.e. terms
for which εij = −1). Define the poset category I to the subcategory of 2I given by removing the
terminal object I+.

I = {J ∈ 2I , J 6= I+}

The equivariant G-spectrum sB∞(wI) is defined to be the cofiber of the canonical map:

π : hocolimJ∈IB(wJ) −→ B(wI+).

In other words, one has a cofiber sequence of equivariant G-spectra

hocolimJ∈IB(wJ) −→ B(wI+) −→ sB∞(wI).

Note that the above cofiber sequence can be induced from a cofiber sequence of T × T -spectra.

Definition 2.8. (Filtration of strict broken symmetries via sub-posets It ⊆ I)
We endow sB∞(wI) with a natural filtration asG-spectra defined as follows. The lowest filtration
is defined as

F0 sB(wI) = B(wI+), and Fk sB(wI) = ∗, for k < 0.

Higher filtrations Ft for t > 0 are defined as the cone on the restriction of π to the subcategory
It ⊆ I consisting of objects no more than t nontrivial composable morphisms away from I+. In
other words, the filtered spectrum of strict broken symmetries Ft sB(wI) is defined via the cofiber
sequence

hocolimJ∈It B(wJ) −→ B(wI+) −→ Ft sB(wI).

As before, note thatFt sB(wI) = G+∧TFt sBT (wI), with the filtered T×T -spectrumFt sBT (wI)
defined just as above. Since It ⊂ It+1, we obtain a canonical filtration of length k = |I|

B(wI+) = F0 sB(wI)→ F1 sB(wI)→ F2 sB(wI) · · · → Fk sB(wI) = sB∞(wI).
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Remark 2.9. The poset I is an iterated join of the trivial one-element poset (see remark 10.2). It
follows that I is a finite CW poset. It is now straightforward to see from theorem 10.3 that the
associated graded of the filtration described above is given by the cofiber sequence

Ft−1 sB(wI) −→ Ft sB(wI) −→
∨

J∈It/It−1

ΣtB(wJ).

For the purposes of the rest of the article, it is helpful to normalize definition 2.7.

Definition 2.10. (Normalized strict broken symmetries)
Given an element w ∈ Br(G), we define the normalized G-spectrum of strict broken symmetries

sB(w) := Σl(wI)sB(wI)[%I ],

where wI is any presentation of w, and l(wI) stands for the integer l−(wI)− 2l+(wI) with l+(wI)
denoting the number of positive exponents and l−(wI) denoting the number of negative exponents
in the presentation wI for w in terms of the generators σi. Here sB(wI)[%I ] denotes the shift in
indexing given by Ft sB(wI)[%I ] := Ft+%I sB(wI) where the integer %I that induces the shift is
given by one-half the difference between the cardinality of the set I , |I|, and the mimimal word
length |w|, of w ∈ Br(G)

%I =
1

2
(|I| − |w|).

The notation for the normalization given above depends only on w ∈ Br(G), but makes
no reference to the presentation of w. For this definition to make sense, one needs to
verify that the filtered spectrum sB(w) is independent of the presentation. That is in fact
the case, but the proof of that fact will take up the next several sections

Theorem 2.11. Given a braid element w ∈ Br(G), with two presentations w = wI = wI′ ,
then the filtered G-spectra Σl(wI)sB(wI)[%I ] and Σl(wI′ )sB(wI′)[%I′ ] are quasi-equivalent, where
quasi-equivalence is defined in definition 3.4.

Before we move ahead to the next section that describes the notion of equivalence we
work with, let us actually study the underlying homotopy type of the top filtration given
by Σl(wI)sB∞(wI). In fact, this homotopy type has a nice description in terms of a Thom
spectrum. We have

Theorem 2.12. Given an indexing set I = {ε1i1, . . . , εkik}, Let VI denote the vitrual representa-
tion of T given by a vitual sum of root spaces

VI =
∑
j≤k

εjwIj−1
(αij), where wIj−1

= σi1 . . . σij−1
, wI0 = id,

and where wIj−1
(αij) denotes the root space for the root given by the wIj−1

-translate of the simple
root αij . Let |VI | denote the virtual dimension of VI . Then the G-equivariant homotopy type of
Σl(wI)sB∞(wI) is given by the equivariant Thom spectrum

Σl(wI)sB∞(wI) = Σ−|VI |G+ ∧T (SVI ∧ T (w)+),

where SVI denotes the sphere spectrum for the virtual T -representation VI , and T (w) denotes the
twisted conjugation action of T on itself

t(λ) := w−1twt−1 λ where w = σi1 . . . σik , t ∈ T, λ ∈ T (w).

10



Proof. Recall the definition of sB∞(wI) via the cofiber sequence

hocolimJ∈IB(wJ) −→ B(wI+) −→ sB∞(wI),

where I+ is the terminal element of the set 2I as defined in 2.6, and I denotes the subcat-
egory of 2I consisting of all objects besides I+. We may describe sB∞(wI) as a pushout

B(wI+)←− hocolimJ∈IB(wJ) −→ ∗.
Alternatively, sB∞(wI) can be seen as a homotopy colimit of the canonical functor that
extends B(wJ) over the poset ΣI given by the suspension of I obtained by adjoining
two new vertices {0,∞} that admit morphisms from each object of I. The poset ΣI can
be described as a quotient of the poset P I , where P is the pushout category with three
objects {0, 1,∞}, and P I is the k-fold product of P . We think of objects of P I as func-
tions on I with values in the object set of P and morphisms ϕ < ψ if ϕ(i) ≤ ψ(i) for
all i ∈ I . One recovers ΣI by identifying all functions taking the value ∞ on any ele-
ment of I with a distinguished object (also called ∞). An explicit identification of this
quotient with ΣI is given by defining the function ϕ ∈ P I corresponding to the subset
J = {εij1 ij1 , . . . εijs ijs} ⊆ I as ϕ(εsis) = 1 if εsis ∈ J and εs < 0 or εsis /∈ J and εs > 0.
Define ϕ(εsis) = 0 otherwise. In particular, the maximal subset I+ represents the unique
function taking the value 0 on all elements of I . Now recall that the spectrum B(wJ)

B(wJ) := G+ ∧T BT (wJ), where

BT (wJ) := Hij1
∧T . . . ∧T Hijs

, and Hi = S−ζi ∧ Gi+, if εi = −1, Hi = Gi+ else.
Since P I is a product of pushout categories, and the functor describing sB∞(wI) decom-
poses as a smash product of functors, we may express the homotopy colimit as

sB∞(wI) = G+ ∧T P (Hi1) ∧T . . . ∧T P (Hik),

where P (Hi) are the pushout diagrams constructed from the elementary morphisms de-
scribed in definition 2.6. More precisely, if εi = −1, then we have

S−ζi ∧ Gi+

��

// T+

��
∗ // P (Hi).

Since Sζi ∧ T+ is obtained from Gi by pinching out the T × T -subspace given by the
left coset σiT (see proof of claim 2.5), the above pushout is equivalent to the spectrum
ΣS−ζi ∧ σi T+. On the other hand, if εi = 1, then the pushout diagram is given by

T+

��

// Gi+

��
∗ // P (Hi).

which is equalent to the spectrum Sζi ∧ σiT+, again using the proof of claim 2.5. Since the
T -representation ζi is isomorphic to αi, we may smash them together to obtain

sB∞(wI) = ΣmG+ ∧T (Sε1ζi1 ∧ σi1T+) ∧T . . . ∧T (Sεkζik ∧ σikT+),

wherem is the number of negative exponents. Now suspending by a sphere of dimension
l(wI), and collecting all the terms σiT+ is easily seen to yield the result we seek to prove.

�
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3. SOME FILTERED ALGEBRA

Before we address the the particular properties enjoyed by sB(wI), let us digress briefly
into the theory of filtered G-spectra so as to define a lax notion of equivalence of filtered
equivariant G-spectra that would be relevant for our purposes.

By a bounded-below filtered G-spectrum X := {FtX}, we mean a filtered G-spectrum
with the filtration being the trivial spectrum below some fixed integer n. We have a col-
lection of cofiber sequences:

· · ·FtX → Ft+1X → Ft+1X/FtX → ΣFtX · · ·
which assemble to a collection of maps

∂t : Ft+1X/FtX −→ ΣFtX −→ Σ(FtX/Ft−1X).

Furthermore, ∂t−1 ◦ ∂t is null homotopic for each i. In particular one obtains a bounded-
below graded chain complex in the homotopy category of G-spectra associated to X .

Definition 3.1. (The associated graded and the shift functor for filtered spectra)
The associated graded chain complex of a bounded-below filtered G-spectrum X is defined as

{Grt(X)} := {Σ−t(FtX/Ft−1X), ∂t−1}.
Given a bounded below filtered G-spectrum X , we define the shifted spectrum X[%] as

FtX[%] := Ft+%X.

Remark 3.2. Notice that desuspension and shift together amount to a reindexing of the associated
graded complex. In other words, we have {Grt(Σ

−%X[%])} = {Grt+%(X)}.

Example 3.3. The associated graded spectrum associated to sB(wI) is given by

Grt(sB(wI)) =
∨

J∈It/It−1

B(wJ),

with ∂t being induced by a signed sum along nontrivial indecomposable morphisms.

Definition 3.4. (Acyclicity and quasi-equivalence of filtered G-spectra)
A filtered G-spectrum X is said to be acyclic if the associated graded complex Grt(X) admits a
“null chain homotopy” ht for all t ≥ 0, i.e. one whose graded commutator with ∂ is an equivalence

ht : Grt(X) −→ Grt+1(X), ∂t ◦ ht + ht−1 ◦ ∂t−1 : Grt(X)
'−→ Grt(X).

A map of filtered G-spectra ρ : X −→ Y is defined as a collection of maps ρt : FtX −→ FtY ,
compatible with the filtration. The map ρ is said to be an elementary quasi-equivalence if the
filtered spectrum defined by the fibers (or cofibers) of ρt, is acyclic. Two filtered G-spectra are said
to be quasi-equivalent if they are connected by a zig-zag of elementary quasi-equivalences. We will
refer to usual levelwise equivalences as honest equivalences.

Remark 3.5. Notice that the definitions imply that if two spectra X and Y with finite filtrations
are quasi-equivalent, then their limitingG-spectraX∞ := hocolimt FtX and Y∞ := hocolimt FtY
respectively areG-equivariantly homotopy equivalent. The converse need not be true as can be eas-
ily seen.
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Claim 3.6. Let ρ : X −→ Y be an elementary quasi-equivalence of filtered G-spectra. Given a
G-equivariant cohomology theory EG so that the map of cochain complexes induced by ρ

ρ∗ : E∗G(Grt(Y )) −→ E∗G(Grt(X)),

is either injective for all t, or surjective for all t. Then ρ∗ is a quasi-isomorphism.

Proof. The proof is straightforward. We prove it under the injectivity assumption, the
surjective case is analogous. Assuming injectivity, we notice that there is a short exact
sequence of cochain complexes

0→ E∗G(Grt(Y ))
ρ∗−→ E∗G(Grt(X)) −→ E∗G(Grt(Z))→ 0,

where Z := {FtZ} is the fiber of ρ. By definition of acyclicity, the cochain complex
E∗G(Grt(Z)) is acyclic. The long exact sequence in cohomology therefore implies that ρ∗ is
a quasi-isomorphism. �

It is easy to see why the requirement of injectivity or surjectivity in the above claim is nec-
essary. For example, given a filtered spectrum X , consider the canonical map of filtered
spectra given by the shift that maps each filtrate into the next

s : X −→ X[1], FtX −→ Ft+1X.

It is straightforward to see that s is an elementary quasi-equivalence. However, the in-
duced map s∗ is trivial on the associated graded complex in any cohomology theory EG.
Indeed, this example is universal in a suitable sense in describing what happens in the
case of elementary quasi-equivalences which are trivial on the associated graded object.

Claim 3.7. Let ρ : X −→ Y be an elementary quasi-equivalence of filtered G-spectra, then there
exists a filtered G-spectrum Pρ endowed with elementary quasi-equivalences

ιY : Y −→ Pρ, ιX : X[1] −→ Pρ, with ιX ◦ s ' ιY ◦ ρ.
In particular, Pρ furnishes a quasi-equivalence between Y and X[1]. Furthermore, if the map of
the associated graded cochain complexes induced by ρ

ρ∗ : E∗G(Grt(Y )) −→ E∗G(Grt(X)),

is trivial in EG-cohomology, then both maps ι∗Y and ι∗X are quasi-isomorphisms on the associated
graded complex.

Proof. Let us define the filtered G-spectrum by defining {FtPρ} as the homotopy pushout

FtX

ρ

��

s // FtX[1]

ιX

��
FtY

ιY // FtPρ.

By construction, the fiber of ιX is the fiber of ρ, which is acyclic. Similarly, the fiber of
ιY is the fiber of s, which is also acyclic. Hence, both ιX and ιY are elementary quasi-
equivalences. Now assume that ρ is trivial in EG-cohomology. Then it is easy to see from
comparing the long-exact sequences in cohomology for the two rows (resp. columns),
that ι∗X (resp. ι∗Y ) is surjective on the associated graded complex. By claim 3.6, it follows
that they are quasi-isomorphisms. �
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4. PROPERTIES OF STRICT BROKEN SYMMETRIES: THE MARKOV 1 PROPERTY

Beginning with this section we shall prove various helpful properties of the G-spectrum
of strict broken symmetries. To begin with, we will prove a Markov 1 type result which
essentially says that sB(wI) is equivalent to the spectrum sB(wIτ ), where Iτ is the se-
quence obtained by cyclicly permuting I . More precisely

Definition 4.1. (The permuted poset Iτ )
Given an indexing sequence I = {ε1i1, ε2i2, . . . , εkik}, we define the sequence

Iτ = {ετ1iτ1, ετ2iτ2, . . . , ετkiτk} := {ε2i2, ε3i3, . . . , εkik, ε1i1}.

Notice that given a subset J ∈ 2I , the image of J under this permutation is denoted by Jτ ∈ 2I
τ .

This gives rise to an isomorphism of the posets τ : 2I −→ 2I
τ which restricts to an isomorphism

τ : I −→ Iτ , where Iτ is the poset of all non-terminal objects in 2I
τ .

With the above definition in place, we prove the Markov 1 property:

Theorem 4.2. The functors B(wJ) and B(wJτ ) ◦ τ are equivalent. In particular, τ induces a
levelwise (honest) equivalence of filtered G-spectra

τt : Ft sB(wI)
'−→ Ft sB(wIτ ), t ≥ 0.

Proof. We require a natural equivalence between the G-spectra B(wJ) and B(wJτ ). Let
J = {εij1 ij1 , . . . , εijs ijs} be an element in 2I , so that τ(J) := Jτ is defined as follows

Jτ = {ετij1−1
iτj1−1, ε

τ
ij2−1

iτj2−1, . . . , ε
τ
ijs−1

iτjs−1} ⊆ Iτ , if j1 > 1, and

Jτ = {ετij2−1
iτj2−1, . . . , ε

τ
ijs−1

iτjs−1, ε
τ
ki
τ
k} ⊆ Iτ , if j1 = 1.

Recall from definition 2.4 that

B(wJ) : G+∧T (Hij1
∧THij2

∧T . . .∧THijs
), where Hi = S−ζi∧Gi+, if εi = −1, Hi = Gi+ else.

Let us first consider the case of a positive braid wI , so that Hij = Gij+
for all j. In that

case, we define τ on the underlying topological space by

τ [(g, gij1 , . . . , gijs )] = [(g, gij1 , . . . , gijs )], if j1 > 1, and

τ [(g, gij1 , . . . , gijs )] = [(ggi1 , gij2 , . . . , gijs , gi1)], if j1 = 1,

where the right hand side is indexed by the subset Jτ := τ(J).

It is easy to see that this map is well defined. The map defined above extends (by per-
muting the equivariant spheres) to the equivariant vector bundle obtained by smashing
this space with the equivivariant spheres of the form S−ζi . In other words, one may re-
place Gij by Hij in the above description to obtain a map covering the space level map
described above. This defines the natural equivalence of functors we seek

τ : B(wJ) −→ B(wJτ ).

�
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5. PROPERTIES OF STRICT BROKEN SYMMETRIES: BRAID INVARIANCE

We now move towards showing that sB(wI) depends only on the braid elementw and not
on the presentation I used to express it. This property requires proving two results. The
first result would require showing that sB(wI) is invariant under the braid relations, and
the second result would require us to show invariance under the inverse relation, namely
that one may contract successive terms in I of the form {. . . ,−i, i, . . .} or {. . . , i,−i, . . .}
without changing the equivariant homotopy type up to quasi-equivalence.

We begin our goal by first proving the following theorem on braid invariance:

Theorem 5.1. For a fixed pair of indices (i, j), let I(i,j) be an arbitrary sequence that contains
the braid sequence O(i,j) := {i, j, i, j, . . .} with mij-terms as a subsequence of consecutive terms.
Define I(j,i) to be the sequence obtained by replacing the braid subsequence with its counterpart
{j, i, j, i . . .} with mij-terms. Then the filtered G-spectra sB(wI(i,j)) and sB(wI(j,i)) are con-
nected by a sequence of zig-zags of elementary quasi-equivalences. In particular, they are quasi-
equivalent.

We will only consider the nontrivial case where mi,j > 2. The case when mi,j = 2 is
straightforward since the (left/right) T × T -spaces Gi ×T Gj and Gj ×T Gi can both be
identified with the same space, namely the subgroup of G generated by Gi and Gj . The
proof of theorem 5.1 for mi,j > 2 is fairly technical, and packed with several constructions
and corresponding definitions. The reader interested in the bigger picture may safely
ignore the rest of the section. For those who choose the path of most resistance, it would
be helpful to review the appendix (section 10) briefly before proceeding. The general
argument of the proof can be outlined as follows.

We will introduce two sequences of filtered G-spectra sBSh(i,j,m)(wI) and sBSh(j,i,m)(wI)
resp. for 1 ≤ m ≤ mij called strict broken Schubert spectra. The spectra in either sequence
will be shown to belong to the same quasi-equivalence class by a sequence of zig-zags of
elementary quasi-equivalences. Moreover, by construction, the sequences will begin with
sB(wI(i,j)) and sB(wI(j,i)) respectively, and end with the exact same spectrum, allowing
us to deduce the quasi-equilance between sB(wI(i,j)) and sB(wI(j,i)). In other words, the
beginning and ending terms of the sequences are

sBSh(i,j,1)(wI) = sB(wI(i,j)), sBSh(j,i,1)(wI) = sB(wI(j,i)),

sBSh(i,j,mij)(wI) = sBSh(j,i,mij)(wI).

As with strict broken symmetries, the filtered spectra sBSh(i,j,m)(wI) and sBSh(j,i,m)(wI)
will be defined via a homotopy colimit of two functors BSh(i,j,m)(wJ) and BSh(j,i,m)(wJ)
(resp.) indexed over a poset category. Before we do that, we require

Definition 5.2. (Schubert varieties and their lifts)
Let O(i,j) denote the indexing sequence {i, j, i, . . .} (mij-terms). Let K ⊆ O(i,j) be any subset
K = {k1, k2, . . . , kq}. The Schubert varietyXK is defined as the image under group multiplication

XK = Image of Gk1 ×T · · · ×T (Gks/T ) −→ G/T.
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Define ShK ⊂ G to be the T × T -invariant subspace to be the pullback (where T × T acts on G
via left/right multiplication)

ShK

��

// G

��
XK // G/T.

Remark 5.3. Notice that ShK depends only on the reduced sequence for K, namely the se-
quence obtained by contracting all sequentially repeated elements. For instance ShK for the sub-
sequence K = {i, j, j, i} ⊂ O(i,j) := {i, j, i, j, i} agrees with ShKred , where Kred = {i, j, i}.

Definition 5.4. (Poset of reduced sequences)

Let O(i,j) denote the indexing sequence {i, j, i, . . .} (mij-terms). Let O(i,j)
red denote the quotient

of the poset of all subsets of O(i,j) under the equivalence relation that identifies two indexing
sequences if they have the same reduced sequence (see remark 5.3 above). For any 0 < p < mij , we
have exactly two elements of O(i,j)

red given by reduced sequences of length p, namely {ijij . . .} or
{jiji . . .}. There are two more additional sequences given by the empty sequence and the sequence
{ijij . . .}withmij-terms. There is a unique nontrivial morphism from one sequence into a strictly
longer sequence.

For 1 ≤ m ≤ mij , let O(i,j,m) ⊆ O(i,j) denote the indexing sequence containing the last m-terms,
and let O(i,j,m)

red ⊆ O(i,j)
red denote the sub-poset of sequences in the equivalence class of those subsets

in O(i,j,m). In particular, O(i,j,m)
red has 2m elements. Recall the poset P(m−1) that captures the

standard regular CW decomposition of the (m − 1)-disc (see example 10.6). It is easy to see that
O(i,j,m)
red is equivalent to the poset P(m−1) ∪∞ obtained by adding a terminal object to P(m−1).

Let us briefly explore sequences of categories that contain the above posets.

Definition 5.5. (Indexing sequences containing posets of reduces sequences)
Consider an indexing sequence I(i,j) that contains the subsequence O(i,j), so that we have

I(i,j) = {ε1i1, . . . , εlil,O(i,j), εl+mij+1il+mij+1, . . . , εkik} = I(i,j,mij)
∐
O(i,j),

where we define I(i,j,mij) = {ε1i1, . . . , εlil, εl+mij+1il+mij+1, . . . , εkik}. Similarly, we define I(i,j,m)

by the presentation I(i,j,m) = {ε1i1, . . . , εl+mij−mil+mij−m, εl+mij+1il+mij+1, . . . , εkik}, so that
I(i,j) = I(i,j,m)

∐
O(i,j,m).

Define the poset categories J (i,j)
m = 2I

(i,j,m) × O(i,j,m)
red , and Im = J (i,j)

m /J (m,+), where J (m,+) is
the terminal object. It follows from defintion 5.4 and 10.2 that the poset Im is an iterated join of
P(m−1) with several factors of the one element poset •. Notice that for m < mij there is a canonical
projection map of posets πm : Im −→ Im+1. Moreover, it satisfies the property that the preimage of
any element is unique unless it is of the form (J,K) ∈ 2I

(i,j,m+1)×O(i,j,m+1)
red for which the sequence

K begins with il+mij−m, and is non maximal (so that it can be augmented on the left). It this case,
the preimage of (J,K) consists of three elements: (J,K), (J̃, K̃), and (J̃, K) where J̃ augments J
by the element il+mij−m, and K̃ is obtained from K by dropping the initial term. One checks that
the third element is the unique element that lies above other two by virtue of an indecomposable
inclusion. An easy exercise now shows that πm is a subdivision of posets as defined in 10.4 (also
see example 10.6).
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We finally get to the definition of the family of filtered G-spectra sBSh(i,j,m)(wI).

Definition 5.6. (Strict broken Schubert spectra)

Define functors of broken Schubert spectra BSh(i,j,m)(w(J,K)) on the category J (i,j)
m as follows:

BSh(i,j,m)(w(J,K)) = G+ ∧T (Hij1
∧T · · · ∧T Hijq

∧T ShK+ ∧T Hijq+1
∧T · · · ∧T Hijs

),

where J ∈ 2I
(i,j,m) and K ∈ O(i,j,m)

red . We also recall our convention that Hi = S−ζi ∧ Gi+ if
εi = −1, and Hi = Gi+ if εi = 1. As in the case of strict broken symmetries, we define the strict
broken Schubert spectra as the filtered equivariant G-spectra Ft sBSh(i,j,m)(wI) by the cofiber
sequence

hocolim(J,K)∈Itm BSh
(i,j,m)(w(J,K)) −→ BSh(i,j,m)(wJ(m,+)) −→ Ft sBSh(i,j,m)(wI),

where Itm we recall is the sub poset of elements in Im that are no more than t non-trivial de-
composable morphisms away from the terminal object J (m,+). Notice that the filtered spectrum
sBSh(i,j,1)(wI) agrees with sB(wI(i,j)), and that we have sBSh(i,j,mij)(wI) = sBSh(j,i,mij)(wI)
since the functor BSh(i,j,mij)(w(J,K)) is the same in both cases.

As mentioned previously, we will presently show that all the filtered spectra of the type
sBSh(i,j,m)(wI) are in the same quasi-equivalence class. Of course, the same will be true
for (i, j) replaced by (j, i). That would constitute the proof of theorem 5.1 as indicated
above.

However, we need a preliminary lemma that will help us compare pointwise fibers along
a map of homotopy colimits.

Lemma 5.7. Assume K ⊆ O(i,j) is a subsequence so that K = {k1, k2, . . . , kq}, with km+1 = km,
where km is the counterpart of km. So for instance if km = i, then km = j and vice versa. Assume
X and Y are T × T -spaces so that X is free as a right T -space. Then the following diagram is an
honest pushout of equivariant T × T -spaces

X ×T Gk1 ×T ShK ×T Y

��

// X ×T Gk1 ×T ShK′ ×T Y

��
X ×T ShK ×T Y // X ×T ShK′′ ×T Y,

where K ′ is defined as the set {k1, k1, k2, . . . , kq}, and K ′′ = {k1, k1, k1, k2, . . . , kq}. All maps in
the above diagram are given by the canonical maps. The vertical maps being induced by multipli-
cation in G, and the horizontal ones being the standard inclusion induced by K ⊂ K ′ ⊂ K ′′.

Proof. Using the left freeness of X as a right T -space, we see that the above diagram fibers
over the following diagram, with fiber Y :

X ×T Gk1 ×T XK

��

// X ×T Gk1 ×T XK′

��
X ×T XK // X ×T XK′′ .
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Again, using the freeness of X as a right T -space, we see that the above diagram itself
fibers over X/T , with fiber being the diagram:

Gk1 ×T XK

��

// Gk1 ×T XK′

��
XK // XK′′ .

It is therefore enough to prove that the diagram shown above is an honest pushout. This is
essentially an application of the Bruhat decomposition theorem [11]. The Bruhat decom-
position theorem says that there is a canonical (left) T -equivariant CW decomposition of
the Schubert varieties of the form XK . Furthermore, the (open) cells are a product (under
group multiplication) of the 2-cells of the form Ck, where Ck denotes any lift of the space
(Gk/T )− (T/T ) to Gk.

Let us make the Bruhat decomposition precise in the case of interest to us. Let Kred de-
note the reduced set corresponding to K. Recall from remark 5.3, that Kred is obtained
from K by contracting all repeated indices. Let n be the cardinality of Kred. Bruhat de-
composition then gives us a cellular decomposition of XK with the top cell given by the
alternating product Ck1 × Ck1

× Ck1 × · · · n-terms. Lower dimensional open cells are
given by alternating products of the form Ci × Cj × Ci × · · · or Cj × Ci × Cj × · · · with
p terms for 0 ≤ p < n. In particular, K ′ is obtained from K by adding two more cells
given by Ck1

× Ck1 × Ck1
× · · · n-terms, and the cell Ck1

× Ck1 × Ck1
× · · · (n + 1)-terms.

The space Gk1 ×T XK′ is therefore obtained from Gk1 ×T XK by adding yet another two
cells Ck1 × Ck1

× Ck1 × Ck1
× · · · (n + 1)-terms, and the cell Ck1 × Ck1

× Ck1 × Ck1
× · · ·

(n+ 2)-terms. It follows that the cofiber of the inclusion of Gk1 ×T XK ⊂ Gk1 ×T XK′ has a
T -invariant CW decomposition with four cells given by Ck1

×Ck1×Ck1
×· · · n-terms, the

cell Ck1
×Ck1 ×Ck1

× · · · (n+ 1)-terms, the cell Ck1 ×Ck1
×Ck1 ×Ck1

× · · · (n+ 1)-terms,
and the cell Ck1 × Ck1

× Ck1 × Ck1
× · · · (n + 2)-terms. These are precisely the four cells

that build XK′′ from XK . In particular, the cofibers of the horizontal maps in the above
diagram are mapped homeomorphically under the vertical maps. This is equivalent to
saying that the diagram is a pushout. �

Remark 5.8. Notice that the left vertical map in the diagram for lemma 5.7 splits at T ×T -spaces,
hence we have the equality in the category of G-spectra

(X ×T Gk1 ×T ShK ×T Y )+ = F ∨ (X ×T ShK ×T Y )+,

where F is the equivariantG-spectrum given by the fiber of (either) vertical map. It is easy to verify
that the statement of lemma 5.7, and the above splitting also holds if we replace each corner of the
commutative diagram of 5.7 by the Thom spectrum of a bundle ζ pulled back from the pushout
X ×T ShK′′ ×T Y .

Our next step is to show that sBSh(i,j,m)(wI) and sBSh(i,j,m+1)(wI) are quasi-equivalent.
We do that by means of a zig-zag of elementary quasi-equivalences induced by the map
of posets πm of definition 5.5. We abuse notation by overusing the notation πm for induced
functors, hoping that the context avoids any confusion. For m < mi,j , consider maps

πm : sBSh(i,j,m)(wI) −→ π∗msBSh(i,j,m+1)(wI)←− sBSh(i,j,m+1)(wI) : ιm,
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where πm : sBSh(i,j,m)(wI) −→ π∗msBSh(i,j,m+1)(wI) is induced by the natural transfor-
mation between the functor BSh(i,j,m)(w(J,K)) and the functor π∗mBSh(i,j,m+1)(w(J,K)) =

BSh(i,j,m+1)(wπm(J,K)). The map ιm : sBSh(i,j,m+1)(wI) −→ π∗msBSh(i,j,m+1)(wI) is con-
structed using the fact that πm is a subdivision as a map of posets (see definition 5.5),
and then applying theorem 10.7 from the appendix.

We begin by analyzing the map πm. Let Zm denote the filtered G-spectrum representing
the fiber of πm. Consider the fibration induced by πm on the level of associated graded

Grt(Zm) −→
∨

(J,K)∈Itm/I
t−1
m

BSh(i,j,m)(w(J,K))
Gr(πm)−→

∨
(J,K)∈Itm/I

t−1
m

BSh(i,j,m+1)(wπm(J,K)).

Our goal is to show that Zm is acyclic. Notice that for any object (J,K), for which
il+mij−m /∈ J , the map

Gr(πm)) : BSh(i,j,m)(w(J,K)) −→ BSh(i,j,m+1)(wπm(J,K))

is an equivalence. Hence, the fiber of Gr(πm) is detected on objects (J,K) for which
il+mij−m ∈ J . We decompose such objects into two types. The first type of objects are
those for which the first term of K is il+mij−m, and the second type for which the first
term is not il+mij−m. Consider the boundary map ∂ : Grt(Zm) −→ Grt−1(Zm) on objects
of the first type. We see that precisely one component of this boundary maps to an object
of the second type, and on that component, it is equivalent to the map on the homotopy
fibers of vertical maps in a diagram of the form described in lemma 5.7 and remark 5.8.
Since these maps are cellular, lemma 5.7 implies that the map ∂ on this component gives
rise to an equivalence. One therefore has a retraction to ∂ on objects of the second type,
giving rise to a stable chain homotopy.

It remains to show that ιm : sBSh(i,j,m+1)(wI) −→ π∗msBSh(i,j,m+1)(wI) is also a quasi-
equivalence. For this, let FtWm denote the filtered G-spectrum representing the cofiber of
ιm. On the level of associated graded, we have a cofibration induced by ιm∨

(J̃,K̃)∈Itm+1/I
t−1
m+1

BSh(i,j,m+1)(w(J̃,K̃)) −→
∨

(J,K)∈Itm/I
t−1
m

π∗mBSh(i,j,m+1)(w(J,K)) −→ Grt(Wm).

Invoking theorem 10.7 we see that the first map admits a retraction, and we are left with
the identification of Grt(Wm) with the complementary summand in the middle term. We
express this summand as ∨

{(J,K)∈A}

BSh(i,j,m+1)(w(J,K),

where the set A ⊆ Itm/It−1
m denotes the collection of pairs (J,K) for which il+mij−m ∈ J

and K can be augmented in O(i,j,m)
red by adding terms on the left. Notice that the collection

of objects in A come in two types determined by the sequence K. The first type are the
ones where the first term of K begins with il+mij−m+1 (or K is the empty sequence), and
the second type being the ones where the first term is il+mij−m. The boundary ∂ pairs up
the terms of the first type with those of the second, and is an equivalence between these
terms. In particular, we obtain the chain homotopy as before given by the inverse of ∂
on these terms. It follows that the cofiber of ιm is acyclic. This completes the proof of
theorem 5.1.

19



6. PROPERTIES OF STRICT BROKEN SYMMETRIES: INVERSE RELATION AND REFLEXIVITY

In this section, we address the inverse relation and the property of reflection. In the former
case, one contracts successive terms in an indexing sequence I of the form {. . . ,−i, i, . . .}
or {. . . , i,−i, . . .} without changing the equivariant homotopy type up to possible quasi-
equivalence, suspension and shift. In the latter case, one reflects the indexing sequence
I = {ε1i1, . . . , εkik} to the form {εkik, εk−1ik−1, . . . , ε1i1} without changing the equivariant
homotopy type.

We begin with the following theorem.

Theorem 6.1. Let I± and I∓ denote indexing sequences of the form

I± = {ε1i1, . . . , εlil, i,−i, εl+3il+3, . . . εkik}, I∓ = {ε1i1, . . . , εlil,−i, i, εl+3il+3, . . . εkik},

then there exists an elementary quasi-equivalence between the filtered G-spectra sB(wI±) or
sB(wI∓) and the shifted spectrum ΣsB(wIred)[−1] (see 3.1 for the definition of shift), where

Ired = {ε1i1, . . . , εlil, εl+3il+3, . . . εkik}.

The proof of the above theorem will rest on the following two claims

Claim 6.2. The inclusion map ιi : T+ −→ Gi+ induces a T × T equivariantly split injection

ιi : S−ζi ∧Gi+ = T+ ∧T (S−ζi ∧Gi+) −→ Gi+ ∧T (S−ζi ∧Gi+).

Proof. We simply need to furnish an equivariant retraction. Recall that S−ζi was the re-
striction to T of a Gi representation. In particular, the T -action on S−ζi extends to a Gi-
action. The retraction we seek is given by the left Gi-action on S−ζi ∧Gi+

µ : Gi+ ∧T (S−ζi ∧Gi+) −→ S−ζi ∧Gi+.

�

Claim 6.3. The pinch map πi : S−ζi ∧ Gi+ −→ T+ of claim 2.5 induces a T × T equivariantly
split surjection

πi : Gi+ ∧T (S−ζi ∧Gi+) −→ Gi+ ∧T T+ = Gi+.

Proof. It is easy to see that the fiber of πi is given by the spectrum Gi+ ∧ (S−ζi ∧T Tσi+),
where σi ∈ Gi is any lift of the Weyl generator by the same name. It remains to construct
an equivariant retraction from Gi+ ∧T (S−ζi ∧Gi+) to Gi+ ∧T (S−ζi ∧Tσi+). This retraction
ri may be defined as follows:

ri : Gi+ ∧T (S−ζi ∧Gi+) −→ Gi+ ∧T (S−ζi ∧ Tσi+), (g, λ, h) 7−→ (ghσ−1
i , (σih

−1)∗λ, σi).

�

Remark 6.4. It is straightforward to check that the composite map given by the inclusion ιi fol-
lowed by the retraction ri is an equivalence

ri ◦ ιi : S−ζi ∧Gi+

∼=−→ Gi+ ∧T (S−ζi ∧ Tσi+).
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In proving theorem 6.1 we will only address the case of I := I±, the other case being sim-
ilar. First, let us consider the homotopy colimit hocolimJ∈It B(wJ). We may decompose
It into subcategories so that this homotopy colimit may be expressed as the homotopy
colimit over the following diagram

hocolimJ∈Itred B(wJ∪{i})

hocolimJ∈It−1
red

B(wJ)

44

��

hocolimJ∈It−2
red

B(wJ∪{−i})oo //

OO

tt �� ++

hocolimJ∈It−1
red

B(wJ∪{i,−i})

kk

��
B(wI+red

) B(wI+red∪{−i}
)oo // B(wI+red∪{i,−i}

)

Now the entire diagram fibers over B(wI+) = B(wI+red∪{i}
). In particular, we may express

B(wI+) = B(wI+red∪{i}
) as a colimit over a similar diagram

B(wI+red∪{i}
)

B(wI+red
)

66

=

��

B(wI+red∪{−i}
)oo //

OO

vv
=

�� ((

B(wI+red∪{i,−i}
)

hh

=

��
B(wI+red

) B(wI+red∪{−i}
)oo // B(wI+red∪{i,−i}

)

Now consider the fibration

hocolimJ∈It B(wJ)
π−→ B(wI+) −→ Ft sB(wI).

We may express Ft sB(wI) as a homotopy colimit of the pointwise cofibers, denoted as
B̃(wJ), of the above two diagrams:

hocolimJ∈Itred B̃(wJ∪{i})

Ft−1 sB(wIred)

55

��

hocolimJ∈It−2
red

B̃(wJ∪{−i})oo //

OO

tt �� ++

hocolimJ∈It−1
red

B̃(wJ∪{i,−i})

jj

��
∗ ∗oo // ∗

Now, using claim 6.3, it is easy to see that the following map in the above diagram

Ft−1 sB(wIred) −→ hocolimJ∈Itred B̃(wJ∪{i})
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lifts to hocolimJ∈It−1
red

B̃(wJ∪{i,−i}). Using this lift (namely by adding the negative of the
lift), we may construct an inclusion of the following pushout representing ΣFt−1 sB(wIred)

∗ ←− Ft−1 sB(wIred) −→ ∗
into the above homotopy colimit diagram representing Ft sB(wI). The cokernel of this
inclusion is the homotopy colimit given by the G-spectrum Z, with FtZ defined as the
homotopy colimit of a diagram described below

hocolimJ∈Itred B̃(wJ∪{i})

∗

��

44

hocolimJ∈It−2
red

B̃(wJ∪{−i})oo //

OO

ss �� ++

hocolimJ∈It−1
red

B̃(wJ∪{i,−i})

jj

��
∗ ∗oo // ∗

Consider the associated graded complex of Z. All the above maps are trivial on the level
of associated graded and so we see that

Grt(Z) =
∨

J∈Itred

B(wJ∪{i}) ∨
∨

J∈It−1
red

B(wJ∪{i,−i}) ∨
∨

J∈It−2
red

B(wJ∪{−i}).

Using claims 6.2, 6.3 and remark 6.4, it is easy to see that the nontrivial horizontal map
in the above diagram admits an objectwise retraction and the nontrivial slanted map is
objectwise split. It follows that the differential on Grt(Z) pairs up these split summands,
from which it follows that the filtered spectrum Z is acyclic. We therefore deduce that
sB(wI±) is quasi-equivalent to ΣsB(wIred)[−1] as we wanted to show. The above argu-
ment completes the proof of theorem 6.1 and establishes theorem 2.11.

Remark 6.5. Theorem 2.11 tells us that sB(w) depends only on the braid element w up to quasi-
equivalence. However, given a G-equivariant cohomology theory EG, it is not immediate that the
cochain complex E∗G(Grt(sB(w)) is well defined up to quasi-isomorphism. By invoking claim 3.6,
this would indeed be the case if we could check that each map in the zig-zag used to establish the
proof of theorem 2.11, is either injective or surjective on the level of E∗G(Gr). Analyzing the proof
of theorems 5.1 and 6.1 (that feed into the proof of theorem 2.11), one observes that this condition
is purely formal for most maps since the associated graded complex for these map splits. The only
ones for which this condition needs to be verified in cohomology are the following elementary quasi-
equivalences of filtered G-spectra in the proof of theorem 5.1, for any pair of indices (i, j), and for
1 < m < mij

πm : sBSh(i,j,m)(wI) −→ π∗msBSh(i,j,m+1)(wI).

Remark 6.6. Let us observe that the proofs of invariance under braid and inversion relations
given in sections 5 and 6 actually hold for the underlying T × T -spectra sBT (wI) before we
induce up to U(r). The invariance under these relations consequently also holds for the (strict)
“Bott-Samelson” spectra sB(wI)∧T S0, where we have taken orbits under the right T -action. The
spectrum sB(wI) ∧T S0 is a filtered equivariant spectrum that represents an equivariant filtered
homotopy type for the complexes studied by Rouquier in [17, 18]. We revisit the Bott-Samelson
spectra in ([7] see in particular theorem 2.7).

22



We end this section with an additional property of the invariant sB(wI) of interest.

Definition 6.7. (The reflected poset IR)
Given a sequence I = {ε1i1, ε2i2, . . . , εkik}, we define its reflection

IR = {εkik, εk−1ik−1, . . . , ε1i1}.
This gives rise to an isomorphism of the posets R : 2I −→ 2I

R which restricts to an isomorphism
R : I −→ IR, where IR is the poset of all non-terminal objects in 2I

R . Given a subset J ∈ 2I , its
image under R is an element in 2I

R denoted by JR.

With the above definition in place, let us prove the reflexive property:

Theorem 6.8. The functors B(wJ) and B(wJR) ◦ R are equivalent. In particular, R induces a
levelwise (honest) equivalence of filtered G-spectra

Rt : Ft sB(wI)
'−→ Ft sB(wIR), t ≥ 0.

Proof. We require a natural equivalence between the G-spectra B(wJ) and B(wJR). Let
J = {εij1 ij1 , . . . , εijs ijs} be an element in 2I . Recall from definition 2.4 that

B(wJ) : G+∧T (Hij1
∧THij2

∧T . . .∧THijs
), where Hi = S−ζi∧Gi+, if εi = −1, Hi = Gi+ else.

Let us first consider the case of a positive braid wI , so that Hi = Gi+ for all j. In that case,
we define R on the underlying topological space by

R[(g, gij1 , . . . , gijs )] = [(g(gij1 . . . gijs ), g
−1
ijs
, . . . , g−1

ij1
)], (ijs , . . . , ij1) = JR.

We may express the above map as R = µ∧T (Rijs
∧T Rijs−1

. . .∧T Rij1
), where µ is induced

by the multiplication map:

µ : G×Gij1
× · · · ×Gijs

−→ G, (g, gij1 , . . . , gijs ) 7−→ ggij1 , . . . gijs ,

and Ri : Gi → Gi is the inversion map.
We now extend the above description of R to the case of an arbitrary braid wI . To begin,
let us observe that S−ζi ∧ Gi+ admits a map of the form S−ζi ∧ Gi+ −→ S−ζi ∧ Gi+ ∧ Gi+

given by performing the diagonal on the last factor. Therefore, for an arbitrary braid wI ,
we have a map of the form

D : G+∧(Hij1
∧Hij2

∧. . .∧Hijs
) −→ G+∧((Hij1

∧Gij1 +
)∧(Hij2

∧Gij2 +
)∧. . .∧(Hijs

∧Gijs+
)).

The map µ defined above can now be invoked to obtain.

µ : G+∧((Hij1
∧Gij1 +

)∧(Hij2
∧Gij2 +

)∧ . . .∧(Hijs
∧Gijs+

)) −→ G+∧(Hij1
∧Hij2

∧ . . .∧Hijs
).

Hence, we have a self-map M of G+ ∧ (Hij1
∧Hij2

∧ . . . ∧Hijs
) given by M = µ ◦ D. The

map Ri also extends to a spectrum of the form S−ζi ∧Gi+ as follows. Let J−1K denote the
involution on S−ζi = Map(Sgi , Sr) induced by conjugation with the antipode map on gi
and Rr. We defineRi on S−ζi∧Gi+ to be the involution given by smashingAd(g−1

i )∗◦J−1K
on S−ζi , with the inversion map on Gi+.

We now define the natural equivalence R from B(wJ) to B(wJR) as

R : B(wJ) −→ B(wJR), R := (Rijs
∧T Rijs−1

∧T . . . ∧T Rij1
) ◦M.

It is straightforward to check from the construction that R is well-defined and indeed a
natural equivalence of functors. �
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7. PROPERTIES OF STRICT BROKEN SYMMETRIES: G = U(r) AND THE MARKOV 2
PROPERTY

In this section, we specialize to the case of the compact Lie group G = U(r), whose braid
group Br(r) is the classical braid group on r-strands generated by the elementary classical
braids σ1, . . . , σr−1.

The Markov 2 property studies the effect of taking a braid word in r-strands, and extend-
ing it to a braid word in (r + 1)-strands by augmenting it by the generator σr ∈ Br(r + 1).
Since we will compare the spectra of broken symmetries for U(r) and U(r+1), we see that
the Markov 2 property introduces a stabilization in the strands. In order to be keep track
of the number of strands, let us set some notation. For i ≤ r, we will use the notation
Gr
i ⊆ U(r + 1) to be the unitary form (of rank r + 1) in the reductive Levi subgroup with

roots ±αi. We will continue to use the notation Gi ⊆ U(r) for the unitary form of rank r.
Notice that for i < r, these subgroups of U(r) and U(r + 1) are related via a block decom-
position Gr

i = Gi × S1, where S1 denotes the last factor of the product decomposition of
the standard maximal torus T r+1 ⊂ U(r + 1).

Let ∆r ⊂ T r+1 denote the centralizer of the final simple root αr. More precisely, ∆r is the
subgroup T r−1×∆, where ∆ is the diagonal circle in the last two standard factors of T r+1.
We may re-express T r+1 as ∆r × S1, with S1 being identified with the last factor in the
standard decomposition of T r+1. By construction, ∆r centralizes the group Gr

r.

The goal of this section is to establish the following two theorems.

Theorem 7.1. Let I = {ε1i1, · · · , εkik} denote a sequence that offers a presentation for a braid
element w ∈ Br(r), and let I(r) denote the sequence obtained by augmenting I by the index
ik+1 = r. In other words, I(r) is a presentation for the braid element wσr ∈ Br(r+ 1). Then there
is an elementary quasi-equivalence of U(r + 1)-spectra

sB(wI(r)) −→ U(r + 1)+ ∧∆r Σ2sBT r(wI),

where the action of ∆r on sBT r(wI) is induced by the canonical isomorphism between ∆r and T r
given by dropping the last coordinate in ∆r.

Theorem 7.2. Let I = {ε1i1, · · · , εkik} denote a sequence that offers a presentation for a braid
element w ∈ Br(r), and let I(−r) denote the sequence obtained by augmenting I by the index
ik+1 = −r. In other words, I(−r) is a presentation for the braid element wσ−1

r ∈ Br(r+ 1). Then
there is an elementary quasi-equivalence of U(r + 1)-spectra

sB(wI(−r)) −→ U(r + 1)+ ∧∆r Σ−1sBT r(wI).

The proof of theorem 7.1 rests on the following claim

Claim 7.3. Let J ⊆ I denote a subsequence J = {εj1ij1 , . . . , εjsijs}. Regarding J as a subse-
quence of I(r), let J(r) ⊆ I(r) denote the sequence J ∪ {ik+1}. Then there is a cofibration of
U(r + 1)-equivariant spectra induced by the inclusion J ⊂ J(r)

B(wJ) −→ B(wJ(r)) −→ U(r + 1)+ ∧∆r Σ2BT r(wJ),

The action of ∆r on BT r(wJ) is induced by the canonical isomorphism between ∆r and T r given
by dropping the last coordinate in ∆r.
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Proof. Let T r+1 ⊂ Gr
r ⊂ U(r + 1) denote the inclusion of the standard maximal torus

(S1)×r+1. Notice that we have a cofibration of T r+1 × T r+1-equivariant spectra

(1) T r+1
+ −→ Gr

r+ −→ Sζr ∧ (T r+1σr)+,

where σr is the permutation matrix in U(r + 1) that permutes the last two standard coor-
dinates of T r+1, so that T r+1σr is a T r+1 × T r+1-space abstractly isomorphic to T r+1, with
the right T r+1-action being twisted by σr. As before, Sζr is the compactification of the root
space representation of the root αr, and is given a trivial right T r+1 action.

Smashing equation (1), T r+1-equivariantly, with the spectra BT r+1(wJ), we get a cofibra-
tion

(2) B(wJ) −→ B(wJ(r)) −→ U(r + 1)+ ∧T r+1 (Hr
ij1
∧T r+1 · · · ∧T r+1 Hr

ijs
∧ Sζr ∧ σr+).

Decomposing T r+1 as ∆r×S1, and observing that the right action of ∆r fixes the spectrum
Sζr and commutes with σr, we may express the above cofiber as

(U(r + 1)+ ∧∆r ∧(Hr
ij1
∧T r+1 · · · ∧T r+1 Hr

ijs
) ∧ Sζr ∧ σr+) ∧S1 S0.

Recall that the S1-action on (Hr
ij1
∧T r+1 · · · ∧T r+1 Hr

ijs
) ∧ σr+ is by endpoint conjugation.

Incorporating the twisting by σr on the right allows us to identify the above S1-spectrum
with (Hr

ij1
∧T r+1 · · ·∧T r+1Hr

ijs
), with the S1-action given by twisting the conjugation action

by σr on the right hand side. This twisted conjugation action can be identified with the
standard right multiplication action of the conjugate diagonal subgroup S1 ∼= ∆ ⊆ T r+1

consisting of elements of the form (x−1, x) in the last two factors. Recall that for i ∈ I ,
we have a block decomposition Gr

j = Gr × S1. It follows that all the spectra Hr
i that

occur above are free S1-spectra of the form Hi ∧ S1
+, where Hi denotes the corresponding

spectra when J is seen as a subset of I . We may therefore express (Hr
ij1
∧T r+1 · · ·∧T r+1Hr

ijs
)

as (Hij1
∧T r · · ·∧T rHijs

∧S1
+). In particular, the cofiber of equation 2 can be identified with

(U(r + 1)+ ∧∆r (Hij1
∧T r · · · ∧T r Hijs

) ∧ Sζr) ∧∆ S1
+).

Since the ∆-action is free on the S1-factor, we may drop the free S1-factor and identify the
above spectrum with

(3) U(r + 1)+ ∧∆r Σ2(Hij1
∧T r · · · ∧T r Hijs

).

Putting equation 2 and the identification 3 together, gives rise to the cofibations of U(r+1)-
spectra that we seek

B(wJ) −→ B(wJ(r)) −→ U(r + 1)+ ∧∆r Σ2BT r(wJ).

�

Let us use the above claim to prove theorem 7.1. Let us first recall the categories used in
defining the spectra sB(wI(r)).

Definition 7.4. (The poset I(r) and the functor Br(wJ) )
Let I(r) ⊂ 2I(r) denote the poset subcategory of subsets in I(r) that do not contain the terminal
object. Consider the functor Br from I(r) to U(r + 1)-spectra that sends J ∈ I(r) to B(wJ∩I).
It is clear that B(wJ) = Br(wJ) if J ⊆ I . In particular, the above functor is a natural extension
of the functor B on 2I . Let us also observe that one has a canonical natural transformation
T : Br −→ B induced by the inclusions J ∩ I ⊂ J(r).
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Now consider the following commutative diagram

hocolimJ∈I(r)t B
r(wJ)

hocolim T
��

// Br(wI+)

��
hocolimJ∈I(r)t B(wJ)

��

// B(wI(r)+)

��
hocolimJ∈It U(r + 1)+ ∧∆r Σ2BT r(wJ) // U(r + 1)+ ∧∆r Σ2BT r(wI+).

It is clear from claim 7.3 that the right vertical sequence is a cofibration. Let us notice
that the left vertical sequence is also a cofibration. To see this, recall that the functor
B(wJ) agrees with the functor Br on the full sub-category generated by J ∈ I(r)t that
do not contain ir+1. This sub-category has a terminal object I . In particular, the cofiber
of hocolim T is detected on the full sub-category of objects J containing ir+1. This cate-
gory is equivalent to It, and one may identify the cofiber with hocolimJ∈It U(r + 1)+ ∧∆r

Σ2BT r(wJ) using claim 7.3. This shows that the left vertical sequence is a cofibration. Tak-
ing horizontal cofibers of the above diagram gives rise to a cofibration of filtered U(r+1)-
spectra

sBr(wI(r))
sT−→ sB(wI(r)) −→ U(r + 1)+ ∧∆r Σ2sBT r(wI),

where the filtered U(r + 1)-spectrum sBr(wI(r)) is defined to have filtrates Ft sBr(wI(r))
given by the cofiber of the top horizontal map. It remains to show that sBr(wI(r)) is
acyclic. From the definition of sBr(wI(r)), the associated graded of the filtered U(r + 1)-
spectrum sBr(wI(r)) is easily computed to be

Grt(sB
r(wI(r))) = Grt−1(sB(wI)) ∨Grt(sB(wI)),

with the differential identifying the obvious summands. The null homotopy is straight-
forward to construct, completing the proof of theorem 7.1.

The proof of theorem 7.2 is similar to the above and rests on the following claim similar
to claim 7.3. We sketch the argument below, leaving the details to the reader

Claim 7.5. Let J ⊆ I denote a subsequence J = {εj1ij1 , . . . , εjsijs}. Regarding J as a subse-
quence of I(−r), let J(−r) ⊆ I(−r) denote the sequence J ∪ {−ik+1}. Then there is a cofibration
of U(r + 1)-equivariant spectra induced by the map J(−r)→ J

B(wJ(−r)) −→ B(wJ) −→ U(r + 1)+ ∧∆r Σ−1BT r(wJ).

The proof of this claim is formally the same as that of claim 7.3 and starts with the cofi-
bration sequence of T r+1 × T r+1 spectra induced by the inclusion T r+1σr ⊆ Gr

r

S−ζr ∧ (T r+1σr)+ −→ S−ζr ∧Gr
r+ −→ T r+1

+ −→ ΣS−ζr ∧ (T r+1σr)+.

We leave it to the reader to complete the argument along the lines of claim 7.3.

The proof of theorem 7.2 is now very similar to that of theorem 7.1. One begins by defin-
ing a functor B−r from I(−r) to U(r + 1)-spectra that sends J ∈ I(−r) to B(wJ∪{−ik+1}).
It is clear that B(wJ) = B−r(wJ) if−ik+1 ∈ J . The rest of the proof follows from chasing a
diagram similar to the one described in the proof of theorem 7.1. We leave it to the reader
to complete the proof.
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8. THE INVARIANT sB(L) OF LINKS AND THE GALOIS SYMMETRY

By now it it clear that the invariant sB(wI) that has been studied in the previous few sec-
tions enjoys several important properties. Theorem 4.2 shows that sB(wI) is equivalent
to its cyclic permutation sB(wI), which is known as the Markov 1 property. In theorem
2.11 we showed that sB(wI) did not depend on the indexing sequence I used to present
the braid word w. And finally, in the case G = U(r), theorems 7.1 and 7.2 demonstrated
that sB(wI) satisfied an interesting variant of the Markov 2 property.

Of particular importance is the Markov 2 property, which we turn our attention to for the
moment. Recall that by theorems 7.1 and 7.2, we have elementary quasi-equivalences

sB(wI(r)) −→ U(r + 1)+ ∧∆r Σ2sBT r(wI),

sB(wI(−r)) −→ U(r + 1)+ ∧∆r Σ−1sBT r(wI).

The difference in the number of suspensions in these two equivalences is easily corrected
when we normalize and consider the invariant sB(w) of definition 2.10. A more subtle
issue is that the invariant sB(wI(±r)) is equivalent to the spectrum obtained by inducing
the T r-spectrum sBT r(wI) to a U(r + 1) spectrum, along a non-standard copy of the torus
T r ⊂ U(r+ 1) given by ∆r. The following discussion describes how one may resolve this.

Claim 8.1. Let T denote the circle group. Consider the injection

er : T r −→ T× U(r), (t1, . . . , tr) 7−→ (tr,∆[t1t
−1
r , t2t

−1
r , . . . , tr−1t

−1
r , 1]),

where ∆[t1t
−1
r , t2t

−1
r , . . . , tr−1t

−1
r , 1] denotes the diagonal subgroup of U(r) with the corresponding

entries. Given an indexing set of the form I = {i1, . . . , ik}, define the er-lift of broken symmetries
B(wI , er) to be the T×U(r)-space B(wI , er) := (T×U(r))×erBT (wI). Then one has a canonical
equivalence of T× U(r + 1)-spaces

(T× U(r + 1))×er+1◦∆r BT (wI) = (T× U(r + 1))×T×U(r) B(wI , er).

Identifying T with the center of U(r), consider the homomorphism induced by group multiplica-
tion in U(r), m : T× U(r) −→ U(r). Let K(m) denote the kernel of m. Then B(wI , er) is a free
K(m)-space, and the map m extends to an equivalence of stacks

B(wI , er) = (T× U(r))×er BT r(wI) −→ U(r)×T r BT r(wI) = B(wI).

Proof. The first part of the claim, including freeness of B(wI , er) as a K(m)-space, is straight-
forward to verify. To see the equivalence of stacks, one simply needs to observe that the
composite map m ◦ er : T r −→ U(r) is the standard inclusion. �

As an immediate corollary of the above claim, we see

Corollary 8.2. The er-lift of (strict) broken symmetries sB(wI , er) := (T×U(r))+∧er sBT (wI)
is invariant under the second Markov move. Let K(m) be the kernel of the multiplication map m.
Then sB(wI , er) is a filtered free K(m)-spectrum, and we have an equivalence of spectra induced
along m

U(r)+ ∧T×U(r) sB(wI , er) ∼= sB(wI).
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Convention 8.3. We will continue to work with the model of strict broken symmetries given by

sB(wI) = U(r)+ ∧T r sBT r(wI),

with the understanding that one must replace it with the T × U(r)-spectrum sB(wI , er) as in
corollary 8.2 in order for the invariance under the second Markov move to be manifest.

Definition 8.4. (sB as an invariant of links)
Given a link L described by the closure of a braid word on r strands, define the normalized, filtered
U(r)-equivariant spectrum as described in 2.10

sB(L) := sB(w) = Σl(wI)sB(wI)[%I ],

where w ∈ Br(r) is any braid with presentation wI , that represents the link L. This normalization
corrects for the filtration shifts and suspensions that one encounters in proving invariance under
the various properties. This topological normalization may differ from other algebraic normaliza-
tions, see remark 8.6.

Having verified all the required properties: braid invariance, invariance under the two
Markov moves as well as inversion, we conclude

Theorem 8.5. As a function of a link L that is described by the closure of a braid word on r-
strands, the filtered U(r)-spectrum sB(L) is well-defined up to quasi-equivalence. In particular,
the limiting equivariant stable homotopy type sB∞(L) is a well-defined link invariant.

Remark 8.6. We make note here that the normalization of the spectrum sB(L) we have provided
in definition 8.4 is purely topological in nature, and may differ from the standard normalization for
link invariants once we identify the cohomology of sB(L) with such an invariant. The table given
in definition 8.8 indicates how the topological normalization is sensitive to the various cohomology
theories we will consider in the sequel.

At this point we come to an interesting symmetry that is compatible with the construc-
tions of the previous chapters, and consequently descends to sB(L). This symmetry is
defined by the Galois action, denoted by σ, given by complex conjugation on the spaces
B(wI), and the bundles ζi. Let us study this symmetry in some detail.

Given a positive sequence I , we define the σ action on B(wI) as

σ[(g, gi1 , . . . , gik)] := [(g, gi1 , . . . , gik)],

where h denotes the complex conjugation of the element h ∈ U(r). Since complex conju-
gation is an automorphism of U(r) that preserves all the compact subgroups Gi, we see
that σ gives rise to an (anti linear) automorphism of the U(r)-space B(wI).

Now recalling the definition 2.3 of the Thom spectrum S−ζi as ΣrS−gi , we may define σ to
act on S−ζi by smashing the antipode action on Rr, with the dual of the action induced by
complex conjugation on Sgi . Recall that as a real virtual T -representation ζi is isomorphic
to the root space representation for the root αi. As such, σ can be identified with the
canonical automorphism of ζi that acts by complex conjugation on the root space.

28



It follows from the above observation that σ extends to an anti-linear automorphism of
the U(r)-spectrum B(wI) for arbitrary words I . One may verify that the constructions
leading to the filtered spectrum sB(wI) are natural with respect to σ. In particular, σ
extends to a Galois symmetry acting on sB(wI).

Remark 8.7. Let us explicitly describe how one normalizes the action of σ on sB(wI) so that the
link invariant sB(L) is compatible with the Galois action. For this, one recalls that the normal-
ization by the suspension Σl(wI) is dictated by the suspensions appearing in theorems 7.1 and 7.2.
On unraveling the source of suspensions, we see that one must identify the suspension Σl(wI) as
Σ−l−(wI) ∧ Cl−(wI)

+ ∧ C−l+(wI)
+ , with σ acting by complex conjugation on the last two factors, and

where Ck
+ denotes the one-point compactification of the complex vector space Ck.

Now let EG denote a family of equivariant cohomology theories indexed by the collection
G = U(r), with r ≥ 1, and compatible under restriction

EU(r)
∼= ι∗ EU(r+1), where ι : U(r) −→ U(r + 1).

We do not assume that E is multiplicative for now. In the case of multiplicative theories,
one will require some more structure (see [7] section 4).

Definition 8.8. (ISN-Type equivariant cohomology theories)
Given a family of equivariant cohomology theories {EU(r), r ≥ 1} as above, we call them ISN-
type theories if the elementary quasi-equivalences flagged in remark 6.5 (called B-type maps), and
those of 7.1 and 7.2 (called M2a and M2b-type maps resp.) induce injective, surjective or null
maps on the associated graded complex. For such theories, claims 3.6 and 3.7 show that the quasi-
isomorphism type of the bi-complex Es

U(r)(Grt(sB(L))) is well defined up to a shift in bi-degree.
By claim 3.7 and remark 3.2, we see that the shift will depend only on the number of elementary
quasi-equivalences between two braid presentations of the link L that induce null maps on the
associated graded complex.

Below we list how the cohomology theories we consider in [7] are expected to behave under the B,
M2a and M2b-type elementary quasi-equivalences above.

Equivariant cohomology Theory B-type maps M2a-type maps M2b-type maps
Singular Coh. (untwisted) [7] Injective Null Null

Singular Coh. (twisted) [7] Injective (†) Null (†) Injective (†)
K-theory (twisted) [7] Injective (†) Null (†) Injective (†)

† signifies that we expect the property to hold but we have not shown it to be true in [7].

Given an ISN-type equivariant cohomology theory, an obvious strategy to construct group
valued link invariants from sB(L) is to study the spectral sequence that computes the co-
homology E∗U(r)(sB∞(L)) by virtue of the filtration. The E2-term of this spectral sequence
is the cohomology of the complex E∗U(r)(Grt(sB(L))), described in example 3.3.
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Theorem 8.9. Assume that EU(r) is a family of ISN-type U(r)-equivariant cohomology theories.
Then, given a link L described as a closure of a braid w on r-strands as above, one has a cohomo-
logically graded spectral sequence converging to E∗U(r)(sB∞(L)) and with E1-term given by

Et,s
1 =

⊕
J∈It/It−1

Es
U(r)(B(wJ)) ⇒ E

s+t+l(wI)
U(r) (sB∞(L)).

The differential d1 is the canonical simplicial differential induced by the functor described in defi-
nition 2.6. In addition, the terms Eq(L) are invariants of the link L for all q ≥ 2.

Remark 8.10. We notice that the Galois symmetry σ descends to a symmetry of each page of the
spectral sequence above. In other words, the link invariants Eq(L) admit an extra symmetry given
by the involution σ.

9. THE p-COMPLETION, ÉTALE HOMOTOPY TYPE AND THE FROBENIUS

In this very brief section, we point out a piece of algebraic structure that extends the Galois
symmetry described in the previous section. This structure appears on p-completing our
constructions. We have kept this section brief since it deviates from the general geometric
flavor of the arguments we have been describing in this document. We plan to return to
this structure in the future.

Let us revert back to a general compact connected Lie group G, and assume that it is
the unitary form of the complex points of a Chevalley group scheme GZ. For instance,
we may take GZ to be GL(r)Z in the case G = U(r). The groups Gi in definition 2.1
admit Z-forms given by the corresponding split reductive Levi factors. It follows that
for positive sequences I , the spaces of broken symmetries B(wI) and the Bott-Samelson
spaces BtS(wI) := B(wI)/T also admit Z-forms BZ(wI) and BtSZ(wI) resp.

Now Étale homotopy theory [5] allows us to compare the Étale homotopy type of schemes
over the algebraic closure Fq, with the analytic space of complex points after p-completion
at any prime p 6= q. It follows from these ideas that the p-completion of their respective
suspension spectra are also equivalent. In particular, we recover the action of the Frobe-
nius automorphism ψq on the p-complete spectrum LHZ/pB(wI), and LHZ/pBtS(wI) where
LHZ/p denotes Bousfield localization with respect to mod-p homology.

Continuing to work with positive sequences I , the reader can confirm that maps used to
show the braid invariance of B(wI) or BtS(wI) (up to quasi-equivalence) are all algebraic.
In particular, the action of the Frobenius ψq on p-complete spectra of broken symmetries
extends to an action on the p-complete spectra of strict broken symmetries LHZ/psB(wI).
Since one can think of the diagram that defines sB(wI) as the diagram of complex points
of a simplicial scheme defined over Z, we conclude

Theorem 9.1. Let I be a positive sequence, and let p 6= q be distinct primes, then the stable
p-completion of the Étale homotopy type of the simplicial scheme sBFq(wI) or the corresponding
Rouquier complex sBtSFq(wI), is invariant under braid relations in the presentation wI up to
quasi-equivalence in the category of p-complete spectra endowed with an action of a (Frobenius)
automorphism ψq.
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10. APPENDIX

We review the construction and properties of the homotopy colimit of small diagrams of
G-spectra. The standard reference is the last few chapters of [2], though the reader may
find several very helpful modern sources (for instance [4]).

Let F denote a functor from a small category C to the category GS of G-spectra

F : C −→ GS .

Then F gives rise to a simplicial G-spectrum which we denote by N•(F ), whose k-
simplices Nk(F ) are defined to be the G-spectrum

Nk(F ) =
∨

i0→i1→···→ik

F (i0), for k > 0, N0(F ) =
∨

i∈Ob(C)

F (i)

where i0 → i1 → · · · → ik denotes all possible length k sequences of composable mor-
phisms in C, and F (i0) denotes the value of the functor F on the initial object i0 of the
sequence. The simplicial maps are induced by their counterparts in the nerveN•(C) of the
category C. More precisely, each of the k + 1 face maps from Nk(F ) to Nk−1(F ) is given
by either one of the two maps induced by dropping the terminal morphisms, or by the
composition of any of the k− 1 sequential pairs of morphisms in the length k sequence of
composable morphisms. The k + 1 degeneracy maps from Nk(F ) to Nk+1(F ) are given
by the insertion of the identity morphism in the k + 1 possible spots.

A simplicial G-spectrum can be described as a contravariant functor from the category
of ordered finite sets to GS . As such, the spectrum Nk(F ) can be identified with the
value of this functor on the set [k] of integers {0, · · · , k} in increasing order. The k+ 1 face
and degeneracy maps described above then correspond to the order preserving injective
maps [k − 1] → [k] and the order preserving surjective maps [k + 1] → [k] respectively.
The homotopy colimit of F is then defined as the geometric realization of the simplicial
G-spectrum N•(F ). In order to describe this geometric realization, notice that there is a
canonical (covariant) functor ∆• from the category of finite ordered sets to spaces, whose
value on the set [k] is given by the geometric k-simplex ∆k. By identifying the vertices
of ∆k with the elements of [k], one obtains canonically induced affine maps between the
spaces ∆k that correspond to face and degeneracy maps.

Definition 10.1. (Homotopy colimit)
The homotopy colimit of a functor F : C −→ GS is defined as the G-spectrum given by the
coequalizer (also known as the geometric realization of the simplicial spectrum N•(F ))∨

[k]→[l]

Nl(F ) ∧ (∆k)+ ⇒
∨
n

Nn(F ) ∧ (∆n)+ −→ hocolimCF ,

where the two maps are given by applying the order preserving map [k]→ [l] to the two arguments
of Nl(F ) ∧ (∆k)+ respectively.

The categories C that are relevant to us in this document are very special. These categories
have the shape of finite posets P , such that their opposite poset P is an unaugmented2

finite CW poset [1] (Section 3). More precisely, given such a poset P , there is a unique

2The posets in [1] are augmented by adding a minimal object for the sake of convenience
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regular finite CW complex XP , so that the poset of cells (under inclusion of their closures)
is equivalent to P . Furthermore, under this equivalence, cells of dimension k in XP are
indexed by elements p ∈ P such that the longest nondegenerate ascending chain of mor-
phisms in P starting with p has length k. In fact, any maximal nondegenerate ascending
chain starting with p has length k. Let us call this integer k the dimension of p and denote
that by |p| = k.

Remark 10.2. Given two finite posets P and Q, so that P and Q are unaugmented CW posets,
one may define a new finite poset called the join of P and Q, denoted by P ?© Q, whose opposite
poset is also a CW poset

P ?©Q := {P ∪∞} × {Q ∪∞} − (∞,∞)

where P ∪∞ denotes the poset obtained by adding a terminal object∞ to P (see [14], Proposition
1.1). The finite regular CW complex corresponding to P ?© Q is given by the standard (regular)
CW structure on the join XP ? XQ.

Let us now consider the homotopy colimit of a functor F : P −→ GS , where P is an
unaugmented CW poset. Definition 10.1 describes hocolimP F as a coequalizer∨

[k]→[l]

∨
i0→i1→···→il

F (i0) ∧ (∆k)+ ⇒
∨
n

∨
i0→i1→···→in

F (i0) ∧ (∆n)+ −→ hocolimP F ,

For k ≥ 1, consider the full subcategory Pk ⊆ P of elements p ∈ P such that |p| < k.
We may restrict F to a functor F k on Pk. It is clear that the face and degeneracy maps
preserve the simplicial G-spectrum N•(F k), which is a levelwise summand in N•(F ). It
follows that one has an increasing filtration Fk(hocolimP(F )) of hocolimP F defined for
k ≥ 1, and given by

Fk(hocolimP(F )) := hocolimPk F k.

Using the same argument as in [1] (Proposition 3.1), we see that Fk+1(hocolimP(F )) is
obtained inductively, starting with F1(hocolimP(F )) =

∨
p∈P,|p|=0 F (p), and constructing

Fk+1(hocolimP(F )) as a pushout diagram∨
p∈P,|p|=k F (p) ∧ (∂XPp)+

,

��

//
∨
p∈P,|p|=k F (p) ∧ (XPp)+

��
Fk(hocolimP(F )) // Fk+1(hocolimP(F ))

where XPp is the regular CW complex that corresponds to the subcategory Pp ⊆ P of
objects over p and ∂XPp denotes the subcomplex ofXPp corresponding to the subcategory
Pp ∩ Pk. The top horizontal and left vertical maps are the canonical maps induced by the
inclusion of the subcategories (Pp∩Pk) ⊆ Pp and (Pp∩Pk) ⊆ Pk respectively. In fact, XPp
is homeomorphic to a closed k-disc, and ∂XPp is homeomorphic to its boundary sphere
of dimension k − 1. It follows there is a cofiber sequence of the form

Fk(hocolimP(F )) −→ Fk+1(hocolimP(F )) −→
∨

p∈P,|p|=k

ΣkF (p).

We package the above observations as the following useful theorem.
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Theorem 10.3. Let P be a finite poset so that P is an unaugmented CW poset. Then given any
functor F : P −→ GS , the homotopy colimit hocolimP F admits an increasing filtration

Fk(hocolimP(F )) := hocolimPk F k, for k ≥ 1, with F1(hocolimP(F )) =
∨

p∈P,|p|=0

F (p).

Furthermore, one may construct Fk+1(hocolimP(F )) inductively as a pushout∨
p∈P,|p|=k F (p) ∧ (∂XPp)+

,

��

//
∨
p∈P,|p|=k F (p) ∧ (XPp)+

��
Fk(hocolimP(F )) // Fk+1(hocolimP(F ))

where XPp is the regular CW complex that corresponds to the subcategory Pp ⊆ P of objects
over p, and ∂XPp denotes the subcomplex of XPp corresponding to the subcategory Pp ∩ Pk.
The top horizontal and left vertical maps are the canonical maps induced by the inclusion of the
subcategories (Pp ∩ Pk) ⊆ Pp and (Pp ∩ Pk) ⊆ Pk respectively. By [1] (Proposition 3.1), XPp
is homeomorphic to the k-disc, with ∂XPp being its boundary. In particular, there is a cofiber
sequence of the form

Fk(hocolimP(F )) −→ Fk+1(hocolimP(F )) −→
∨

p∈P,|p|=k

ΣkF (p).

Theorem 10.3 reconstructs the homotopy colimit of a functor F inductively in the same
way that the underlying regular CW complex XP is constructed by attaching the cells
XPp . The only difference is that now one replaces XPp with F (p) ∧ (XPp)+

. Notice that
if we were to subdivide the cells of XP so as to refine it to another regular CW complex
XR, whereR is a subdivision of the poset P , one would clearly not change the homotopy
colimit of F , provided one extends F to R compatibly with the subdivision of posets.
On the other hand, the filtration on the homotopy colimit would change as a result of this
subdivision. We formally explore this process of subdivision in what follows.

Definition 10.4. (Subdivision of posets, compare [19] Section 7)

Let P and R be finite posets so that P and R are unaugmented CW posets. We say that R is a
subdivision of P if there exists a surjective map of posets

π : R −→ P

with the following property. Given p ∈ P , let Pp the subposet of objects over p, We demand
that the regular CW subcomplex of XR corresponding to π−1(Pp) is a disc of dimension |p| with
boundary being precisely those cells indexed by elements r ∈ π−1(Pp) such that |π(r)| < |p|.

Remark 10.5. It is not hard to see that given P and R as in definition 10.4, XR is a subdivision
of the regular CW complex XP (as defined in [16]), which is also regular. Moreover, under this
subdivision, the (open) cells of XR that belong to the interior of the cell indexed by p ∈ P are
precisely the ones indexed by the set π−1(p) ⊆ R.
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Example 10.6. Consider the following instructive example of a subdivision that is relevant
in the proof of theorem 5.1. We take Pn to be the poset representing the standard regular
CW decomposition of the n-disc, which we will denote by XPn with one interior n-cell,
and 2-hemispherical k-cells for all 0 ≤ k < n. We define R(n+1) to be the poset given by
the join • ?© Pn of the one-element poset • and the poset Pn. By remark 10.2 we see that
XR(n+1)

is a cone on XPn or its topological join with a point, pt ? XPn . One can describe
XR(n+1)

as a subdivision of XP(n+1)
which has the following form. For 0 < k ≤ n, one

of the two open k-cells of XP(n+1)
gets subdivided into two k-cells, by introducing one

interior (k − 1)-cell called the separating cell. The closure relations for this subdivision
are encapsulated by a map of posets π : R(n+1) −→ P(n+1) that satisfies the conditions
given in definition 10.4. We describe such a map in definition 5.5.

Theorem 10.7. Let π : R −→ P be a be a subdivision as in definition 10.4 and assume that we are
given a functor F : P −→ GS . Then there is a map of filtered spectra, which is an equivalence
on the global homotopy colimit

ι : hocolimP F
'−→ hocolimR π

∗F .

Furthermore, on the associated quotients, ι induces the diagonal map for each p ∈ P with |p| = k

ι : ΣkF (p)
∆−→

∨
r∈π−1(p),|r|=k

ΣkF (p).

Proof. The inductive description of hocolimP F in theorem 10.3 shows that hocolimR π
∗F

is a refinement of hocolimP F and hence there is a map of filtered spectra, which is an
equivalence on the global homotopy colimits

ι : hocolimP F
'−→ hocolimR π

∗F .

Furthermore, since R is a subdivision of P , on associated graded object, it follows that ι
is given by a sum of diagonal maps for each p ∈ P of dimension k

ι : ΣkF (p) −→
∨

r∈π−1(p),|r|=k

ΣkF (p).

�
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