
Mathematical Biology and Dynamical Systems.
Lecture 3.

J. Tomás Lázaro
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A principle of natural self-organisation [3]

Figure: Manfred Eigen and Peter Schuster. Font: Wikipedia.

The diversity of species is the outcome of a huge branching process of evolution, based
on an enormous number of single steps of replication and mutation.

It involves competition, isolation, creation of niches and, in the case of mild constraints,
mutualism and symbiosis.



Which are the necessary prerequisites a molecular system has to fulfill to be a feasible
evolutionary self-organisation? (Eigen-Schuster 1977)

It must be based on dynamical criteria: the distribution of present competitors
should decide which species is selected.

Open to changes where more favourable structures appear.

Necessary properties suggested by Eigen and Schuster:

Metabolism: both formation and degradation of molecular species have to be
independent of each other and spontaneous, driven by positive affinity.

Self-reproduction: they must have the ability of self-replication (autocatalysis).

Mutability: it is certainly required for evolution. However, fidelity of this process is
limited.



The simplest system modelling such requirements can be described by the following
system of ordinary differential equations:

ẋi = (Aiqi − Di ) xi +
∑
k 6=i

wikxk + Φi (x), i = 1, 2, . . . , n. (1)

where x = (x1, x2, . . . , xn) denotes population of species (or its concentration/density).

In this model we observe:

Metabolism. Given by the term (Aiqi − Di ), with Aiq1 indicates spontaneous
formation and Di decomposition.

Self-reproduction. Given by (Aiqi − Di )xi

Mutability. Given by the terms qi ∈ [0, 1]. It denotes the fraction of reproductions
providing an exact copy of the population i .
The term wik represents the probability that an erroneous replication of species (or
“template”) k gives rise to a an element of species i . So, the sum

∑
k 6=i wikxk

collects all these contributions.

The term corresponding to error in copying species i , i.e., Ai (1− qi )xi needs to be
also taken into account.



The functions Φi , usually called individual flow or transport term describe any supply
or removal of species i do not come from the previous points.

In many cases, the overall population x1 + x2 + · · ·+ xn is assumed to be constant
(i.e.,

∑
k xk is a first integral).



The hypercycle [3]

It is a cycle of connected, self-replicating macromolecules.

All molecules are linked such that each of them catalyses the creation of its
successor. The last one catalyses the first one and closes the cycle.

Each macromolecule can, on its turn, autocatalyses itself.

It constitutes a higher level of organisation.

It combines competition and cooperation.

Figure: Examples of hypercycles: Kim-Jeong 2005 and Sardañés-Solé 2007.



Quasispecies

Another related crucial concept introduced by Eigen and Schuster (1977) in [3] is the one
of quasispecies.

“A single species is not an independent entity because of the presence of couplings.
Conservation of the total population number forces all species into mutual competition,
while mutations still allow for some cooperation, especially among closely related
species.”

So, according to Nowak (1992) [1]:

“A quasispecies is a well-defined distribution of mutants that is generated by a
mutation-selection process. Selection does not act on a single mutant but on the
quasispecies as a whole.”



Let consider I1, I2, . . . , In different variants or templates of a ’master’ species.

Let f1, f2, . . . , fn define their corresponding replication rates (sometimes named also
fitness).

In the absence of mutations, the variant with highest replication rate dominates and leads
to a homogeneous population with such variant.

However, replication is not error free.



Sol let us denote by qij the probability of erroneous replication of template Ij
resulting in the production of template Ii :

Ij
qij−→ Ii .

By extension, we can define qjj the probability of error-free replication of template Ij .

Hence, we have the so-called mutation matrix:

Q =


q11 q12 . . . q1n

q21 q22 . . . q2n

...
...

. . .
...

qn1 qn2 . . . qnn

 .

Notice that all qij ∈ [0, 1] and the such of each column is 1, i.e.

n∑
i=1

qij = 1, j = 1, 2, . . . , n.

Q is called a Markov matrix (by columns) or an stochastic matrix.



Mutation scheme

1− qij

qij qij

Ij

Ii 0 1 0 1 1 0 1 0 1

0 1 1 0 0 1 0 1 0

Figure: Mutation scheme from sequences xj to xi .



Therefore, if x1, x2, . . . , xn denote the population sizes of the variants I1, I2, . . . , In,
respectively, we have that they satisfy

ẋi = f1qi1x1 + f2qi2x2 + · · ·+ fnqinxn =
n∑

j=1

fjqijxj , i = 1, 2, . . . , n.

In this context, the population will no longer consist on the fastest growing sequence
(the ’dominant’) but of a whole ensemble of mutants with different replication rates.
Moreover, evolution acts on them as a whole. This is the concept of quasispecies
introduced by Eigen and Schuster [3].

The frequency of a given population xj does not only depend on its fitness fj but
also on its replication-fidelity and on the mutation errors of other variants.
Acoording to Nowak, Evolution could be thought as the interaction between
mutation and selection.



In a more general setting the differential equation modelling the evolution of
x = (x1, x2, . . . , xn) can be written as

ẋ1

ẋ2

...
ẋn

 =


f1q11 f2q12 . . . fnq1n

f1q21 f2q22 . . . fnq2n

...
...

. . .
...

f1qn1 f2qn2 . . . fnqnn




x1

x2

...
xn

− ϕ(x)


x1

x2

...
xn

 ,

where ϕ : Rn → R is often given by

ϕ(x) =

∑n
j=1 fjxj∑n
j=1 xj

or, simply,

ϕ(x) =
n∑

j=1

fjxj

if the total population has been normalised to 1, that is,
∑n

j=1 xj = 1 (and so xj ’s
represent densities).



In short,

ẋ = QDx − ϕ(x) x ,

with

Q =


q11 q12 . . . q1n

q21 q22 . . . q2n

...
...

. . .
...

qn1 qn2 . . . qnn

 , D =


f1

f2
. . .

fn


and

n∑
j=1

xj = 1 , ϕ(x) =
n∑

j=1

fjxj .

The matrix QD has all its entries ≥ 0.



The Perron-Frobenius theorem

We say that a matrix A = (aij)ij is positive if aij > 0 for all i , j = 1, 2, . . . , n. We
denote it by A > 0.

We say that A = (aij)ij is non-negative if aij ≥ 0 for all i , j = 1, 2, . . . , n. We denote
it by A ≥ 0.

Theorem (Perron, 1907)

Let A > 0 be a square matrix. Then,

There exists a positive, real, simple eigenvalue λ > 0 of A such that for any other
eigenvalue µ of A we have that |µ| < λ. This eigenvalue λ is called Perron or
Perron-Frobenius eigenvalue.

There exists an eigenvector u of λ with all its components positive: Au = λu.
Respectively, there exists a left-eigenvector v with all its components positive of
eigenvalue λ: v>A = λv>.

There is no other eigenvector with these properties except positive multiples of u
and v .



We say that a matrix A is irreducible if its has no non-trivial invariant subspaces.
Equivalenty, there is no permutation matrix P such that

PAP−1 =

(
E F
0 G

)
an upper block-triangular matrix.



Theorem (Frobenius, 1908-1912)

Let A ≥ 0 be a square matrix. Assume that A is irreducible, Then

There exists a real, simple, eigenvalue λ > 0 of A, called the Perron–Frobenius
eigenvalue.

A has a right eigenvector u of eigenvalue λ whose components are all positive.
Likewise, A has a left eigenvector v with eigenvalue λ (i.e. v>A = λv>) whose
components are all positive.
The only eigenvectors whose components are all positive are those associated with
the eigenvalue λ.

The matrix A has exactly h (where h is called the period) complex eigenvalues with
modulus λ. They are of the form µ = λξh with ξh a h-th root of unity (i.e., ξhh = 1).

If we define ω = 2π/h then the matrix A is similar to eiωA. Consequently the
spectrum of A is invariant under multiplication by eiω (a rotation of the complex
plane by the angle ω).



Markov matrices

We say that an square matrix M is a Markov matrix (by columns) if the sum of the
elements of any column is always equal to 1. They are also called stochastic
matrices.

Similarly, we say that u = (u1, u2, . . . , un) is an stochastic vector if uj ≥ 0
∀j = 1, 2, . . . , n and

∑n
j=1 uj = 1.

Observe that if M is Markov then it is M≥ 0.

Markov matrices have very nice properties. Indeed, let assume that M is a Markov
matrix. Then,

If v is an stochastic vector then Mv is an stochastic vector.

If M′ is another Markov matrix then the product MM′ is also Markov.

λ = 1 is always an eigenvalue of M and u∗ = (1, 1, 1, . . . , 1) is a(left) eigenvector.

If µ ∈ SpecM is an eigenvalue of M then |µ| ≤ 1. ‘



Markov matrices are ubiquitous (Game theory, Probability Theory, Economics,
Computer Science, Population Genetics, etc). They are also the base of the original
PageRank algorithm of Google (Larry Page and Sergey Brin, 1996).

In our case,

ẋ = QDx − ϕ(x) x ,

we have that Q is Markov and D ≥ 0.



Error threshold, error catastrophe or critical mutation rate

Let us consider the following toy model, where sequences are formed by 0 and 1. It is
based in the one suggested by M. Nowak in [1].

0 0

0

m

0 1

q µ = 1− q

Figure: Example of mutation: q is the probability of no-mutation while µ = 1− q is the
probability that a 0-digit mutates into a 1-digit.

Assume that m is the length of the sequences, q the error-free probability and µ = 1− q
the probability of mutation. We take x1 as the size of the master sequence population
and x2 the mutant population.



In terms of differential equations

ẋ1 = a1Qx1

ẋ2 = a1(1− Q)x1 + a2x2, (2)

where Q = qm and a1, a2 > 0.

We consider x2(t)/x1(t) and differentiate it with respect to time

d

dt

(
x2

x1

)
=

ẋ2

x1
− ẋ1x2

x2
1

= a1(1− Q) + (a2 − a1Q)
x2

x1
.

If we define w = x2/x1 the previous equation becomes the lineal ode

ẇ = a1(1− Q) + (a2 − a1Q)w ,

whose general solution is given by

w(t) =
a1(1− Q)

a1Q − a2
+ ce(a2−a1Q)t ,

c ∈ R a constant depending on the initial condition at t = 0, provided that
a1Q − a2 6= 0. In the case that a2 = a1Q the ode is trivial and has general solution

w(t) = a1(1− Q)t + c, c ∈ R.



So, if a2 = a1Q, we have that

x1(t)

x2(t)
=

1

a1(1− Q)t + x2(0)
x1(0)

→ 0 if t → +∞,

that is, mutant population dominates the total population. Keep in mind that, since
ẋ1 = a1Qx1, master population always grows with no restriction:

x1(t) = x1(0)ea1Qt .



Assume now that a2 − a1Q 6= 0. Then, the general solution is

x2(t)

x1(t)
=

a1(1− Q)

a1 − a2Q
+ ce(a2−a1Q)t

or, equivalently,
x1(t)

x2(t)
=

1
a1(1−Q)
a1−a2Q

+ ce(a2−a1Q)t
.

And the following cases hold:

1 If a2 − a1Q > 0, that is, a2 > a1Q, we get that exp((a2 − a1Q)t)→ +∞ as
t → +∞ and, therefore,

x1(t)

x2(t)
−→ 0, t → +∞.

As before, mutant populations largely dominates.



2 If a2 − a1Q < 0, i.e., a2 < a1Q (and, in particular, a2 < a1) one has
exp((a2 − a1Q)t)→ 0 as t → +∞ and, consequently

x1(t)

x2(t)
−→ a1Q − a2

a1(1− Q)
, t −→ +∞.

Therefore, master sequence population x1 becomes, for large time, comparable in
size with the mutant population x2 provided that a2 − a1Q < 0, that is

Q >
a2

a1
⇔ qm >

a2

a1
⇔ q >

(
a2

a1

)1/m

⇔ µ = 1− q < 1−
(
a2

a1

)1/m

.

In other words, it is needed that a2 < a1Q and the mutation probability µ to be
smaller than the critical mutation rate

µcritical := 1−
(
a2

a1

)1/m

.

This critical value µcritical depends on the sequences length m and satisfies that

µcritical −→ 0 as m −→ +∞.



Figure: Example of catastrophe error in a population formed by a master sequence and a group of
mutants.



Hypercycles, the Eigen’s paradox and the origin of life

The size of replicating molecules is limited by the accuracy of replication: error
threshold or critical mutation rate.

Quasispecies, in particular, suffer this error threshold.

The concept of error threshold is crucial to understand the so-called Eigen’s paradox:

“No possible mechanisms of error correction without large information contents and
no possible large information contents without error correction mechanisms.”



In other words: we can imagine the first self-replicating molecules as consisting of strings
of base pairs or digits. Therefore,

The error threshold limits the size of these molecules to a few hundreds pairs.

Living cells handle this difficulty by encoding enzymes which repair error in
mutations.

However, the size of a replicating molecule to encode their owns error correcting
enzymes must be much bigger than several hundreds and certainly thousands of
these pair bases.

So, how evolution could overcome this paradox? Hypercycles?

Figure: Example of a (catalytic) hypercycle [3].



Hypercycles theory, suggested by Eigen and Schuster, was initially (and still is) very
criticized since:

Hypercycles are sensitive to catalytic parasites (P) and to short-circuits (inner
cycles). See Figure 7 below).

It is difficult to find stable hypercycles of large size.

However, recent experiments (Vayda et al, 2012) have proved advantages of
cooperative network among fragments of self-assembling ribozymes over
self-replicating cycles.

Figure: Example of hypercycle with a shortcircuit and a parasite.



Hypercycles with

shortcircuits and parasites



Some examples



The model
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The mean field model

ẋ1 = x1 (k11x1 + k12x2 + k13x3) θ(x)− εx1,

ẋ2 = x2 (k21x1) θ(x)− εx2,

ẋ3 = x3 (k32x2) θ(x)− εx3,

where θ(x) = 1− (x1 + x2 + x3) is a constraint term limiting the size of the quasispecies
forming the hypercycle.

xi denote population numbers.

All kij > 0 and ε > 0.
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We reduce our study to

Ω = {x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 | x1 + x2 + x3 ≤ 1}

since:

It is the domain of biological meaning.

Solutions cross transversally any plane {x1 + x2 + x3 ≤ δ} inwards for all δ ≥ 1 =⇒
Ω contains the long-term behaviour and the interesting dynamics.

Sardanyés-L-Guillamon-Fontich, Physica D, 2017.



Equilibrium points of the three different types:

I Type P = (x1, 0, 0) −→ Only the autocatalytic replicator S1 survives.

I Type Q = (x1, x2, 0) −→ The hypercycle replicators S1 and S2 coexist.

I Type R = (x1, x2, x3) −→ The three replicator species survive.

Invariant lines.

Bifurcations of the equilibrium points.

Non-existence of periodic orbits.

Sardanyés-L-Guillamon-Fontich, Physica D, 2017.



Equilibrium points

Parameters governing the existence of the equilibrium points:

α2 :=
k21 − k11

k12
, α3 :=

k21

k32
, β3 :=

k12

k13

(
k21 − k11

k12
− k21

k32

)
µ2 := 1 + α2, µ3 := 1 + α3 + β3,

ε1 :=
k11

4
, ε2 :=

k21

4µ2
, ε3 :=

k21

4µ3
.



Equilibrium points

Equilibrium points of type (x1, 0, 0) exist if and only if ε ≤ ε1:{
P± =

(
p±1 , 0, 0

)
if 0 < ε < ε1,

P0 =
(
p0

1 , 0, 0
)

if ε = ε1,

where p±,01 are the two solutions of ξ2 − ξ + ε/k11 = 0, that is,

p±1 =
1

2

(
1±

√
1− ε

ε1

)
, and p0

1 =
1

2
.



Equilibrium points

Equilibrium points of the form (x1, x2, 0) exist in Ω if and only if ε ≤ ε2 and α2 ≥ 0:{
Q± = (q±1 , q

±
2 , 0) if 0 < ε < ε2,

Q0 = (q0
1 , q

0
2 , 0) if ε = ε2,

where q±1 are the two solutions of µ2ξ
2 − ξ + ε/k21 = 0 and q±,02 = α2q

±,0
1 .

If α2 = 0⇒ ε2 = ε1 and therefore Q± = P± and Q0 = P0.

If α2 < 0 there are no fixed points of this type in Ω.

Remind that α2 =
k21 − k11

k12
.



Equilibrium points

Equilibrium points of the form (x1, x2, x3) exist in Ω if and only if β3 ≥ 0:{
R± = (r±1 , r

±
2 , r

±
3 ) if 0 < ε < ε3

R0 = (r 0
1 , r

0
2 , r

0
3 ) if ε = ε3,

where r±1 are the two solutions of µ3ξ
2 − ξ + ε/k21 = 0, and

r±,02 = α3r
±,0
1 , r±,03 = β3r

±,0
1 .

If β3 = 0⇒ ε3 = ε2 and therefore R± = Q± and R0 = Q0.

If β3 < 0 there are no fixed points of this type in Ω.

Remind that α3 =
k21

k32
> 0 and β3 =

k12

k13

(
k21 − k11

k12
− k21

k32

)



Equilibrium points

Summarising:

P±,0 exist if 0 < ε ≤ ε1, where ε1 = k11/4.

Q±,0 exist if 0 < ε ≤ ε2 and k21 ≥ k11 (equiv. α2 ≥ 0).

R±,0 exist if 0 < ε ≤ ε3 and
k11

k21
+

k12

k32
≤ 1 (equiv. β3 ≥ 0).

Notice that β3 ≥ 0⇒ α2 ≥ 0.
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Equilibrium points

Summarising:

P±,0 exist if 0 < ε ≤ ε1, where ε1 = k11/4.

Q±,0 exist if 0 < ε ≤ ε2 and k21 ≥ k11 (equiv. α2 ≥ 0).

R±,0 exist if 0 < ε ≤ ε3 and
k11

k21
+

k12

k32
≤ 1 (equiv. β3 ≥ 0).

Notice that β3 ≥ 0⇒ α2 ≥ 0.

Remark:

α2 = 0⇒ Q±,0 = P±,0.

β3 = 0⇒ R±,0 = Q±,0.



Equilibrium points

Evolution of the first coordinate of the fixed points P±,Q± when varying ε from 0 to ε1,
ε2.



Invariant lines

Our system has the following invariant lines through the origin:

L1 = 〈v1〉 = 〈(1, 0, 0)〉
L2 = 〈v2〉 = 〈(1, α2, 0)〉
L3 = 〈v3〉 = 〈(1, α3, β3)〉
Lj = 〈vj〉, j = 4, 5, with v4 = (0, 1, 0) and v5 = (0, 0, 1).

L6 = 〈v6〉 = 〈(1, 0, β6)〉 and β6 = −k11/k13 < 0.

Moreover:

Each equilibrium point is on one of these lines.

L2 intersects Ω \ {0} ⇔ α2 ≥ 0. If α2 = 0 then L2 = L1.

L3 intersects Ω \ {0} ⇔ β3 ≥ 0. If β3 = 0 then L3 = L2.

If α2 = β3 = 0 then L1 = L2 = L3.

L6 never intersects Ω \ {0}.



Invariant lines

Our system has the following invariant lines through the origin:

L1 = 〈v1〉 = 〈(1, 0, 0)〉
L2 = 〈v2〉 = 〈(1, α2, 0)〉
L3 = 〈v3〉 = 〈(1, α3, β3)〉
Lj = 〈vj〉, j = 4, 5, with v4 = (0, 1, 0) and v5 = (0, 0, 1).

L6 = 〈v6〉 = 〈(1, 0, β6)〉 and β6 = −k11/k13 < 0.



Linear stability at the equilibrium points

λ±,0j , j = 1, 2, 3 denote the eigenvalues at the points P±,0,Q±,0,R±,0.



Linear stability at the equilibrium points

Points P±,0:

v1 = (1, 0, 0) is always eigenvector (they all are on line L1)

All eigenvalues are real.

λ±,03 = −ε < 0

One has

λ1 λ2 λ3

P+ − sgn (α2) −
P− + sgn (α2) −
P0 0 sgn (α2) −

Remind that α2 ≥ 0→ existence of Q±,0

And α2 ≥ 0⇔ k21 ≥ k11.



Linear stability at the equilibrium points

Points Q±,0:

v2 = (1, α2, 0) is always eigenvector (they are all on line L2)

All eigenvalues are real.

λ±,03 = −α2ε < 0 (α2 > 0 for Q±,0 to exist)

One has

λ1 λ2 λ3

Q+ sgn (β3) − −
Q− sgn (β3) + −
Q0 sgn (β3) 0 −

Remind that β3 ≥ 0→ existence of R±,0

And β3 ≥ 0⇐⇒ k11

k21
+

k12

k32
≤ 1.



Linear stability at the equilibrium points

Points R±,0:

v3 = (1, α3, β3) is always eigenvector (they are all on line L3)

λ±,01 is always real. Indeed,

λ+
1 < 0, λ0

1 = 0, λ−1 > 0.

Let us define

∆ =

(
1− k11

k21

)2

− 4

(
1− k12

k32

)
.

Then,
I If ∆ ≥ 0 then λ±,02,3 < 0.

I If ∆ < 0 then λ2, λ3 complex conjugate with Reλ±,02,3 < 0→ spirals.

Remind that β3 = 0 =⇒ R±,0 = Q±,0.



Linear stability at the equilibrium points

Points R±,0:

x  2
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Bifurcations

We focus on 2-member hypercycle, the smallest dimension with all the interesting
bifurcations.

Two types:

I Saddle-node: when ε overcomes the thresholds ε1, ε2, i.e.

P± → P0, Q± → Q0.

I Transcritical: when one equilibrium leaves/enters region Ω (and switch their stability).



Bifurcations

We illustrate these bifurcations on the plane (ε, k21).

ε =degradation, k21 =catalysis from S1 to S2.

We have three cases: k11 < k12, k11 = k12, and k11 > k12.

Remark: sgn (k12 − k11) = sgn (ε2 − ε1).



Bifurcations

ε = ε1: collision of P+ and P− → saddle-node.

k21 = k11: appearance of Q± → transcritical.

ε = ε2(k21), where

ε2(k21) =
k21k12

4(k21 + k12 − k11)
.

Collision of Q+ and Q− → saddle-node.



Bifurcations
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Bifurcations
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Bifurcations

Case k21 − k11 ε P− P+ Q− Q+

I < 0 ε < ε1 Saddle Attractor @ @
II < 0 ε > ε1 @ @ @ @
III > 0 ε < min {ε1, ε2} Saddle Saddle Saddle Attractor
IV > 0 ε1 < ε < ε2 @ @ Saddle Attractor
V > 0 ε2 < ε < ε1 Saddle Saddle @ @
VI > 0 ε > max {ε1, ε2} @ @ @ @

Table: Existence and stability of equilibria in Ω in the planar case.



Non-existence of periodic orbits

2-member hypercycle: No p.o. by a Poincaré-Hopf argument.

3-member hypercycle: We divide Ω in several subdomains and consider suitable
Poincaré section. Numerical evidence of non-existence of p.o.



Stochastic spatial dynamics

Assembly of complex biomolecules in a 3D-enviroment is implausible
(Parsons-Lee-Smith’98).

Mineral surfaces (honey-combed feldspar) could offer suitable organized enviroment
and protection from dispersion and hydrolysis.

Use of Cellular automata (CA) to investigate spatial dynamics of hypercycles
(Boerlijst-Hogeweg’91, Sardanyés-Solé’07, Scheuring et al.’03, Attolini-Stadler’06).



Building our Cellular Automata

We consider a L× L lattice → L2 cells. Typically L = 200.

Each cell can contain: S0 (void), S1, S2 (2-member) or also S3 (3-member
hypercycle).

We will run our CA for τ = 5 · 103, 105, 18 · 104, . . .

Number of simulations to get an averaged result: 10.

Normalized population of replicators:

Ni =
1

L2

L∑
j

L∑
`

Si (j , `), i = 1, . . . , ν,

with ν = 2 or ν = 3 (2 or 3-member hypercycle).

Initial conditions: equidistribution, i.e., N0,1,2 = 1/3 for 2-member and
N0,1,2,3 = 1/4 for 4-member.



Stochastic spatial dynamics

heterocatalytic!
!
replication

S2 S2S1

diffusion
S1

S2

S2

S1

decay
S2

S1

S2simulated surface

 autocatalytic!
!
replicationS1 S1

S1
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Hypercube amb bit strings!
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with interactions



Cellular Automata: rules

At each generation τ we take a cell Γxy of the lattice and follow these three steps:

1 Catalytic replication.

2 Degradation.

3 Diffusion.

This choice of Γxy is done L2 times each generation ⇒ in average each cell is
affected in each generation.



Cellular Automata: rules

1.- Catalytic replication.
Taken Γxy , we choose random two cells Γkl and Γmp from its Moore domain (8-nearest
nghbs).

Γ

Γ

Γxy

kl

mp



Cellular Automata: rules

1.- Catalytic replication.
Taken Γxy , we choose random two cells Γkl and Γmp from its Moore domain (8-nearest
nghbs).

a) Autocatalytic replication
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Cellular Automata: rules

1.- Catalytic replication.
Taken Γxy , we choose random two cells Γkl and Γmp from its Moore domain (8-nearest
nghbs).

b) Heterocatalytic replication

S

S

i

i−1

S
0

r
i,i−1

S

S

S
i

i

i−1

i 6= 0, 1 and cyclic ordering: Sν → S1 → S2 → · · · Sν .



Cellular Automata: rules

2.- Degradation.

S
i

ε

S
0

for i 6= 0.



Cellular Automata: rules

3.- Diffusion.
It is always applied after catalytic replication + degradation.
We choose random cell Γqu and after, from its Moore domain, a random Γwz .

S
i

S
j

Γ

Γ

qu

wz

D

Γ

Γ

qu

wz

S
i

S
j

with fixed D ∈ [0, 1].
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Figure: Spatial and temporal dynamics for a 2-member hypercycle with shortcircuit. Circles denote averaging over 10 independent replicas at
τ = 5000 time generations. Thick lines represent the mean field predictions. Bottom-right: final spatial distributions for cases (a.1) and (c.1), respectively.
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Figure: Dependence of the population equilibria (stable states, Ss1,2,3) on the model probabilities for the three-member hypercycle with two

short-circuits. Values: 10 independent replicas at τ = 5000 time generations, D = 0.25 (circles). (a) r12,21,13 = 0.5 and r32 = 1. (b) r11 = 0.25,
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