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Types of species’ interactions

Interspecific interactions occur when the actions, traits, or density of individuals of
one population result in a change in some attribute of another species’ population.

Intraspecific interactions occur when they are between members of the same species’
population.

Interaction between two species (so, interspecific) can be classified in different types. A
possible classification is the following one:



Mutualism (+/+)

Honey Bee - Dandelion (pollinisa-
tion): The honey bee gets to eat the
pollen from the flower. The dandelion
uses the bee to spread its pollen to
another flower.

Clownfish - Sea Anemone: The
sea anemone protects the clownfish
from predators, as well as provid-
ing food through the scraps left from
the anemone’s meals. In return, the
clownfish defends the anemone from
its predators, and parasites.



Competition (-/-)

Trees: competition for light in
plantations.

Pink coralline algae gets pushed
out by fleshy algae.



Predation or parasitism (+/-)

Predation: lion on impala.
Dust mites: Feed on dead skin, par-
tially digested food and fecal matter
contributes to asthma and allergies.



Commensalism (+ / 0) - Cum mensa

Phoresy (transport only): Beetles,
flies, bees, ...(arthropods). One
organism transports another one of a
different species.

Inquilinism (epitiphia): Using a
second organism for housing (orchids
that grow on trees, ...).



Amensalism (-/0) and Neutralism (0/0)

Examples of amensalism are:

Penicillium secretes penicillin, which kills some types of bacteria.

Roots of black walnut release juglone, a toxic material that destroys some
herbaceous plants.

Examples of neutralism are:

A rainbow trout(fish) and dandelion (flower) in a mountain valley.

Cacti and tarantulas living in the desert.



Kolmogorov systems

The systems we are dealing with are particular cases of the general family of Kolmogorov
systems

ẋi = xi fi (x), x = (x1, x2, . . . , xn) ∈ Rn, ˙ =
d

dt
, (1)

n being the number of species and with fi : Rn → R, i = 1, 2, . . . , n being C1-functions.
xi often corresponds to the population density of the i-th species.

An important property: if xj(0) = 0 for some j ∈ {1, 2, . . . , n} then xj(t) = 0 for
t ≥ 0. That is, trajectories starting in {xj = 0} remain there for any positive time
and also interior trajectories cannot reach these coordinate planes in finite time.

They can also be written in the form

ẋi
xi

= fi (x), x = (x1, x2, . . . , xn) ∈ Rn.

The term ẋi/xi represents the population growth per individual and time unit of
population xi .



Lotka-Volterra systems

Kolmogorov systems of the form

ẋi
xi

= ri +
n∑

j=1

aijxj , (2)

where the constants ri , aij ∈ R, for i , j = 1, 2, . . . , n, are usually called Lotka-Volterra
systems.

Parameter ri represents the growth rate per individual of the i-th species.

Parameter aij , for i 6= j , denotes the (interspecific) interaction rate of species j over
the species i . Positive corresponds to cooperation whilst negative stands for
competition.

Interaction matrix:

A = (aij)ij =


a11 a12 · · · a1n

a21 a22 a2n

...
. . .

...
an1 an2 · · · ann

 . (3)



Lotka-Volterra systems

If all the off-diagonal terms

A = (aij)ij =


• a12 · · · a1n

a21 • a2n

... •
...

an1 an2 · · · •

 (4)

are ≥ 0 the system is cooperative. The matrix A is a Z -matrix.
If all of them are ≤ 0 the system is competitive. The matrix A is a Metzler matrix.



A Competition model



A simple model for competition
Let x1, x2 be two population species, each one obeying a logistic model in absence of
the other species:

ẋi = rixi

(
1− xi

Ki

)
, i = 1, 2,

where xj = xj(t) and ˙ = d/dt.
A simple competitive interaction can be modelled as

ẋ1 = r1x1

(
1− x1

K1

)
− c1x1x2 (5)

ẋ2 = r2x2

(
1− x2

K2

)
− c2x1x2

with ci > 0, i = 1, 2. The competition terms c1,2x1x2 are assumed to depend on the
product of both species’ densities.
Equivalently, in Lotka-Volterra system form (2),

ẋ1

x1
= r1

(
1− x1

K1

)
− c1x2

ẋ2

x2
= r2

(
1− x2

K2

)
− c2x1,

or (
ẋ1/x1

ẋ2/x2

)
=

(
r1

r2

)
+

 − r1

K1
−c1

−c2 − r2

K2

( x1

x2

)
. (6)

Observe that the interaction matrix

A =

 − r1

K1
−c1

−c2 − r2

K2


has all its off-diagonal elements negative and so it is a Metzler matrix (competition).



Adimensionalising the equations

We seek a simpler form to analyse our model, despite we can loss a direct interpretation
in terms of the initial variables x1, x2.

To do that, we introduce a “new time” τ = r1t and so

x ′j =
dxj
dτ

=
1

r1
ẋj .

Hence, defining the new variables

u =
x1

K1
, v =

x2

K2

and the constants

ρ =
r2

r1
, a =

c1K2

r1
, b =

c2K1

r2
,

system (5) becomes

u′ = u(1− u − av)

v ′ = ρv(1− v − bu).



Adimensionalising the equations

If we assume xj ∈ [0,Kj ] (i.e., below their carrying capacity), we can identify u = x1/K1

and v = x2/K2 as species’ densities. Consequently, the unit square
(u, v) ∈ I = [0, 1]× [0, 1] is invariant by the dynamics of:

u′ = u(1− u − av) (7)

v ′ = ρv(1− v − bu).

This system can be expressed as (u′, v ′) = f (u, v) with
f (u, v) = (u(1− u − av), ρv(1− v − bu)) its associated vector field.



Analysis of the system: invariance of the domain.

The lines u = 0 and v = 0 are invariant by the flow. The flow goes from (0, 0)
towards (1, 0) and (0, 1), respectively.

We compute the vector field on the line v = 1:

(u′, v ′) = (u(1− u − a),−ρbu)⇒ v ′ < 0.

And similarly on the line u = 1:

(u′, v ′) = (−av , ρv(1− b − v))⇒ u′ < 0.

In both cases it points inwards, so joint to the invariance on u = 0, v = 0 it follows that
the square I is forward invariant by the flow. Poincaré-Bendixson theorem ensures that
the ω-limit of any orbit starting at the interior will be or a fixed point, a periodic orbit or
a connection of saddles.



Analysis of the system: nullclines.

They are determined by u′ = 0 and v ′ = 0. They determine regions of
increasing/decreasing of the variables u, v . Particularly useful in planar systems.

In our case:

The u-nullcline:
u′ = 0⇔ u = 0 or u + av = 1.

The v -nullcline:
v ′ = 0⇔ v = 0 or bu + v = 1.

In our case they are the axes and a couple of lines. Depending on the relative position of
the two latter, we can know grosso modo the evolution of the trajectories.



Analysis of the system: equilibrium points

They correspond to invariant points by the dynamics, “steady state” solutions, i.e.,
(u, v) such that

u′ = 0, v ′ = 0.

They correspond to the intersections of the u and v -nullclines.

The equilibrium points at the border of the domain are (0, 0), (1, 0), (0, 1).

The other (possibly) interior equilibrium point (u∗, v∗) is

u∗ =
1− a

1− ab
, v∗ =

1− b

1− ab

if ab 6= 1 (in that case we have the line u + av = 1 filled with equilibrium points).
This point falls inside [0, 1]× [0, 1] (and so, biologically meaningful) provided

0 ≤ 1− a

1− ab
≤ 1, 0 ≤ 1− b

1− ab
≤ 1

It is referred, usually, as the coexistence equilibrium.



Analysis of the system: local stability and bifurcations

Let us study the stability of the fixed points. The Jacobian (differential) matrix is:

Df (u, v) =

(
1− 2u − av −au
−bρv ρ(1− bu − 2v)

)

We do the analysis for each equilibrium point. We do it here for the “border” equilibria.
Certainly, the most interesting case will be the estudy for the coexistence one.

The point (0, 0) is a repeller (a source) since it has positive real eigenvalues λ1 = 1 and
λ2 = ρ (recall ρ > 0):

Df (0, 0) =

(
1 0
0 ρ

)
The corresponding eigenvectors are (as expected) e1 = (1, 0) and e2 = (0, 1), respectively.



Analysis of the system: local stability and bifurcations

At the point (1, 0) the Jacobian matrix is

Df (1, 0) =

(
−1 −a
0 ρ(1− b)

)
and the eigenvalues are λ1 = −1 (stable direction) and λ2 = ρ(1− b).
e1 is an eigenvector of the eigenvalue λ1 = −1 as it was already known from the previous
computations.

Depending on the value of b we can have several cases:

If b > 1 then (1, 0) is an attractor (a sink).

If b < 1 it is a saddle point. The unstable invariant curve is tangent to the vector
(α, 1), for some α < 0. It points inside the square.

If b = 1 then we have eigenvalue λ2 = 0 which implies a neutral behaviour in the
direction of the eigenvector (−a, 1).

This is an example of a bifurcation. Could you determine which one? What is
undergoing the coexistence equilibrium for this particular value of b?



Analysis of the system: local stability and bifurcations

At the point (0, 1) the Jacobian matrix is

Df (0, 1) =

(
1− a 0
−bρ −ρ

)
and so, with eigenvalues are λ1 = 1− a i λ2 = −ρ < 0. As before, depending on the
value of a > 0 we have several cases:

If a > 1 the point (0, 1) is an attractor (a sink).

If a < 1 it is a saddle point, with unstable invariant curve tangent to the vector
(1, β) for β < 0. It points inwards the square.

Like for the point (1, 0), at a = 1 the point (0, 1) undergoes a transcritical bifurcation.



Analysis of the system: local stability and bifurcations

The Jacobian at the coexistence equilibrium point (u∗, v∗) is:

Df (u∗, v∗) =

(
1− 2u∗ − av∗ −au∗
−bρv∗ ρ(1− bu∗ − 2v∗)

)
.

It is easy to check (do it!) that:

If a < 1 and b < 1 it is an attractor.

If a > 1 and b > 1 it is a repeller.

Moreover, one has to take into account if it is biologically meaningful.

If you draw an schematic phase portrait of this model, what would you observe?



An academic example

(Strogatz, section 6.4). See also (Pianka (1981), Pielou (1969), Edelstein-Keshet (1988),
or Murray (1989) for biological discussion.

ẋ = x(3− x − 2y)
ẏ = y(2− x − y)

where x(t) denotes rabbits population and y(t) corresponds to sheeps population,
competing for the same food supply (grass). We assume that this food supply is limited
in space and so in quantity.

Now, variables x , y are not normalised to [0, 1]. They belong to the rectangle
[0, 2]× [3, 0].

Equilibrium points: (0, 0), (0, 2), (3, 0), and (1, 1).



Local behaviour around equilibria and schematic phase portrait.



Basin of attractions of each attractor, bistability and separatrices.

This dichotomy occurs in many models of competition. Biologist call it the principle of
competitive exclusion (see references above), which states that two species competing for
the same limited resource, typically, cannot coexist.



The Principle of competitive exclusion (Gause)

Figure: Georgii Frantsevich Gause’ paper in 1932.



Principle of competitive exclusion

Summary of the experiments: based on laboratory competition experiments using
two species of Paramecium, the Paramecium aurelia and Paramecium caudatum.
Following a lag phase, the Paramecium aurelia was able consistently to drive the
other to extinction. The conditions was to add fresh water everyday and input a
constant flow of food. On the other hand, Gause was able to let the Paramecium
caudatum survive by driving differently the environmental parameters (food, water):
that explains why the Gause law is valid only if the ecological factors are constant.

The principle of competitive exclusion states that two species cannot occupy exactly
the same ecological niche. In practice, there is sometimes coexistence.



Predators vs preys:

the Lotka-Volterra model



The model

They both derived, independently, the same model.
Volterra proposed it first, in 1926, modelling oscillatory
behaviour of certain fish catches in the Adriatic. They
both derived, independently, the same model. Volterra
proposed it first, in 1926, modelling oscillatory
behaviour of certain fish catches in the Adriatic sea.

Figure: Alfred J. Lotka (1880-1949) and
Vito Volterra (1860-1940). Source:
Wikipedia.



If N(t) denotes the prey population and P(t) the predator one, then the model reads{
Ṅ = N(a− bP)

Ṗ = P(cN − d)

with positive parameters a, b, c and d . It combines Malthus growth of preys, in absence
of predators; decrease of predator population, in the absence of preys; and
reduction/contribution proportional to the product of both densities.

It is easy to check that:

Only non-negative values of N and P have biological sense.

Lines N = 0 and P = 0 are invariant.

This system has two equilibria: (0, 0) and (N∗,P∗) = (d/c, a/b).

To determine local stability of the system around each equilibrium, we compute the
Jacobian matrix:

J(x , y) =

(
a− bP −bN
cP cN − d

)



Stability of equilibria: the linearisation method

Stability of the origin.

The Jacobian on it is

J(0, 0) =

(
a 0
0 −d

)
so, eigenvalues a > 0 and −d < 0. This means that (0, 0) is a saddle point,
unstable. e1 = (1, 0) and e2 = (0, 1) are eigenvectors of eigenvalues a and −d ,
respectively. They are also unstable for the complete nonlinear system.

Stability of the point (N∗,P∗) = (d/c, a/b).

The Jacobian on it is

J(N∗,P∗) = J(d/c, a/b) =

(
a− bP −bN

cP cN − P

)
which has eigenvalues ±i

√
ad . This means that (N∗,P∗) is a centre for the

linearised system around it but no information about being a centre or not for the
complete system → Lyapunov method.



The Lyapunov method

Theorem (Lyapunov)

Consider
ẋ = f (x), x ∈ Rn, (8)

which defines a flow in Rn. Let x0 be a fixed point of (8) and let V : U ⊆ Rn → R, C1,
x0 ∈ U, U open set, such that, in U:

(i) V (x0) = 0 and V (x) > 0 if x 6= x0.

(ii) V̇ (x) ≤ 0 in U \ {x0}.
Then, x0 is (Lyapunov) stable. Moreover,

(iii) if V̇ < 0 in U \ {x0}
then x0 is asymptotically stable.



Remark

Remind that

V̇ (x) =
d

dt
(V (x)) = ∇V (x) · ẋ = ∇V (x) · f (x).

If V̇ (x) = 0 in U \ {x0} then x0 is (Lyapunov) stable and V is a first integral of (8).
The curves V = constant are invariant by the flow.

Instability Theorem: If V̇ (x) > 0 ∀x ∈ U \ {x0} then x0 is unstable.



In our case, take the initial system{
Ṅ = N(a− bP)

Ṗ = P(cN − d)
(9)

and write in the form

1

N

dN

dt
= a− bP

1

P

dP

dt
= cN − d

so

cN − d

N

dN

dt
=

a− bP

P

dP

dt
⇒
(
−c +

d

N

)
dN

dt
+
( a

P
− b
) dP

dt
= 0⇒

d

dt

(
− cN + d logN + a logP − bP

)
= 0



That is,

H(N,P) = d logN + a logP − cN − bP is a constant of motion.

Let (N(t),P(t)) be solution of (9) with i.c. (N(0),P(0)) ∈ [0,+∞)2. Then,

H(N(t),P(t)) = H(N(0),P(0)) ∀t ≥ 0.

H is strictly convex.

W = ∇H · F is negative definite so the equilibrium point

(
d

c
,
a

b

)
is a centre.

In fact, introducing the canonical variables

p = logN, q = logP

the function H becomes h(q, p) = dp − cep + aq − beq and system (9) has the
following Hamiltonian form

ṗ =
∂h

∂q
, q̇ = −∂h

∂p
.

It can be seen that the centre is global.



Figure: Orbits of the predator-prey Lotka-Volterra model (left) and evolution of N and P in
terms of time t.



Volterra’s principle

Take initial conditions (N(0),P(0)) = (N0,P0) ∈ (0,+∞)2. Denote by T the period of
the closed orbit through (N0,P0). Then

Ṅ

N
= a− bP ⇒ logN(T )− logN(0) =

∫ T

0

a− bP(s) ds.

Since N(T ) = N(0) it follows that

0 =

∫ T

0

a− P(s) ds = aT − b

∫ T

0

P(s) ds

and, finally (Volterra’s principle)

1

T

∫ T

0

P(s) ds =
a

b
.

In a similar way
1

T

∫ T

0

N(s) ds =
d

c
.



LaSalle’s Principle 1

Let us consider
ẋ = f (x), f ∈ Cr , r ≥ 1. (10)

Let M⊆ Rn a set satisfying:

It is a compact set and positively invariant under the flow φt(·) generated by (10).

It is the closure of some open set (so it has non-empty interior), with boundary at
least C1.

Then M is a trapping region.

Now in M we consider the following subsets:

E = {x ∈M
∣∣∣∣ V̇ (x) = 0}.

Notice that, in particular, all the equilibrium points of (10) belong to E .

And

M = {the union of all trajectories that start in E and remain in E for all t ≥ 0}

Observe that M is the “positively invariant part’ of E .



Theorem (LaSalle’s Invariance Principle, 1968)

∀x ∈M one has that φt(x)→ M as t → +∞.

Example: (Duffing differential equation)

ẋ = y

ẏ = x − x3 − δy

for (x , y) ∈ R2 and δ > 0 a parameter. Define the function

V (x , y) =
y 2

2
− x2

2
+

x4

4

(i.e., the Hamiltonian function for δ = 0). Verify that V̇ = −δy 2. Consider the level set
V = c for a very large (but finite) c. This curve defines the boundary of a positively
invariant compact set M. Then,

E =M∩ {y = 0}.
M ⊂ E is formed by the three equilibrium points on {y = 0}, i.e., (±1, 0), (0, 0).

By LaSalle’s Principle, all the trajectories starting in M will converge to one of these
three points.

1We follow, for instance, [8]



Criticisms to the Lotka-Volterra prey-predator model

Changes in birth and death rates do not imply rellevant changes in the results but
the period of the oscillations.

No population can dominate and it is also impossible for a population to be driven
into extinction. From an ecological point of view this should be expected to happen
in nature.

This model is structurally unstable: small perturbations could break its hamiltonian
character and bring the centre into a focus. One would expect models to be
structurally stable and non so sensitive to small perturbations.



Predator-prey models:

functional and numerical responses



Functional and numerical responses

In 1959, C.S. Holling [3] found that predation rates increased with increasing prey
population density.



Functional and numerical responses

In 1959, C.S. Holling [3] found that predation rates increased with increasing prey
population density.

Higher prey density

each predator increses its consumption rate

predator density increases



Functional and numerical responses

In 1959, C.S. Holling [3] found that predation rates increased with increasing prey
population density.

Higher prey density

each predator increses its consumption rate

Functional response

predator density increases

Numerical response



Numerical response

The number of predators increases with higher prey density.
It may result from two mechanisms:

1 Numerical response per se: the rate of predator reproduction increases.

2 Aggregational response: attraction of predators to prey aggregations.



Functional response

Holling (1959) but equivalent to the one of Leonor Michaelis and Maud Menten
(1913).

Very popular among ecologists.

It assumes a predator invests its time T in two activities:

1 Searching for a prey.

2 Prey handling: chasing, killing, eating and digesting.

Even in the extreme case of high abundance of preys, prey handling time is needed.

Therefore T = Tsearch + Thandling



Functional response

Ha= number of preys captured by 1 predator during time T .

Handling time Thandling should be proportional to Ha:

Thandling = HaTh

where Th is the time spent by 1 predator in handling 1 prey.

“Capturing” is assumed to be a random process: a predator examines an area a per
unit time and captures any prey he finds there.

Parameter a (in units of area/time) is called area of discovery or search rate.

After spending Tsearch a predator has examined and area aTsearch and captured
aHTsearch preys, where H is prey density per unit area.



Functional response

Thandling = HaTh.

After spending Tsearch a predator has examined and area aTsearch and captured
aHTsearch preys, where H is prey density per unit area.

So:

Ha = aHTsearch ⇒ Tsearch =
Ha

aH
.

Therefore

T = Tsearch + Thandling = HaTh +
Ha

aH

and so

Ha =
aHT

1 + aHTh
number of attacked preys by 1 predator in time T



Functional response

Ha =
aHT

1 + aHTh
number of attacked preys by 1 predator in time T

H (preys density)

Ha

T
Th

θ = arctan(aT )



Functional response

Holling (1959) considered three main types of functional responses Ha:

Figure: Source: Quantitative Population Ecology, Alexei Sharov, Department of Entomology,
Virginia Tech, Blacksburg, USA



Functional response

Holling (1959) considered three main types of functional responses Ha:

S-shaped → Sigmoidal in Michaelis and Menten (1913).



Predator-prey model with Holling type II response

Prey population

Functional response: Ha =
aHT

1 + aHTh
.

Rate of prey consumption by all predators per unit of time:

Ha

T
P =

aHP

1 + aHTh

So

Ḣ = rHH

(
1− H

K

)
− aHP

1 + aHTh



Predator-prey model with Holling type II response

Predator population

It is modeled by

Ṗ = rPP

(
1− P

KH

)

Numerical response of predator population to prey density.

Logistic model with carrying capacity proportional to number of preys.



The Rosenzweig-MacArthur predator-prey model

Rosenzweig, M.L., and MacArthur, R.H., Graphical representation and stability
conditions of predator-prey interaction, American Naturalist 97, 209-223, 1963

Ḣ = rH

(
1− H

K

)
− aHP

1 + aHTh

Ṗ = rPP

(
1− P

kH

)
Holling type II functional response.

Certainly, one of the most popular models for trophic chains among ecologists.



Extensions of Rosenzweig-MacArthur model

Prey, predator and super-predator.



Extensions of Rosenzweig-MacArthur model

Prey, predator and super-predator.

ẋ = x

(
r − r

K
x − p1y

H1 + x

)
(prey)

ẏ = y

(
c1x

H1 + x
− d1 −

p2z

H2 + y

)
(predator, Holling II)

ż = z

(
c2y

H2 + y
− d2

)
(super-predator, Holling II)



Extensions of Rosenzweig-MacArthur model

Prey, predator and super-predator.

Routes to chaos:

Deng and Hines (Chaos 2002, Chaos 2003).

Strong assumption: drastic time diversification in trophic chain → three time-scales
singularly perturbed sistem → homoclinic connection of Shilnikov type (2002).



What about discrete models?



Discrete models

Non-overlaping generations, discrete time evolution (month, year, ...)

Pionneering works:
I R.M. May (1974, 1976 Logistic map).

I J.C. Allen, W.M. Schaffer, and D. Rosko (1993).

I Chaotic dynamics in insect populations: R.F. Constantino, R.A. Desharnais R.A.,
J.M. Cushing, and B. Dennis (1997) and B. Dennis B., R.A. Desharnais, J.M.
Cushings and Constantino R.F. (1997).

Prey-predator model (Lauwerier, 1986)

T

(
x
y

)
=

(
µx
(
1− x

K
− y
)

βxy

)
with K prey-carrying capacity and intrinsic reproduction rates µ and β, respectively.



Discrete models

Non-overlaping generations, discrete time evolution (month, year, ...)

Pionneering works:
I R.M. May (1974, 1976 Logistic map).

I J.C. Allen, W.M. Schaffer, and D. Rosko (1993).

I Chaotic dynamics in insect populations: R.F. Constantino, R.A. Desharnais R.A.,
J.M. Cushing, and B. Dennis (1997) and B. Dennis B., R.A. Desharnais, J.M.
Cushings and Constantino R.F. (1997).

Prey-predator model (Lauwerier, 1986)

T

(
x
y

)
=

(
µx (1− x − y)

βxy

)
with normalised K = 1 prey-carrying capacity and intrinsic reproduction rates µ and
β, respectively. x and y are population densities wrt this normalisation.



Discrete models

Prey-predator model (Lauwerier, 1986)

T

(
x
y

)
=

(
µx (1− x − y)

βxy

)
(11)



Discrete models

Prey-predator model (Lauwerier, 1986)

T

(
x
y

)
=

(
µx (1− x − y)

βxy

)
(11)

Prey-predator and super-predator model.

T

 x
y
z

 =

 µx (1− x − y)
βx(y − z)

γyz

 (12)



Prey-predator model

Prey-predator model (Lauwerier, 1986)

T

(
x
y

)
=

(
µx (1− x − y)

βxy

)
(11)



Prey-predator model

Vidiella, L., Alsedà, Sardanyés (2019)

Lauwerier Map:

T

(
x
y

)
=

(
µx (1− x − y)

βxy

)
(12)

Parameters domain: µ ∈ (0, 4], β ∈ (0, 5].

Defined on the simplex S = {x , y ≥ 0 and x + y ≤ 1}.
Axis are not barriers anymore.



Fixed points in S :

I P∗1 = (0, 0) which belongs to the simplex S for every (µ, β).

I P∗2 =

(
1−

1

µ
, 0

)
which belongs to the simplex S for every (µ, β) ∈ [1, 4]× (0, 5].

I P∗3 =

(
1

β
, 1−

1

µ
−

1

β

)
which belongs to the simplex S for every

(µ, β) ∈
[

5
4
, 4
]
×
[
µ
µ−1

, 5
]
.

Linear stability:



Invariant set: where dynamics lives and remains

T (S) =

{
x , y ≥ 0

∣∣∣∣ x

µ
+

y

β
≤ 1

4

}
.

S is T -invariant (i.e. T (S) ⊂ S) ⇔ β ≤ 4.

ε: one-step escaping set.

Figure: β = 5 and µ = 1.5 (left), µ = 2.340246528387 . . . (centre) and µ = 3.525 (right)



Invariant set: where dynamics live and remain

Recurrent dynamics takes place in Ω(T ) ⊂ ∩∞i=0T
i (S).

Figure: Plots of ∩∞i=0T
i (S) for β = µ = 3.412 (left), β = µ = 3.5485 (centre) and

β = µ = 3.895 (right).



Escaping set: R = ∪∞n=0

(
S ∩ T−n(ε)

)
= S ∩

(
∪∞n=0 T

−n(ε)

)
.

Figure: Top: invariant set S \ R. Bottom: escaping regions in # of iterates to escape: 1
(black), 2 (dark violet), 3 (light violet) to 50 (yellow) (movie1)

https://mat-web.upc.edu/people/jose.tomas.lazaro/articles/movies(llibre-IntechOpen)/movie1.mp4


Global asymptotic results

1 If µ < 1 then lim
n→+∞

T n(x , y) = (0, 0) = P∗1 .

2 Let us define

ϕ(β) :=

 2 if β ∈ [0, 2)
β

β − 1
if β ∈ [2, 5]

Then, for any (β, µ) ∈ [0, 5]× (1, ϕ(β)) and (x , y) ∈ S \ R

T n(x , y) = (0, 0) = P∗1 for some n ≥ 0

or
lim

n→+∞
T n(x , y) =

(
1− µ−1, 0

)
= P∗2 .

P∗1 ,P
∗
2 are fixed points.



Some chaos indicators: Lyapunov exponents

We want to determine the rate of divergence between two close trajectories.

Let x0 and x0 + δ0 be two close initial conditions (|δ0| � 1), and
δn := f (n)(x0 + δ0)− f (n)(x0) the difference between the n-th iterates of the
respective orbits (xi := f (i)(x0) for i ≥ 0).

Assume that |δn| = |δ0| exp(n λ). Then,

λ = 1
n

ln
∣∣∣ δnδ0

∣∣∣ = 1
n

ln
∣∣∣ f (n)(x0+δ0)−f (n)(x0)

δ0

∣∣∣
≈ 1

n
ln
∣∣∣f (n)′(x0)

∣∣∣ = 1
n

ln

∣∣∣∣n−1∏
i=0

f ′(xi )

∣∣∣∣ = 1
n

n−1∑
i=0

ln |f ′(xi )| .

The Lyapunov exponent is defined as

λ := lim
n→+∞

{
1

n

n−1∑
i=0

ln
∣∣f ′(xi )∣∣} ,

assuming that this limit exists (take lim sup instead). Although not strictly correct,
λ > 0 is taken as an indication of chaos2.

In higher dimensions, since it depends on the vector δ0, there arises an spectrum of
Lyapunov exponents.

2Although the definition of chaos itself is another controversial issue.



Chaotic behaviour. Example: fixing µ = 2.1,

Figure: (a) Dynamics on the attractor for predators. P∗2 (violet), P∗3 (orange).



Chaotic behaviour. Example: fixing µ = 2.1,

Figure: (b) Lyapunov exponents Λ1,2. Neimark-Sacker bifurc. → P∗3 becomes unstable. After
regular periods it enters into chaos. Hyperchaos.



Chaotic behaviour. Example: fixing µ = 2.1,

Figure:

(c) Diagram where first Lyapunov exponent Λ1 is plotted. Red means chaotic zone. (movie2)

https://mat-web.upc.edu/people/jose.tomas.lazaro/articles/movies(llibre-IntechOpen)/movie2.mp4


Chaotic behaviour: Lyapunov exponents Λ1,2

Figure: (A) Enlarged view of square in previous figure (c)



Chaotic behaviour: Lyapunov exponents Λ1,2

Figure: (B) In orange-red regions Λ1,2 > 0→ Hyperchaos



Chaotic behaviour: Lyapunov exponents Λ1,2

Figure: Bottom: sets ∩∞i=0T
i (S) in panel (A). Period-6 fixed point (a) and chaotic attractors

(b,c,d). Fixed points P∗1 (red), P∗2 (blue), P∗3 (orange) (movie3)

https://mat-web.upc.edu/people/jose.tomas.lazaro/articles/movies(llibre-IntechOpen)/movie3.mp4


Cooperative models

Example: increasing complexity through cooperation, hypercycles.

Hypercycles and quasispecies (Eigen and Schuster, 1971, 1979).
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