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Malthusian and Logistic growth



Malthusian growth

Thomas Robert Malthus (1766-1834)
English clerical and scholar. Fellow of Jesus College
(Cambridge) in 1794. In 1789, he took orders in the Church of
England and became a curate (assistant cleric) at Oakwood
Chapel in the parish of Wotton, Surrey.



Malthusian growth

“An increase of nation’s food leads to an improvement of the

population. But, this is temporary since it implies a population

growth which restores the initial per capita production level.”

Mankind uses abundance to grow → Malthus trap.

The power of population is much bigger than the power
of Earth to produce subsistence for man.

His idea was contrary to the 18th century common belief.

L. Euler published in 1748 a treatise in which a
population growth model of the form Pn+1 = (1 + x)Pn

was assumed.



Malthusianism (population control)

“The great Malthusian dread was that indiscriminate

charity would lead to exponential growth in the population

in poverty, increased charges to the public purse to support

this growing army of the dependent, and, eventually, the

catastrophe of national bankruptcy. Though Malthusianism

has since come to be identified with the issue of general

over-population, the original Malthusian concern was more

specifically with the fear of over-population by the

dependent poor.”

Dan Ritschel, http://history.umbc.edu/facultystaff/full-time/daniel-ritschel/

http://history.umbc.edu/facultystaff/full-time/daniel-ritschel/)


Malthusianism (population control)

Exponential growth of population, linear growth of food. Moral restraints (abstinence,
controlling marriages) or “positive checks” (diseases, starvation, war,...) resulting in
Malthusian catastrophe.



Malthusian growth

Let N(t) denote the population at time t. Then, the rate of change of N is modelled, in
general, by

dN

dt
= births− deaths±migration.

First model, suggested by Malthus in Essay on the principle of population, 1798. It only
depends on birth and death rates (so no migration taken into account):

dN

dt
= b N − d N ⇒ N(t) = N0 exp((b − d)t),

where N0 is the initial condition and b, d > 0. It is clear that if b > d it leads to
exponential growth and if b < d to extinction.
However it is an unrealistic approach, the growth estimates for the total world population
from the 17th to 21st centuries point towards an exponential growth.



World population predictions

Mid 17th Mid 19th
Date century century 1918–1927 1960 1974 1987 2000 2050 2100

Population
in billions 0.5 1 2 3 4 5 6.3 10 11.2

United Nations median projections for the 21st century

Probabilistic projections obtained from
http://esa.un.org/unpd/wpp/Graphs/
Probabilistic/POP/TOT/.

Data fitting, statistical treatment,. . . see
http://esa.un.org/unpd/wpp/ for a complete
information.

Compare, for instance, predictions for Africa (really
exponential) and Europe (decreasing from now
on!).



Pierre François Verhulst (1804-1849)

Belgian mathematician, doctor in Number Theory from the University of Ghent
(1825).

In his paper Notice sur la loi que la population suit dans son accroissement,
Correspondence mathématique et physique 10, 113-121 (1838), he states the model

dN

dt
= mN − nN2.

The limit
lim

t→+∞
N(t) =

m

n

is called by him as la limite supérieure de la population.

Its main idea is that growth should possess a self-limiting mechanism to control it
when it is too large.



The logistic growth

It is usually written as

dN

dt
= r N

(
1− N

K

)
,

where

r is the growth rate.

K is the carrying capacity of the system.

and it is known as the logistic equation.

P. F. Verhulst
(1804–1849)



The continuous logistic growth: simple analysis

N = 0 and N = K are the only fixed points

f ′(x) = r
(
1− 2 N

K

)
.

N = 0 is a repellor because f ′(0) = r > 0.

N = K is an attractor because f ′(K) = −r < 0.

Explicit solution of the ODE:

N(t) =
K N0

N0 + (K − N0)e−r t
.

All solutions (except N = 0) tend to K as t → +∞.

Observe the sigmoidal
shape, ubiquitous in
many mathematical
models as a learning
curve.



The continuous logistic growth: simple analysis

If N0 > K solution decreases monotonically.

If N0 < K it increases monotonically but qualitatively different if N0 > K/2 or
N0 < K/2 (sigmoidal).

The term sigmoidal was introduced by Michaelis and Mentem in 1913, and since
then it has become standard.

For a review on functional responses (in that case, for zooplankton feeding but also
generalisable), see for instance, Gentleman et al., Deep sea research II, 50,
2847–2875, (2003).

Example (left) for p(N) = BN2/(A2 + N2) with
B = 1.

p(N) has limit B for t → +∞. Reasonable since
predation usually saturates for large values of N.

They present, approx., a value Nc where p(N)
changes more abruptly. This threshold Nc depends on
A.



Close models in discrete population dynamics

A quite general expression for them is of the form:

Nt+1 = NtF (Nt) = f (Nt), N0 > 0.

Examples1:

F (Nt) = r ⇒ Nt = r t N0 (discrete Malthusian).

f (Nt) = r N1−b
t (survival to breeding).

F (Nt) = r (1− Nt/K) (discrete Verhulst, logistic).

F (Nt) = exp(r (1− Nt/K)) (severe death when overcrowded, Ricker Model).

Time steps can be thought of as delays so, should we expect oscillatory dynamics as well?

1[Murray, Mathematical Biology, Chapter 2]



The discrete logistic map

Nt+1 = r Nt

(
1− Nt

K

)
, N0 > 0.

“Perhaps we would all be better off, not only in research and

teaching, but also in everyday political and economical life, if more

people would take into consideration that simple dynamical systems

do not necessarily lead to simple dynamical behaviour.”

Robert May, 1976



Transcritical bifurcation in the logistic map

Nt+1 = r Nt

(
1− Nt

K

)
, N0 > 0.

If t = n and xn = Nt/K for all t, n ∈ N ∪ {0}, then f (x) = r x (1− x).

Fixed points of f :

f (x) = x ⇔ r x(1− x) = x ⇔ x = 0 or x = 1− 1

r
=: x∗r

Transcritical bifurcation at x = 0

f ′(0) = r = 1 when r = 1.



Period doubling bifurcation

Stability loss of x∗(r) at r = 3:

f ′(x∗(r)) = r(2/r − 1) = −1 when r = 3.

A stable 2-periodic orbit arises at r = 3 as x∗(r) becomes unstable.

Figure: Graphs of f (x) and f 2(x) = f (f (x)).



A cascade of period doubling bifurcations

Value of r New period

r1 = 3 21

r2 = 3.449 . . . 22

r3 = 3.54409 . . . 23

r4 = 3.5644 . . . 24

r5 = 3.568759 . . . 25

...
...

r∞ = 3.569946 . . . ∞



A cascade of period doubling bifurcations

Figure: Can you hear the chaos? (https://www.youtube.com/watch?v=owq6xCFDbDQ)

https://www.youtube.com/watch?v=owq6xCFDbDQ


Harvesting (and fisheries)



Harvesting (J.D. Murray, Section 1.6, pp. 30-35)

Target: to develop an ecologically acceptable strategy for harvesting a renewable
resource (fishes, plants, animals in general, ...). Even more, moved by the
economical interest, we want to get the maximum sustainable yield with the
minimum effort from our system.

Seminal works: Clark (1976, 1985, 1990), Kot (2001), Plant and Mangel (1987),
and many others.

Simple model, suggested by Beddington and May (1977):

Ṅ = rN

(
1− N

K

)
− EN =: f (N), (1)

with r ,K ,E > 0.

N is the quantity of population.

r is the growth rate of the population and K is its carrying capacity.

EN is the harvesting per unit time.

E is called the fishing effort and in many situations it is denoted by qE ′, where q is
called the catchability and E ′. It is also known as the Schaeffer fishing model

Ṅ = rN

(
1− N

K

)
− qE ′N.



With no harvesting, that is E = 0, the logistic model has two equilibrium points:

N = 0 (repeller) and N = K (attractor)

If E > 0, the new non-zero equilibrium point is

Nh(E) = K

(
1− E

r

)
if E < r . (2)

This equilibrium gives rise to a yield

Y (E) := Y (Nh(E)) = ENh(E) = EK

(
1− E

r

)
, (3)

which reaches its maximum value Ymax at Emax = r
2
, i.e. half the growth rate.

Indeed,

Ymax = Y (Emax) =
r

2
K

(
1− 1

2

)
=

rK

4
, Nh(Emax) =

K

2
. (4)



Which is the local stability of the point Nh = Nh(E)? Linearising around it we have

d

dt
(N − Nh) ' f ′(Nh) (N − Nh) = (E − r)(N − Nh), (5)

where E − r < 0 since E < r (condition of Nh to exist).

So N = Nh is a local attractor (stable).



Recovery time TR : the time TR satisfying the relation

N(t + TR)− Nh(E) =
N(t)− Nh(E)

e
, (6)

for 0 < E < r . Time needed to reduce its distance to Nh by a factor e = exp(1).

Since
d

dt
(N − Nh) ' −(r − E)(N − Nh)⇒ N(t)− Nh(E) ' e−(r−E)t

and (6) it follows that

e−(r−E)(t+TR ) ' e−(r−E)t−1 ⇒ TR(E) ' 1

r − E
. (7)

If no harvesting we have

TR(0) ' O
(

1

r

)
.

Comparing them:

TR(E)

TR(0)
= O

(
1

1− E
r

)
, (8)

which goes to ∞ as E → r−.



Which is, approximately, the recovery time factor in the case of the optimal harvesting
effort Emax = r

2
?

Observe that

TR(Emax) = O
(

1

r − Emax

)
= 2O

(
1

r

)
= 2TR(0).

We express this recovery time in terms of the yield Y . Indeed, from (3) we have

Y (E) = KE − K

r
E 2 ⇒ E 2

r
− E +

Y

K
= 0

⇒ E =
1±

√
1− 4

r
Y
K

2/r
=

1±
√

1− Y
Ymax

2/r
,

since Ymax = Kr/4.



So

E

r
=

1±
√

1− Y
Ymax

2

and then

TR(E)

TR(0)
= O

(
1

1− E
r

)
' 1

1− 1
2

(
1±

√
1− Y

Ymax

) =
2

1∓
√

1− Y
Ymax

. (9)

Notice that TR(E = 0) = TR(Y = 0) so it can also be written as

TR(Y )

TR(0)
∼ 2

1±
√

1− Y
Ymax

. (10)

Next Figure 3 shows the two branches of TR(Y )/TR(0):

L± =
2

1±
√

1− Y
Ymax

, (11)

as a function of the rate Y /Ymax.



TR (Y )
TR (0)

Y
Ymax

2

1

1

TR (Y )
TR (0)

= 2

1−
√

1− Y
Ymax

TR (Y )
TR (0)

= 2

1+
√

1− Y
Ymax

A

Figure: The two branches L± given at (11) of TR(Y )/TR(0) in terms of Y /Ymax.



Let us analyse the behaviour of recovery time of the solutions in terms of the harvesting
E . Remember that the steady state of the harvested model, Y , can be graphically
determined:

rN
(
1− N

K

)

N
O KK

2
Nh(E)

EN

Figure: Graphic determination of the steady state Y in the harvested model: it is given by the

intersection of the line y = EN and the parabola y = rN

(
1 −

N

K

)
.



E =0.1

rN
(
1− N

K

)

N
O

K

K
2

EN

Nh(E)

TR (Y )
TR (0)

Y
Ymax

2

1

1

L−(Y )

L+(Y )

A

Consequences:

For E ∼ 0 we have Nh(E) ∼ K . In particular, Nh(E) > K
2

= Nh(Emax). Moreover,
since TR(E)/TR(0) ∼ 1 and so

Y

Ymax
∼ 0 and

TR(Y )

TR(0)
∼ 1.



E =0.9

rN
(
1− N

K

)

N
O

K

K
2

EN

Nh(E)

TR (Y )
TR (0)

Y
Ymax

2

1

1

L−(Y )

L+(Y )

A

As we increase E :

(i) Nh(E) decreases approaching Nh(Emax) = K
2

.

(ii) Consequently, TR (Y )
TR (0)

tends to the point A, but still in the L+-branch.



E =1.1

rN
(
1− N

K

)

N
O

K

K
2

EN

Nh(E)

TR (Y )
TR (0)

Y
Ymax

2

1

1

L−(Y )

L+(Y )

A

Further increasing E leads to an equilibrium Nh(E) smaller than K/2. Again the

recovery time rate TR (Y )
TR (0)

increases but now on the branch L−. Indeed, since
E > Emax = r

2
, it follows that

TR(E) ∼ 1

r − E
>

1

r/2
=

2

r
∼ 2TR(0) =⇒ TR(E)

TR(0)
> 2 =⇒ TR(Y )

TR(0)
> 2.



E =1.4

rN
(
1− N

K

)

N
O

K

K
2

EN

Nh(E)

TR (Y )
TR (0)

Y
Ymax

2

1

1

L−(Y )

L+(Y )

A

Hence, as E continuous increasing we get Nh → 0+ and so Y
Ymax
→ 0+ (since

Y = ENh). Consequently,

1− Y

Ymax
→ 1+ =⇒ TR(Y )

TR(0)
=

2

1−
√

1− Y
Ymax

→ +∞.

That is, the recovery time grows enormously!!



Is a constant harvesting a general better strategy?

This alternative model was posed by Brauer and Sánchez [3]. They consider a constant
yield Y0:

Ṅ = rN

(
1− N

K

)
− Y0.

New equilibria can be easily determined graphically.

As Y0 tends to rK/4, the maximum sustainable yield, the solution becomes even
more sensitive than in the previous model. Indeed, any small fluctuation can make
Y0 > rK/4 and, therefore, the origin (extinction) becomes the unique steady state.
Moreover, it is a global attractor.



Even if Y0 < rK/4 and N is below the (unstable) equilibrium N1 (so, N small), we
have that N is small and essentially

Ṅ ∼ −Y0 ⇒ N(t) = −Y0t + N(0),

This implies that the population N dissapears in finite time

Tdissap =
N(0)

Y0
.

Thus, recovery time has only sense for the (locally attractor) steady state

N2(Y0) =
K

2

(
1 +

√
1− 4Y0

Kr

)
,

which exists if Y0 < rK/4. The linearised system around N2 is

d

dt
(N − N2) ' −(N − N2)r

√
1− 4Y0

Kr
=⇒ TR(Y0)

TR(0)
=

1√
1− Y0

Ymax

,

with Ymax = rK/4. That is,

TR(Y0)

TR(0)
→ +∞ as Y0 → Ymax.

So, this strategy is even more sensitive than the precedent one and it is not really
very convenient.



Density-dependence growth:

the Allee effect



The θ-logistic equation

Given by

dN

dt
= rN

(
1− N

K

)θ

,

with θ > 1, introduced by Gilpin and Ayala in 1973.

It represents a no declining in the per capita population growth until it reaches a
level close to carrying capacity K , followed by a fast decline (see Figure 34).

0 2 4 6 8
0

0.5

1

1.5

2

2.5

θ = 1

θ = 2

θ = 6

N

Figure: Graphs of θ-logistic function rN
(

1 − N
K

)θ
for r = 1, K = 8 and several values of θ.

Remember that θ = 1 corresponds to the usual logistic function.



The Allee effect

It was introduced by the zoologist and animal ecologist Warder Clyde
Allee (1885-1955), from the University of Chicago.
He was interested in the study of group behaviour of animals.
At the moment he presented his theory, two were the general beliefs
among biologists:

Large population size is important against extinction and
enemies (Charles Darwin).

Intraspecific competition does not decrease with population
size: Malthus principle + logistic model.

Allee observed that, in many species, it was undercrowding and not
competition the reason that limited population growth.



”In general, an Allee effect can be defined as a positive relationship between mean individual

fitness and population size or density (hereafter population size), generally occurring in small

populations (Stephens, Sutherland, & Freckleton, 1999). More specifically, Allee effects occur

when there are beneficial interactions among individuals that cause the per capita population

growth rate to increase with the number of individuals. Conversely, if the number of individuals

decreases, they suffer from fewer or less efficient interactions and the per capita population

growth rate decreases. The critical population size below which the per capita population growth

rate becomes negative is called the Allee threshold. A major consequence of the Allee effect is

that populations falling below the Allee threshold become even smaller, thereby entering into a

positive feedback loop that can ultimately lead to their extinction ...“

Courchamp, Clutton-Brock, & Grenfell, 1999.



Aggregation seems to have positive effects on the survival of some species. The most
common Ecological mechanisms for Allee effect to exist are (see, for instance [1])

Mate limitation.

Cooperative defense: schools of sardines, flocks of starlings, ...

Cooperative feeding: African wild dogs that hunt together, ...

Environmental conditioning / habitat alteration: marine nutrients carried by
spawning salmons when they migrate along streams to reproduce, ...

Figure: School of sardines.



In general it can be represented by the mathematical model:

dN

dt
= rN

(
N

A
− 1

)(
1− N

K

)
(12)

where A is called the Allee threshold or critical population size, and K is the carrying
capacity.

Suggested homework: To study harvesting in a population undergoing Allee effect like,
for instance, in equation (12)
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