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Empirical studies have emphasized that the equity implied volatility is characterized by a
negative skew inversely proportional to the square root of the time-to-maturity.
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Short time implied volatility of

additive normal tempered stable processes

1 Introduction

Which characteristics of the implied volatility surface should be reproduced by an option pricing
model? A stylized fact that characterizes the equity market is a downward slope in terms of strike,
i.e. a negative skew, where the skew is the at-the-money (ATM) derivative of the implied volatility
w.r.t. the moneyness.1 Specifically, the short time negative skew is proportionally inverse to the
square root of the time-to-maturity. The first empirical study of the equity skew dates back to
Carr and Wu (2003): they find that the S&P 500 short time skew is, on average, asymptotic to
−0.25/

√
t. Moreover, Fouque et al. (2004) arrive at a similar conclusion considering only options

with short time-to-maturity (i.e. up to three months). In this paper, we show that a pure jump
additive process, which also calibrates accurately the whole equity volatility surface, reproduces
the power scaling market skew.

A vast literature on short time implied volatility and skew is available for jump-diffusion processes.
Both the ATM (see, e.g. Alòs et al. 2007, Roper 2009, Muhle-Karbe and Nutz 2011, Andersen and
Lipton 2013, Figueroa-López et al. 2016) or the OTM implied volatility (see, e.g. Tankov 2011,
Figueroa-López and Forde 2012, Mijatović and Tankov 2016, Figueroa-López et al. 2018) are
analyzed. For a jump-diffusion Lévy process, the ATM implied volatility is determined uniquely
by the diffusion term; it goes to zero as the time-to-maturity goes to zero if there is no diffusion
term, i.e. for a pure-jump process. For this reason, pure jumps Lévy processes are not suitable to
reproduce the market short-time smile, because the short time implied volatility is strictly positive
in all financial markets.
Muhle-Karbe and Nutz (2011) have shown that, for a relatively broad class of additive models,
the ATM behavior of leading term for small time is the same of the corresponding Levy. In this
paper, we analyze the ATM implied volatility and skew for a class of pure jump additive processes
that is consistent with the equity market smile, differently from the Lévy case: this is the main
theoretical contribution of this study.

An additive process is a stochastic process with independent but non-stationary increments; a
detailed description of the main features of additive processes is provided by Sato (1999). In this
paper, we focus on a pure jump additive extension of the well-known Lévy normal tempered stable
process (for a comprehensive description of this set of Lévy processes, see, e.g., Cont and Tankov
2003, Ch.4).

Pure jump processes present a main advantage w.r.t. jump-diffusion models: they generally
describe underlying dynamics more parsimoniously. In a jump-diffusion, both small jumps and
the diffusion term describe little changes in the process (see, e.g. Asmussen and Rosiński 2001).
Because both components of the jump-diffusion process are qualitatively similar, when calibrating
the model to the plain vanilla option market, it is rather difficult to disentangle the two components
and several set of parameters achieve similar results.

1The moneyness is the logarithm of the strike price over the forward price. For a description of the equity
volatility surface and a definition of skew, see, e.g., Gatheral (2011).
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Recently, it has been introduced a class of pure jump additive processes, the power-law scaling
additive normal tempered stable process (hereinafter ATS), where the two key time-dependent
parameters –the variance of jumps per unit of time, kt, and the asymmetry parameter, ηt– present
a power scaling w.r.t. the time-to-maturity t. It has been shown the excellent calibrating per-
formances of this class of processes (see, e.g. Azzone and Baviera 2021). On the one hand,
this class of pure jump additive processes allows calibrating the S&P 500 and EURO STOXX 50
implied volatility surfaces with great accuracy, reproducing “exactly” the term structure of the
equity market implied volatility surfaces. On the other hand, the observed reproduction of the
skew term structure appears remarkable.
Moreover, an interesting self-similar characteristic w.r.t. the time-to-maturity arises. Specifically,
among all allowed power laws, the power scaling of kt, β, is close to one, while the power scaling
of ηt, δ, is statistically consistent with minus one half (see, e.g. Azzone and Baviera 2021).

Consider an option price with strike K and time-to-maturity t. We define It(x) the model implied
volatility, where x := log K

Ft
is the log-moneyness and Ft is the underlying forward price with

time-to-maturity t. In particular, we consider the moneyness degree y, s.t. x =: y
√
t, introduced

by Medvedev and Scaillet (2006). It has been observed that the moneyness degree y can be
interpreted as the distance of the option moneyness from the forward price in terms of the B&S
Brownian motion standard deviation (see, e.g., Carr and Wu 2003, Medvedev and Scaillet 2006).
The implied volatility w.r.t y is

It(y) := It(y
√
t) ,

and its first order Taylor expansion w.r.t. y in y = 0 is

It(y) = It(0) + y
dIt(y)

dy

∣∣∣∣
y=0

+ o(y) =: σ̂t + y ξ̂t + o(y) .

We call ξ̂t the skew term. We define σ̂0 and ξ̂0 as the the limits for t that goes to zero of σ̂t and ξ̂t.
Their financial interpretation is straightforward: σ̂0 corresponds to the short time ATM implied
volatility, while ξ̂0 is related to the short time skew, because it is possible to write the skew as

dIt(x)

dx

∣∣∣∣
x=0

=
ξ̂t√
t
.

In Figure 1, we present an example of the S&P 500 for the short time implied volatility and the
skew at a given date, the 22nd of June 2020 (the business day after a triple witching Friday2). On
the left, we plot the one month (blue squares), two months (red asterisks), three months (orange
stars), and four months (purple triangles) market implied volatility w.r.t. the moneyness degree
y: we observe a positive and finite short time σ̂t. On the right, we plot the market skew w.r.t. the

time t: it appears to be well described by a fit O
(√

1
t

)
.

2A triple witching Friday is the third Friday of the months of March, June, September and December: in this
quarterly date, stock options, stock index futures, and stock index options all expire on the same day.
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Figure 1: Example of the S&P 500 short time implied volatility and skew on the 22nd of June 2020. On
the left we plot the one month (blue circles), two months (red asterisks), three months (orange stars),
and four months (purple triangles) market implied volatility w.r.t. the moneyness degree y. We observe

a positive short time σ̂t. On the right we plot the market skew w.r.t. the time t and the fitted O
(√

1
t

)
.

As already observed in some empirical studies (see, e.g. Carr and Wu 2003, Fouque et al. 2004),
equity market data are compatible with a positive and finite σ̂0 and a negative and finite ξ̂0, that
leads to a skew proportionally inverse to the square root of the time-to-maturity. We aim to
present a pure-jump model with these features.

We study the behavior of σ̂t and ξ̂t for the ATS process, deriving an extension of the Hull and
White formula (Hull and White 1987, Eq.7) in (4, 5) (see, e.g., Alòs et al. 2007, for another
application of this formula to the short time problem). This formula leads to two results: on
the one hand, we build some relevant bounds for σ̂t; on the other hand, we obtain an expression
for ξ̂t in (25) via the implicit function theorem (see, e.g. Loomis and Sternberg 1990, Th.11, p.164).

Three are the main contributions of this paper. First, we deduce for a family of pure-jump addi-
tive processes, the ATS, the behavior of the short time ATM implied volatility σ̂t and skew term
ξ̂t over the region of admissible parameters (see Theorem 2.2). Second, we prove that only the
scaling parameters observed in market data (δ = −1/2 and β = 1) are compatible with a finite
short time implied volatility and a short time skew proportionally inverse to the square root of
the time-to-maturity. Third, we demonstrate it exists a pure-jump additive process (an ATS)
that presents the two features observed in market data: not only a positive short time implied
volatility but also a power scaling skew.

The rest of the paper is organized as follows. Section 2 presents the ATS power scaling process
and the extension of the Hull and White formula. Section 3 defines the implied volatility problem
and analyzes the short time ATM implied volatility σ̂t. Section 4 computes the short time limit
of the skew term ξ̂t. Section 5 presents the major result: the ATS process is consistent with the
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equity market skew if and only if β = 1 and δ = −1/2. Finally, Section 6 concludes.

2 The ATS implied volatility

In this Section, we recall the ATS power-scaling sub-case characteristic function (1), we introduce
a sequence of random variables (3) with the same distribution of the ATS for any fixed time t.
We use this random variable to study the short time implied volatility. We discuss the volatility
smile at small maturity produced by this forward model and determine the power laws of the ATS
parameters that are consistent with the market data i.e. which choices of δ and β are consistent
with the market short time features mentioned above.

We define the sequence of positive random variables St via it Laplace transform. This random
variable is used in the definition of the random variable ft.

Definition 2.1. Definition of {St}t≥0

Let {St}t≥0 be a sequence of positive random variable with a Laplace transform s.t.

lnLt (u; kt, α) := lnE
[
e−uSt

]
=


t

kt

1− α
α

{
1−

(
1 +

u kt
(1− α)t

)α}
if 0 < α < 1

− t

kt
ln

(
1 +

u kt
t

)
if α = 0

,

where kt := k̄tβ and k̄, β ∈ R+.

Notice that, by the Laplace transform we can compute any moment of St. The first two are

1. E [St] = 1;

2. V ar [St] = kt/t;

We define the random variable ft as a random variable with characteristic function

E
[
eiuft

]
:= Lt

(
iut

(
1

2
+ ηt

)
σ̄2 + t

u2σ̄2

2
; kt, α

)
ei uϕt t , (1)

where
ηt := η̄tδ and ϕt t := − lnLt

(
tσ̄2ηt; kt, α

)
. (2)

t, σ̄, η̄ ∈ R+ and δ ∈ R.
The characteristic function is the same of the power scaling sub-case of the ATS process in Azzone
and Baviera (2021, eq.2). Thus, we can use directly ft to evaluate European payoffs. Notice that
there is a slight difference in the notation. To simplify the following theorems’ and propositions’
proofs we have defined the Laplace transform in a way that, when is evaluated in the same input
of the one in Azzone and Baviera (2021) multiplied by t, it has the same output.

We report the results of Azzone and Baviera (2021) on the existence of the power scaling ATS.

Theorem 2.2. Power-law scaling ATS

It exits an ATS
kt = k̄ tβ, ηt = η̄ tδ

where α ∈ [0, 1), σ̄, k̄, η̄ ∈ R+ and β, δ ∈ R with either β = δ = 0 or
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1. 0 ≤ β ≤ 1

1− α/2
;

2. −min

(
β,

1− β (1− α)

α

)
< δ ≤ 0 ;

where the second condition reduces to −β < δ ≤ 0 for α = 0

The region of admissible values for the scaling parameters β and δ is shown in Figure 2.
In particular, we mention that, for all α in [0, 1), the scaling parameters observed in the market,
{δ = −1/2, β = 1}, are always inside the ATS admissible region. In Figure 2, we plot the admis-
sible region for the scaling parameters β and δ. In this paper, we prove that the ATS implied
volatility at short time is qualitatively different for different sets of scaling parameters. We sepa-
rate the admissible region in five Cases:
Case 1 (grey area) with σ̂0 = 0:{

−min

(
1

2
, β

)
< δ ≤ 0, β < 1

}
∪ {δ = β = 0} .

Case 2 (orange area) with σ̂0 =∞:{
−min

(
β,

1− β(1− α)

α

)
< δ < −max

(
β

2
,
1

2

)}
.

Case 3 (light green area) with finite σ̂0 and ξ̂0 = 0:{
−β

2
≤ δ ≤ 0, β ≥ 1

}
\
{
β = 1, δ = −1

2

}
.

Case 4 (continuous dark green line) with finite σ̂0 and ξ̂0 = −
√

π
2
:{

δ = −1

2
, β < 1

}
.

Case 5 (red dot) with finite σ̂0 and negative and finite ξ̂0:{
δ = −1

2
, β = 1

}
.

Notice that Case 3 includes all its boundaries, identified by the green circles, with the exception
of the point {δ = −1/2, β = 1} (red); Case 1 includes just its upper bound, identified by the grey
squares.
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Figure 2: ATS admissible region for the scaling parameters. We separate the region in five Cases.
i) Case 1 (grey area) with σ̂0 = 0. ii) Case 2 (orange area) with σ̂0 = ∞. iii) Case 3 (light green area)
with finite σ̂0 and ξ̂0 = 0. iv) Case 4 (continuous dark green line) with finite σ̂0 and ξ̂0 = −

√
π
2 . v) Case

5 (red dot) with finite σ̂0 and negative and finite ξ̂0.
Notice that Case 3 includes all its boundaries, identified by the green circles, with the exception of the
point {δ = −1/2, β = 1} (red), that corresponds to Case 5. Moreover, Case 1 includes just its upper
bound, identified by the grey squares. We emphasize that for all α in [0, 1) the point {δ = −1/2, β = 1}
is inside the admissible region.

A summary of the ATS short time behavior, w.r.t. the different Cases is available in Table 1.

Case 1 σ̂0 = 0
Case 2 σ̂0 =∞
Case 3 σ̂0 > 0 and ξ̂0 = 0

Case 4 σ̂0 > 0 and ξ̂0 = −
√

π
2

Case 5 σ̂0 > 0 and ξ̂0 < 0

Table 1: Summary of ATS short time behavior, w.r.t. the scaling parameters δ and β in the additive
process boundaries.

A summary of the ATS short time behavior, w.r.t. the scaling parameters δ and β in the additive
process boundaries is available in Table 2.

0 < β < 1 β = 1 β > 1

δ > −1
2

σ̂0 = 0 ξ̂0 = 0 ξ̂0 = 0

δ = −1
2

ξ̂0 = −
√

π
2

ξ̂0 < 0 ξ̂0 = 0

δ < −1
2

σ̂0 =∞ σ̂0 =∞ σ̂0 =∞ or ξ̂0 = 0

Table 2: Summary of ATS short time behavior, w.r.t. the scaling parameters δ and β in the additive
process boundaries.
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It can be easily proven that, for every time t, the random variable

ft = −
(
ηt +

1

2

)
σ̄2 St t+ σ̄

√
SttG+ ϕtt (3)

has the characteristic function in (1), where G is a standard normal random variable independent
from St. We use this expression of ft to compute the option prices.
Consider a European call (put) option discounted payoff Bt

(
Fte

ft − Ftex
)+

(Bt

(
Fte

x − Fteft
)+

)
where Ft is the underlying forward price at time 0, Fte

ft is the underlying forward price at time
t, t the option maturity, K the option strike price, Bt is the discount factor between 0 and t and
x = ln K

F0
the asset log-moneyness. We can write the expected European call and put option price

at time zero conditioning to St

Ct(x) = E

[(
eft − ex

)+
]

= E

[
eϕtt−tσ̄

2ηtStN

(
−x

σ̄
√
tSt

+ lStt +
σ̄
√
Stt

2

)
− exN

(
−x

σ̄
√
tSt

+ lStt −
σ̄
√
Stt

2

)]
(4)

Pt(x) = E

[(
ex − eft

)+
]

= E

[
exN

(
x

σ̄
√
tSt
− lStt +

σ̄
√
Stt

2

)
− eϕtt−tσ̄2ηtStN

(
x

σ̄
√
tSt

+ lStt −
σ̄
√
Stt

2

)]
, (5)

where

lzt := −σ̄ηt
√
z t+

ϕt
√
t

σ̄
√
z

(6)

and N is the standard normal cumulative distribution. Notice that, for simplicity, we define
directly the option prices with Ft = 1 and Bt = 1. To do so is without any loss of generality
because we can always cancel these therms from both sides of the implied volatility equation.
Notice that the quantity inside the expected values are, in both equations (4) and (5), positive
(because they are the price of an option under the B&S model multiplied by a positive constant).
A similar result is obtained by Hull and White (1987) for option on an asset with stochastic
volatility.
We can re-write equations (4) and (5) w.r.t to the moneyness degree y

Ct(y
√
t) = E

[
eϕtt−tσ̄

2ηtStN

(
− y

σ̄
√
St

+ lStt + σ̄

√
Stt

2

)
− ey

√
tN

(
− y

σ̄
√
St

+ lStt − σ̄
√
Stt

2

)]
Pt(y
√
t) = E

[
ey
√
tN

(
y

σ̄
√
St
− lStt + σ̄

√
Stt

2

)
− eϕtt−tσ̄2ηtStN

(
y

σ̄
√
St
− lStt − σ̄

√
Stt

2

)]
.

We define directly the B&S option prices w.r.t. y,

cBSt (It(y), y) = N

(
− y

It(y)
+
It(y)

√
t

2

)
− ey

√
tN

(
− y

It(y)
− It(y)

√
t

2

)
pBSt (It(y), y) = ey

√
tN

(
y

It(y)
+
It(y)

√
t

2

)
−N

(
y

It(y)
− It(y)

√
t

2

)
,

where It(y) is the implied volatility w.r.t. the moneyness degree. Moreover, we define ct(St, y)
and pt(St, y) such that

E[ct (St, y)] := Ct(y
√
t)

E[pt (St, y)] := Pt(y
√
t) .
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The implied volatility equation for the call options is

E[ct (St, y)] = cBSt (It(y), y) (7)

and the implied volatility equation for the put option is

E[pt (St, y)] = pBSt (It(y), y) . (8)

Alòs et al. (2007, Lemma 6.1, p.580) prove that, for a generalization of the Bates model, σ̂t
√
t =

o(1). The same proof holds in the ATS case because all additive processes goes to zero in distri-
bution at short time. We use this property to study the short time asymptotic of the ATM B&S
price. Notice that, if at short time σ̂t

√
t = o(1), we can rewrite the right hand side of (7) and (8)

for y = 0 as

cBSt (σ̂t, 0) = pBSt (σ̂t, 0) = σ̂t

√
t

2π
+ o

(
σ̂t
√
t
)

, (9)

the asymptotic expansion is because N ′(0) =
√

1
2π

, where N ′ is the standard normal probability

density function.

3 Short time ATM implied volatility

In this Section, we study the behavior of σ̂t at short time. The idea of the proofs is simple.
Equation (9) is the short time asymptotic expansion of the B&S ATM call and put prices. We
can study the short time behavior of the ATS model price in (7) and (8).

1. If the model price goes to zero faster than
√
t , then σ̂0 = 0 (Case 1).

2. If the model price goes to zero slower than
√
t, then σ̂0 =∞ (Case 2).

3. If the model price goes to zero as
√
t, then σ̂0 is finite (Cases 3, 4, 5).

The idea of the proofs is the following. In Case 1 we bound from above the model price and we
prove that it is o

(√
t
)
. In Case 2 we bound from below the model price and we demonstrate that

it goes to zero slower than
√
t. Finally in the remaining Cases we build upper and lower bounds

on the model price and prove that both bounds are O
(√

t
)
. Furthermore, the proofs are divided

in some sub-cases that correspond to particular ranges of the parameters δ and β: we indicate
with bold characters the range at the beginning of each sub-case.

Proposition 3.1.

For Case 1:

{
−min

(
1
2
, β
)
< δ ≤ 0 & β < 1 or

δ = β = 0
,

then, the implied volatility is s.t.
σ̂0 = 0 .

Proof.

−min
(
1
2
, β
)
< δ ≤ 0 & β < 1 or δ = β = 0

9



We bound ct (St, 0) from above as follows.

ct (St, 0) =N

(
lStt + σ̄

√
Stt

2

)
−N

(
lStt − σ̄

√
Stt

2

)
−
(
eϕtt−tσ̄

2ηtSt − 1
)
N

(
lStt + σ̄

√
Stt

2

)
≤
√

t

2π
σ̄
√
St + eϕtt − 1 . (10)

In the equality we have just added and subtracted the quantity N
(
lStt + σ̄

√
Stt
2

)
. The inequality

holds because, by definition of standard normal cumulative distribution function,

N

(
lStt + σ̄

√
Stt

2

)
−N

(
lStt − σ̄

√
Stt

2

)
=

1√
2π

∫ l
St
t +σ̄

√
Stt

2

l
St
t −σ̄

√
Stt

2

dz e−z
2/2 ≤

√
t

2π
σ̄
√
St , (11)

and because we bound from above the product
(
eϕtt−tσ̄

2ηtSt − 1
)
N
(
lStt + σ̄

√
Stt
2

)
with the (posi-

tive) maximums of both factors.
We bound the expected value of ct (St, 0) as

E[ct (St, 0)] ≤ E

[√
t

2π
σ̄
√
St

]
+ eϕtt − 1 =

√
t

2π
σ̄ E[

√
St] + o

(√
t
)

= o
(√

t
)

.

The first equality holds because eϕtt − 1 = O (ϕtt) = o
(√

t
)

and the last equality because E[
√
St]

goes to zero at short time (see Lemma A.5).

Summarizing, the upper bound to the ATS ATM price in (7) is o
(√

t
)
. From (9) we have that

the B&S price is O
(
σ̂t
√
t
)
. Thus,

σ̂0 = 0

Proposition 3.2.

For Case 2: −min
(
β, 1−β(1−α)

α

)
< δ < −max

(
β
2
, 1

2

)
,

then,
σ̂0 =∞ .

Proof.
We divide the proof in two sub-cases.

−β < δ < −1
2

& β ≤ 1

Consider the left hand side of equation (7). We compute the derivative of ct(z, y) w.r.t. z in y = 0.

∂ct(z, 0)

∂z
=− tσ̄2ηte

ϕtt−tσ̄2ηtzN

(
lzt + σ̄

√
zt

2

)
−
(
ϕt
√
t

2σ̄z3/2
+

√
tσ̄ηt

2
√
z

)(
eϕtt−tσ̄

2ηtzN ′
(
lzt + σ̄

√
zt

2

)
−N ′

(
lzt − σ̄

√
zt

2

))
+

√
tσ̄

4
√
z

(
eϕtt−tσ̄

2ηtzN ′
(
lzt + σ̄

√
zt

2

)
+N ′

(
lzt − σ̄

√
zt

2

))
. (12)
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At short time, for a given z ∈
(

0, ϕt
σ̄2ηt

)
, lzt =

√
tσ̄ηt√
z

(
−z + ϕt

σ̄2ηt

)
> 0. We observe that

eϕtt−tσ̄
2ηtz = 1 + o(1) and limt→0 l

z
t = ∞ due to Lemma A.6 point 1; then, N

(
lzt + σ̄

√
zt
2

)
=

1 + o(1). Thus,
∂ct(z, 0)

∂z
= −tσ̄2ηt + o(tηt) ,

because the first term goes to zero as tηt while the second and the third terms go to zero as
N ′(
√
t ηt) (i.e. as a negative exponential). Thus, for sufficiently small t, ct(z, 0) is decreasing

w.r.t. z in (0, ϕt
σ̄2ηt

). We emphasize that the right extreme of the interval is increasing to one for
sufficiently small t, see Lemma A.6 points 2 and 3.
Fix τ > 0 and S∗ ∈ (0, ϕτ

σ̄2ητ
); for any t < τ

E [ct(St, 0)]

≥ct(S∗, 0)P (St ≤ S∗)

≥

{
N

(
lS
∗

t + σ̄

√
S∗t

2

)
−N

(
lS
∗

t − σ̄
√
S∗t

2

)
+
(
ϕtt− tσ̄2ηtS

∗)N (lS∗t + σ̄

√
S∗t

2

)}
P (St ≤ S∗)

≥
(
ϕtt− tσ̄2ηtS

∗)N (lS∗t + σ̄

√
S∗t

2

)
P (St ≤ S∗) = O(tηt) .

The first inequality holds because ct(z, 0) is positive for any z ≥ 0 and because we bound from
below the expected value with its minimum in the interval (0, S∗) multiplied by the probability of
the interval, P (St ≤ S∗). The second inequality is due to the fact that ex ≥ x+1. Finally, the last
inequality holds because, by definition of the standard normal cumulative distribution function,

N

(
lzt + σ̄

√
zt

2

)
−N

(
lzt − σ̄

√
zt

2

)
≥ 0 , z ∈ R+ . (13)

Recall that N
(
lS
∗

t + σ̄
√
S∗t
2

)
= 1 + o(1); notice that P (St ≤ S∗) is constant for β = 1 and goes to

one, by Lemma A.4 point 1, for β < 1. This proves the last equality.

−1−β(1−α)

α
< δ < −β

2
& β > 1

It exits q such that (β − 1)/2 < q < −δ − 1/2. We bound the ATM put price (5) from below for
a sufficiently small t

E[pt (St, 0)]

≥E
[
1St≥1+tq

(
N

(
−lStt + σ̄

√
Stt

2

)
−N

(
−lStt − σ̄

√
Stt

2

)
+N

(
−lStt − σ̄

√
Stt

2

)(
1− eϕtt−tσ̄2ηtSt

))]
≥E
[
1St≥1+tqN

(
−lStt − σ̄

√
Stt

2

)(
1− eϕtt−tσ̄2ηtSt

)]
≥P(St ≥ 1 + tq)

1

3

(
1− eϕtt−tσ̄2ηt(1+tq)

)
=: Mt

(
t1+qσ̄2ηt + tσ̄4η2

t kt/2
)

(14)

≥Mt t
1+qσ̄2ηt .

The first inequality holds because pt (St, 0) is non negative and because we have added and sub-

tracted the term N
(
−lStt − σ̄

√
Stt
2

)
. The second because the difference between the standard

11



normal cumulative distribution functions is non negative, analogously to (13). The third because,
for St ∈ [1,∞), 1 − eϕtt−tσ̄2ηtSt is positive and non decreasing in St; moreover, for a sufficiently

small t, N
(
−lStt − σ̄

√
Stt
2

)
> 1/3 because

lim
t→0

N

(
−lzt − σ̄

√
zt

2

)
≥ 1/2 , z ∈ [1,∞) .

The quantity Mt is defined in (14). At short time Mt = 1/6 + o(1) because i) by Lemma B.3,
P(St ≥ 1 + tq) goes to 1/2 as t goes to zero, and ii) by Lemma A.6 point 1,

1− eϕtt−tσ̄2ηt(1+tq) =
(
t1+qσ̄2ηt + tσ̄4η2

t kt/2
)

(1 + o(1)) .

Notice that t1+qηt goes to zero slower than
√
t.

Case 2: −min
(
β, 1−β(1−α)

α

)
< δ < −max

(
β
2
, 1
2

)
Summing up, for both sub-cases, −β < δ < −1/2 & β ≤ 1 and −1−β(1−α)

α
< δ < −β/2 & β > 1,

the lower bounds on the ATM option prices in (7) and (8) go to zero slower than
√
t.

Moreover, from (9) we have that the B&S price is O
(
σ̂t
√
t
)
. Then,

σ̂0 =∞

Proposition 3.3.
For Case 3: δ ≥ −β/2 & β ≥ 1, with the exception of the point {δ = −1/2, β = 1} ,
then,

σ̂0 is finite .

Proof.
We split the proof in three sub-cases. For each sub-case we build an upper and a lower bound, on
the model price, and we demonstrate that both bounds are O

(√
t
)

and then, that σ̂0 is finite.

−β
2
<= δ < −1

2
& β > 1

Upper bound.

Let us split the expected value of the ATS call in two parts

E[ct (St, 0)]

= E

[
N

(
lStt + σ̄

√
Stt

2

)
−N

(
lStt − σ̄

√
Stt

2

)]
+ E

[
N

(
lStt + σ̄

√
Stt

2

)(
eϕtt−tσ̄

2ηtSt − 1
)]

=: A1(t) + A2(t) .

We prove that both parts are bounded from above by quantities O
(√

t
)
. The first expected value

is s.t.

A1(t) ≤
√

t

2π
σ̄ E[

√
St] = O

(√
t
)

, (15)

12



where the inequality holds true because of (11) and
√
t E[
√
St] = O

(√
t
)

because, by Lemma
A.5 point 1, E[

√
St] goes to one as t goes to zero.

Let us study the term A2(t).

A2(t) < E

[(
eϕtt−tσ̄

2ηtSt − 1
)
1St<ϕt/(σ̄2ηt)

]
=

√
t

2πkt

∫ ϕt/(σ̄2ηt)

0

dze
− t(z−1)2

2kt

(
eϕtt−tσ̄

2ηtz − 1
)

(16)

+

∫ ϕt/(σ̄2ηt)

0

dz

(
PSt(z)−

√
t

2πkt
e
− t(z−1)2

2kt

)(
eϕtt−tσ̄

2ηtz − 1
)

(17)

≤ O
(
tδ+(β+1)/2

)
,

where PSt is the law of St. The first inequality is true because the quantity inside the expected

value is positive on
(

0, ϕt
σ̄2ηt

)
and negative elsewhere. The equality is obtained by adding and

subtrancting the same expected value for a Gaussian random variable. We prove the second
inequality in two steps, showing that both (16) and (17) are bounded by O

(
tδ+(β+1)/2

)
.

First, we consider (16)√
t

2πkt

∫ ϕt/(σ̄2ηt)

0

dz e
− t(z−1)2

2kt

(
eϕtt−tσ̄

2ηtz − 1
)

=
1√
2π

∫
At
dw e−

w2

2

(
eϕtt−tσ̄

2ηt(1+w
√
kt/t) − 1

)
(18)

≤ 1√
2π

∫
At
dw e−

w2

2 e−
√
tσ̄2ηt

√
ktw − 1√

2π

∫
At
dw e−

w2

2 (19)

=etσ̄
4η2
t kt/2N

(√
tσ̄2ηt

√
kt +

(
ϕt
σ̄2ηt

− 1

)√
t

kt

)
−N

((
ϕt
σ̄2ηt

− 1

)√
t

kt

)
+ o

(
tδ+(β+1)/2

)
(20)

=

√
t

2π
σ̄2ηt

√
kt +

tσ̄4η2
t kt

4
+ o

(
tδ+(β+1)/2

)
= O

(
tδ+(β+1)/2

)
, (21)

where At ≡
{
w ∈ R : −

√
t
kt
< w < (ϕt/(σ̄

2ηt)− 1)
√

t
kt

}
. Equality (18) is due to a change of

the integration variable w := (z − 1)/
√
kt/t, equality (19) to the fact that, by Lemma A.6,

eϕtt−tσ̄
2ηt < 1. Equality (20) to a change of variable m := w +

√
tσ̄2ηt

√
kt and to the fact that

both N
(
−
√

t
kt

)
and N

(√
tσ̄2ηt

√
kt −

√
t
kt

)
go to zero faster that any power of t. Finally, (21)

holds true because of the Taylor expansion of N in zero.

13



Second, we consider (17)∣∣∣∣∣
∫ ϕt/(σ̄2ηt)

0

dz

(
PSt(z)−

√
t

2πkt
e
− t(z−1)2

2kt

)(
eϕtt−tσ̄

2ηtz − 1
)∣∣∣∣∣

≤
∣∣∣∣−(P(St < 0)−N

(
−
√

t

kt

))(
eϕtt − 1

)∣∣∣∣
+

∣∣∣∣∣
∫ ϕt/(σ̄2ηt)

0

dz

(
P(St < z)−N

(
(z − 1)

√
t

kt

))
σ̄2 ηt t e

ϕtt−tσ̄2ηtz

∣∣∣∣∣
≤2

2− α
1− α

√
kt
t

(
eϕtt − 1

)
= O

(
tδ+(β+1)/2

)
.

The first inequality is due to integration by part and to the triangular inequality. The second
inequality is a consequence of Jensen inequality and of Lemma B.3.

Lower bound.

As discussed in the proof of Proposition 3.2, for a sufficiently small t, ct (St, 0) is decreasing for

St ∈
(

0, ϕt
σ̄2ηt

)
hence,

E [ct(St, 0)] ≥ E
[
ct(St, 0)1St≤ϕt/(σ̄2ηt)

]
≥ ct

(
ϕt
σ̄2ηt

, 0

)
P

(
St ≤

ϕt
σ̄2ηt

)
=

√
ϕtt

8πηt
+ o

(√
t
)

= O
(√

t
)

.

The first inequality is because ct (St, 0) is non negative and the second is because we bound the
expected value from below with the minimum of ct (St, 0) multiplied by the probability of the

interval
(

0, ϕt
σ̄2ηt

)
. The equality holds because, by Lemma B.3,

lim
t→0

P

(
St ≤

ϕt
σ̄2ηt

)
=

1

2
,

and

ct

(
ϕt
σ̄2ηt

, 0

)
= N

(√
ϕt t

4σ̄ηt

)
−N

(
−
√

ϕt t

4σ̄ηt

)
=

√
ϕt t

2πσ̄ηt
+ o

(√
t
)

,

with
√

ϕt t
8πσ̄ηt

= O
(√

t
)
.

δ = −1
2

& β > 1

Upper bound.

The upper bound on the ATS call price is the same to the one of the previous sub-case
−β/2 ≤ δ < −1/2, β > 1.

Lower bound.

14



We bound the put price from below. It exist H > 1 such that for a sufficiently small t

E [pt (St, 0)] ≥ E
[
pt (St, 0) 1St∈[1,H]

]
≥ E

[(
N

(
−lStt + σ̄

√
Stt

2

)
−N

(
−lStt − σ̄

√
Stt

2

))
1St∈[1,H]

]
≥ E

[
N ′
(
−lStt +

σ̄
√
Stt

2

)
σ̄
√
Stt 1St∈[1,H]

]
≥ N ′

(
σ̄η̄ − ϕt

√
t

σ̄
+
σ̄
√
t

2

)
σ̄
√
t P(St ∈ [1, H]) =

√
t

8π
σ̄ + o

(√
t
)

.

The first inequality holds because pt(St, 0) is non negative. The second because eϕtt−tσ̄
2ηtSt < 1 in

[1, H]. The third inequality is due to the fact that we bound from above the difference of the two
standard normal cumulative distribution functions with the standard normal law evaluated in the
maximum between the two (positive) arguments multiplied by the (positive) difference of the two
arguments. The last inequality holds because, by Lemma B.4, it exists H > 1 s.t. the quantity
inside the expected value is increasing in [1, H] for a sufficiently small t. The equality is because,
by Lemma B.3, P(St ∈ [1, H]) goes to 1/2 as t goes to zero and

lim
t→0

N ′
(
σ̄η̄ − ϕt

√
t

σ̄
+
σ̄
√
t

2

)
=

1√
2π

.

−1
2
< δ ≤ 0 & β ≥ 1

Upper bound.

We can bound ct(St, 0) from above as in (10).
We bound the ATS option price as

E[ct(St, 0)] ≤ E

[
1√
2π
σ̄
√
Stt

]
+ eϕtt − 1 ≤ O

(√
t
)

. (22)

The last inequality holds because, by Jensen inequality with concave function
√
∗, E[

√
St] ≤√

E[St] = 1 and because, by Lemma A.6 point 1, eϕtt − 1 = o
(√

t
)
.

Lower bound.

To bound ct (z, 0) from below we have to study its derivative in (12). Notice that, at short time,
lzt = O

(√
tηt
)

= o(1), due to Lemma A.6 point 1, and to the fact that δ > −1/2. Moreover,

again due to Lemma A.6 point 1, eϕtt−tσ̄
2ηtz = 1 +O (tηt). Then, we have

i) The negative first term at short time is o
(√

t
)

−tσ̄2ηte
ϕtt−tσ̄2ηtzN

(
lzt + σ̄

√
zt

2

)
= O (tηt) = o

(√
t
)

.

ii) The second term at short time is o
(√

t
)

(
ϕt
√
t

2σ̄z3/2
+

√
tσ̄ηt

2
√
z

)(
eϕtt−tσ̄

2ηtzN ′
(
lzt + σ̄

√
zt

2

)
−N ′

(
lzt − σ̄

√
zt

2

))
=O

(√
tηt

) e−(lzt )2/2−σ̄2zt/8

√
2π

(
(1 +O(tηt))

(
1− lzt σ̄

√
zt

2
+ o(tηt)

)
−
(

1 +
lzt σ̄
√
zt

2
+ o(tηt)

))
=O(η2

t t
3/2) = o

(√
t
)

,
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because

N ′
(
lzt ± σ̄

√
zt

2

)
= e−(lzt )2/2−σ̄2zt/8

(
1 +± l

z
t σ̄
√
zt

2
+ o(tηt)

)
.

iii) The positive third term at short time is O
(√

t
)

√
tσ̄

4
√
z

(
eϕtt−tσ̄

2ηtzN ′
(
lzt + σ̄

√
zt

2

)
+N ′

(
lzt − σ̄

√
zt

2

))
=

√
t

8π z
σ̄ + o

(√
t
)

.

Summarizing, the leading term in (12), at short time, is the third one, which is positive. Hence,
for a fixed z > 0 and for sufficiently small t, ct(z, 0) is increasing; thus, we can bound the expected
value from below

E [ct (St, 0)] ≥ E
[
ct (St, 0) 1St∈[1/2,3/2]

]
> ct

(
1

2
, 0

)
P

(
St ∈

[
1

2
,
3

2

])
>

{
N

(
l
1/2
t + σ̄

√
t

8

)
−N

(
l
1/2
t − σ̄

√
t

8

)}
P

(
St ∈

[
1

2
,
3

2

])

> N ′

(
l
1/2
t + σ̄

√
t

8

)
σ̄

√
t

2
P

(
St ∈

[
1

2
,
3

2

])

=

(
σ̄

√
t

4π
+ o

(√
t
))

P

(
St ∈

[
1

2
,
3

2

])
= O

(√
t
)

.

The first inequality holds because ct(St, 0) is non negative. The second because, for a sufficiently
small t, ct(St, 0) is increasing. The third is true because, for sufficiently small t, eϕtt−tσ̄

2ηt/2 > 1,
by Lemma A.6 point 3. The forth is due to the fact that the difference of the standard normal
cumulative distribution functions can be bounded from below by the (positive) maximum of the
two arguments multiplied by the (positive) difference of the two arguments. The equality is due
to the fact that P

(
St ∈

[
1
2
, 3

2

])
is constant if β = 1 and goes to 1 at short time if β > 1 because,

by Lemma A.4 point 2, St goes to one in distribution at short time.

Case 3: −β
2
≤ δ ≤ 0 & β ≥ 1 \

{
δ = −1

2
, β = 1

}
Summing up, in all sub-cases the upper bound and the lower bounds of the ATS option prices in
(7) and (8) are O(

√
t). Moreover, from (9) we have that the B&S price is O

(
σ̂t
√
t
)
. Thus,

σ̂0 is finite

Proposition 3.4.
For Cases 4 and 5: δ = −1

2
& β ≤ 1,

then,
σ̂0 is finite .

Proof.

δ = −1
2

& β ≤ 1
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Upper bound.

We can bound ct(St, 0) from above as in (10).
We bound the ATS option price as

E[ct(St, 0)] ≤ E

[
1√
2π
σ̄
√
Stt

]
+ eϕtt − 1 = O

(√
t
)

. (23)

The equality holds because, by Jensen inequality with concave function
√
∗, E[
√
St] ≤

√
E[St] = 1

and because, by Lemma A.6 point 1, eϕtt − 1 = O
(√

t
)
.

Lower bound.

We bound ct (St, 0) from below as:

ct (St, 0) ≥ 1St<ϕt/(σ̄2ηt)

(
N

(
lStt + σ̄

√
Stt

2

)
−N

(
lStt − σ̄

√
Stt

2

)
+
(
ϕtt− tσ̄2ηtSt

)
/2

)
≥ 1St<ϕt/(σ̄2ηt)

(
ϕtt− tσ̄2ηtSt

)
/2 .

The first inequality is because ct (St, 0) is non negative, because ex ≥ x + 1, and because the
normal cumulative distribution function evaluated in a positive quantity is above 1/2. The second
holds because the difference between the two normal cumulative function is non negative.

E[ct (St, 0)] ≥ E
[
1St<ϕt/(σ̄2ηt)(ϕtt− tσ̄2ηtSt)/2

]
=
√
t σ̄2 η̄/2 E

[
1St<ϕt/(σ̄2ηt)(−St + ϕt/(σ̄

2ηt))
]

= O
(√

t
)
.

The last equality is due to the fact that

E
[
1St<ϕt/(σ̄2ηt)(−St + ϕt/(σ̄

2ηt))
]

= ϕt/(σ̄
2ηt)P(St < ϕt/(σ̄

2ηt))− E[St1St<ϕt/(σ̄2ηt)] (24)

can be bounded from below with a positive constant for sufficiently small t. This fact can be
deduced for β ≤ 1. We prove it separately for the two cases β < 1 and β = 1.
For β < 1, let us observe that, at short time,

0 ≤ E[St1St<ϕt/(σ̄2ηt)] ≤ E[St1St<1] = o(1) ,

because, by point 2 of Lemma A.6, ϕt/(σ̄
2ηt) < 1 and, by definition of convergence in dis-

tribution, at short time E[St1St<1] = o(1), because, by Lemma A.4 point 1, St converges in
distribution to 0. Moreover, at short time, ϕt/(σ̄

2ηt)P(St < ϕt/(σ̄
2ηt)) = 1 + o(1), by point 1 of

Lemma A.6 and by point 1 of Lemma A.4.
For β = 1, we remind that the law of St does not depend from t and we observe that the limit of
(24) for t that goes to zero is positive

lim
t→0

{
ϕt/(σ̄

2ηt)P(St < ϕt/(σ̄
2ηt))− E[St1St<ϕt/(σ̄2ηt)]

}
= P(St < 1)− E[St1St<1] > 0 ,

where the last inequality is due to the fact that St has unitary mean and finite variance k̄.

Summarizing, as in Proposition 3.3 the upper and lower bounds of the ATM prices in (7) are
O
(√

t
)
. From (9) we have that the B&S price is O

(
σ̂t
√
t
)
. Thus,

σ̂0 is finite
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In the propositions above we have proven that σ̂0 is finite only in Cases 3, 4 and 5. Only for these
Cases we study the short time skew in the next Section.

4 Short time skew

In this Section, we focus on the skew term ξ̂t when σ̂0 is finite. We obtain an expression of ξ̂t in
Lemma 4.1 and study its short time limit.
In the introduction, we have mentioned that the implied volatility skew observed in the equity
market is negative and it goes to zero as one over the square root of t. This behavior is equivalent
to a negative and finite ξ̂0. In this Section, we prove that ξ̂0 is zero in Case 3 (Proposition 4.2)
and is negative and finite in Cases 4 and 5 (Proposition 4.3). Moreover, Case 5 identifies the
unique parameters’ set where ξ̂0 can be a generic value that it is possible to calibrate from market
data.

Lemma 4.1. The skew term ξ̂t is

ξ̂t =
N
(
− σ̂t

√
t

2

)
− E

[
N
(
lStt − σ̄

√
Stt
2

)]
N ′
(
− σ̂t

√
t

2

) . (25)

Proof. Applying the implicit function theorem to the implied volatility equation for the call option
(7) we obtain the derivative of the implied volatility w.r.t y

∂It(y)

∂y
=

∂E[ct(St,y)]
∂y

− ∂cBSt (It(y),y)

∂y

∂cBSt (It(y),y)

∂It(y)

.

We prove the thesis by computing the three partial derivatives separately. Notice that it is possible
to exchange the expected value w.r.t. St and the derivative w.r.t. y using the Leibniz rule because
the law of St does not depend from y.

1.

∂E [ct (St, y)]

∂y
= −
√
te
√
t y
E

[
N

(
− y

σ̄
√
St

+ lStt − σ̄
√
Stt

2

)]
.

2.
∂cBSt (It(y), y)

∂y
= −
√
te
√
t yN

(
− y

It(y)
− It(y)

√
t

2

)
.

3.
∂cBSt (It(y), y)

∂It(y)
=
√
te
√
t yN ′

(
− y

It(y)
− It(y)

√
t

2

)
.

By substituting y = 0 and reminding that It(0) = σ̂t we get (25)

Notice that, in Cases 3, 4 and 5, where σ̂0 is finite, the denominator of ξ̂t in (25), N ′
(
− σ̂t

√
t

2

)
,

goes to 1√
2π

at short time. To study the short time behavior of ξ̂t it is sufficient to consider only

the numerator of equation (25)

N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

)]
.
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Proposition 4.2.
For Case 3: −β/2 ≤ δ ≤ 0 & β ≥ 1, with the exception of the point {δ = −1/2, β = 1},

ξ̂0 = 0 .

Proof.
We divide the proof in two sub-cases.

−1
2
< δ ≤ 0 & β = 1

We study the numerator of ξ̂t in (25).

lim
t→0

{
N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

)]
= 0

}
.

We compute the limit thanks to the dominated convergence theorem because the law of St does
not depend on t and lzt = o(1) in this sub-case.

−β
2
≤ δ ≤ 0 & β > 1

We want to prove that

E

[
N

(
lStt − σ̄

√
Stt

2

)]
=

1

2
+ o (1) . (26)

The equality holds because

E

[
N

(
lStt − σ̄

√
Stt

2

)]
=

√
t

2πkt

∫ ∞
0

dz e
−t (z−1)2

2kt N

(
lzt − σ̄

√
zt

2

)
(27)

+

∫ ∞
0

dz

(
PSt(z)−

√
t

2πkt
e
−t (z−1)2

2kt

)
N

(
lzt − σ̄

√
zt

2

)
, (28)

where PSt is the distribution of St. We study the quantities in (27) and (28) separately. First, we
consider (27)

lim
t→0

√
t

2πkt

∫ ∞
0

dz e
−t (z−1)2

2kt N

(
lzt − σ̄

√
zt

2

)

= lim
t→0

1√
2π

∫ ∞
−
√
kt
t

dw e−
w2

2 N

 ϕt
√
t

σ̄
√

1 + w
√
kt/t
− σ̄ηt

√
t
(

1 + w
√
kt/t

)
− σ̄

√
t
(

1 + w
√
kt/t

)
2


= lim

t→0

1√
2π

∫ ∞
−
√
kt
t

dw e−
w2

2 N
(
σ̄ηt
√
t
(

1− w
√
kt/t/2

)
− σ̄ηt

√
t
(

1 + w
√
kt/t/2

)
+O

(√
t
))

=
1√
2π

lim
t→0

∫
R

dw e−
w2

2

{
N
(
−σ̄η̄

√
k̄tδ+β/2w

)
− 1

2
+

1

2

}
=

1

2
.
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The first equality is obtained via a change of the integration variable (w :=
√
t(z − 1)/

√
kt). The

second equality is due to the asymptotic of ϕtt in Lemma A.6 point 1. The third equality holds be-

cause of the dominated convergence theorem. The last is trivial because
[
N
(
−η̄
√
k̄tδ+β/2w

)
− 1/2

]
is odd w.r.t. w.
Second, we consider (28)∫ ∞

0

dz

(
PSt(z)−

√
t

2πkt
e
−t (z−1)2

2kt

)
N

(
lzt − σ̄

√
zt

2

)
=

(
P(St < 0))−N

(
−
√

t

kt

))
+

∫ ∞
0

dz

(
P(St < z)−N

(
(z − 1)

√
t

kt

))
N ′
(
lzt − σ̄

√
zt

2

)(
ϕt
√
t

2σ̄ z3/2
+
σ̄
√
tηt + σ̄

√
t/2

2
√
z

)
= o(1) .

The first equality is due to integration by part. The second to the fact that i) P(St < 0) = 0,

ii) N
(
−
√

t
kt

)
go to zero as t goes to zero, and iii)

∣∣∣∣∫ ∞
0

dz

(
N

(
(z − 1)

√
t

kt

)
− P(St < z)

)
N ′
(
lzt − σ̄

√
zt

2

)(
ϕt
√
t

2σ̄ z3/2
+
σ̄
√
tηt + σ̄

√
t/2

2
√
z

)∣∣∣∣
≤2− α

1− α

√
kt
t

∫ ∞
0

dzN ′
(
lzt − σ̄

√
zt

2

)(
ϕt
√
t

2σ̄ z3/2
+
σ̄
√
tηt + σ̄

√
t/2

2
√
z

)
=

2− α
1− α

√
kt
t

= O

(√
kt
t

)
,

where the inequality is due to Lemma B.3 and the first equality is due the fact that

∫ ∞
0

dzN ′
(
lzt − σ̄

√
zt

2

)(
ϕt
√
t

2σ̄ z3/2
+
σ̄
√
tηt + σ̄

√
t/2

2
√
z

)
= − N

(
lzt − σ̄

√
zt

2

)∣∣∣∣∞
0

= 1 .

This proves (26).
It is now possible to compute the short time limit of the skew term

lim
t→0

{(
N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

))]}
= 0

Proposition 4.3.
For Case 4: δ = −1/2 and β < 1,

ξ̂0 = −
√
π

2
.

For Case 5: δ = −1/2 and β = 1

ξ̂0 = −
√
π

2
E [erf (σ̄η̄ r(St))] , (29)

where r(St) :=
√

2(1/
√
St −

√
St).
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Proof.
We prove separately the two Cases.

δ = −1
2

& β < 1

Thanks to Lemma B.2 the limit of the numerator of ξ̂t in (25) can be computed simply,

lim
t→0

(
N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

)])
= −1

2
.

Thus,

ξ̂0 = lim
t→0

N
(
− σ̂t

√
t

2

)
− E

[
N
(
lStt − σ̄

√
Stt
2

)]
N ′
(
− σ̂t

√
t

2

) = −
√
π

2
.

δ = −1
2

& β = 1

We compute the limit in t = 0 of the numerator of ξ̂t in (25)

lim
t→0

(
N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

)])
= E

[
1/2−N

(
σ̄η̄
(

1/
√
St −

√
St

))]
We obtain the equality thanks to the dominated convergence theorem because the law of St is
constant in time. Recall that erf(z) = 2N(z/

√
2)− 1, substituting in (25), obtain (29)

Eq.(29) is one of the major results of the paper. Let us stop and comment.
First, let us notice that ξ̂0 in Eq.(29), is a generic function of the couple of positive parameters σ̄η̄
and k̄; in particular the erf function is odd in its argument and r : R+ → R. Moreover ξ̂0 depends
on the parameter α ∈ [0, 1) that selects the truncated additive process of interest.

Second,

−
√
π

2
≤ ξ̂0 ≤ 0

i.e. the minimum value for the skew term is −
√
π/2, its value in Case 4.

To show the upper bound, we can rewrite in (29)

E [erf (σ̄η̄ d(St))] =

∫ ∞
0

dz PSt(z) erf (σ̄η̄ r(z)) =

∫ 1

0

dz

(
PSt(z)− PSt(z)

z2

)
erf (σ̄η̄ r(z)) .

where the second equality is due to the change of variable w = 1/z, and second to r(1/w) = −r(w)
and erf(z) is odd. We also observe that erf (σ̄η̄ r(z)) > 0 in (0, 1).
For the two cases where the distribution of St is known analytically α = 0 (VG) and α = 1/2
(NIG), we can prove that the skew term ξ̂0 in Eq.(29) is negative for non zero σ̄η̄ and k̄ (for
the expression of the Gamma and Inverse Gaussian laws see, e.g., Cont and Tankov 2003, Ch.4,

p.128). In both cases we can prove that
(
PSt(z)− PSt (1/z)

z2

)
> 0 in (0, 1); recall that PSt(z) does

not depend from time because β = 1.
In the α = 0 case, St has the law of a Gamma random variable

PSt(z)− PSt(1/z)

z2
=

1

k̄1/k̄Γ(1/k̄)
z1/k̄e−z/k̄

(
1− e−1/k̄ (1/z−z)

z2/k̄

)
> 0 ,
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where the inequality is true in (0, 1) because 1− e−1/k̄ (1/z−z)

z2/k̄ > 0 or equivalently 1/z−z+2 ln z > 0.
The last inequality is trivial ∀z ∈ (0, 1), because it is equal to zero for z = 1 and its derivative is
negative.
In the α = 1/2 case, St has the law of an Inverse Gaussian random variable

PSt(z)− PSt(1/z)

z2
=

1√
2πk̄

e−r(z)
2/(2k̄)

(
1

z3/2
− 1√

z

)
> 0 ,

where the inequality is true because 1
z3/2 − 1√

z
> 0,∀z ∈ (0, 1).

In all other cases, we compute numerically the skew term ξ̂0 for different admissible values of
k̄, σ̄η̄ ∈ R+ and α ∈ [0, 1), by means of inversion of the characteristic function of St, showing that
it is either negative or equal to zero. In Figure 3, we plot the numerical estimation of the skew
term for σ̄η̄ and k̄ below 3 (an interval in line with the situation generally observed in market
data) and for a grid of four values for α (α = 0, 1/4, 1/2, 3/4); in all cases the skew term ξ̂0 looks
rather similar: equal to zero on the boundaries (k̄ = 0 and σ̄η̄ = 0), a negative quantity in all
other cases and a decreasing function w.r.t. both k̄ and σ̄η̄. In Figure 4, we plot also the skew
term for the same four values of α, varying k̄ with σ̄η̄ = 1 (on the left) and varying σ̄η̄ for k̄ = 1
(on the right): all plots look rather similar with a decreasing ξ̂0.

Figure 3: ATS skew term ξ̂0 for {δ = −1/2, β = 1}. We report ξ̂0 for four values of α: α = 0 in the
upper left corner, α = 1/4 in the upper right corner, α = 1/2 in the lower left corner and α = 3/4 in the
lower right corner. We plot the skew for k̄, σ̄η̄ ∈ [0, 3]. In all cases the skew is negative and decreasing
w.r.t. k̄ and σ̄η̄.
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Figure 4: ATS skew term ξ̂0 for δ = −1/2 and β = 1 for α = 0 (blue dashed line), α = 1/4 (red stars),
α = 1/2 (orange circles) and, α = 3/4 (violet line). We plot the skew for k̄ ∈ [0, 3] with σ̄η̄ = 1 (on the
left) and for σ̄η̄ ∈ [0, 3] for k̄ = 1 (on the right). In all cases the skew is decreasing w.r.t. k̄ and σ̄η̄.

Finally, let us emphasize that the limits of ξ̂0 are zero for σ̄η̄ and k̄ that go to zero.
On the one hand, recall that the law of St, PSt , does not depend of σ̄η̄. By the dominated
convergence theorem with bound PSt , we have that

lim
σ̄η̄→0

E [erf (σ̄η̄ r(St))] = 0 .

On the other hand, by Kijima (1997, Th. B.9, p. 308), we have that St converges in distribution
to 1 as k̄ goes to zero because

lim
k̄→0
Lt(u; kt, α) = lim

t→0
e

1
k̄

1−α
α {1−(1+ u k̄

(1−α))
α} = e−u .

We are computing the expected value of a bounded function of St that does not depend of k̄.
Thus, by definition of convergence in distribution,

lim
k̄→0

E

[
erf

(
σ̄η̄
√

2
(

1/
√
St −

√
St

))]
= 0 .

5 Main Result

In the following theorem we present the main results of this paper. We prove that only in the
Case β = 1 and δ = −1

2
the ATS has a positive and constant short time implied volatility σ̂0 and

a negative and constant short time skew ξ̂0. We point out that a finite skew w.r.t. y correspond
to a skew that goes as 1√

t
at short time w.r.t. the log-moneyness x. The proof is based on the

propositions of Sections 3 and 4.

Theorem 5.1. The ATS short time implied volatility behave as is described in table 1.
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Proof. We prove that, for Case 1, σ̂0 = 0 in Proposition 3.1. We prove that, for Case 2, σ̂0 =∞
in Proposition 3.2. We prove that, for Cases 3, 4 and 5, σ̂0 is finite in Proposition 3.3 and
Proposition 3.4.
Moreover, in Proposition 4.2 we demonstrate that, for Case 3, ξ̂0 = 0 and in Proposition 4.3
we demonstrate that, for Case 4, ξ̂0 = −

√
π
2

and that, for Case 5, ξ̂0 is negative and finite.

6 Conclusions

In this paper, we have analyzed the short time-to-maturity smile of a family of pure jumps additive
processes and we have shown that it reproduces accurately the equity market one.

An excellent calibration of the equity implied volatility surface has been achieved by the ATS, a
class of power-law scaling additive processes. This class of processes builds upon the power-law
scaling parameters β, related to the variance of jumps, and δ related to the smile asymmetry.
The behavior of the short time ATM implied volatility (σ̂t) and skew (related to ξ̂t) is investigated
over the range of ATS admissible scaling parameters (cf. Theorem 2.2). To study the behavior
of the two functions of time, we derive an extension of the Hull and White formula for this class
of additive processes (Hull and White 1987, Eq. (7)) in equations (4, 5). We use this formula to
constructs some relevant bounds on σ̂t. We obtain an expression of ξ̂t, cf. equation (25), via the
implicit function theorem.
In Theorem 5.1 we prove that only the scaling parameters observed in market data, δ = −1/2
and β = 1, are compatible with a positive and bounded short time implied volatility and a short
time skew that is proportional to the inverse of the square root of the time-to-maturity. Hence, it
is possible to build a pure jumps process that, differently from the Lévy case, presents not only a
finite short time implied volatility but also a power scaling skew.
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option prices of exponential lévy models, Mathematical Finance, 26 (3), 516–557.
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Sato, K.I., 1999. Lévy processes and infinitely divisible distributions, Cambridge University Press.

Tankov, P., 2011. Pricing and hedging in exponential lévy models: review of recent results, Paris-
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Notation

Symbol Description

Bt discount factor between date 0 and t
B(R) Borel sigma algebra on R

cBSt (It(y), y)) B&S call option price
ct(St, t) quantity inside the ATS call expected value
Ct (x) call option price at value date with maturity t and moneyness x
{ft}t≥0 Random variable that models the forward exponent
Ft price at time 0 of a Forward contract with maturity t

{St}t≥0 sequence of positive random variable
It(x) B&S implied volatility with maturity t
It(y) B&S implied volatility w.r.t. y
1∗ indicator function of the set ∗
kt variance of jumps of ATS
k̄ constant part of variance of jumps of ATS kt
K option strike price
lzt quantity defined in equation (6)

N(∗) standard normal cumulative distribution function evaluated in ∗
N ′(∗) standard normal probability density function evaluated in ∗

pBSt (It(y), y)) B&S put option price
pt(St, t) quantity inside the ATS put expected value
P (y, t) put option price at value date with maturity t and moneyness y

t time-to-maturity
Wt Brownian motion
x option moneyness, x = log K

Ft

y moneyness degree, x = y
√
t

α tempered stable parameter of ATS
β scaling parameter of kt

Γ(∗) gamma function evaluated in ∗
δ scaling parameter of ηt
ηt skew parameter of ATS
η̄ constant part of the skew parameter of ATS

ξ̂t implied volatility skew term

ξ̂0 skew term, limit for t that goes to zero of ξ̂t
σ̄ constant diffusion parameter of ATS
σ̂t ATM implied volatility, equal to It(0)
σ̂0 limit for t that goes to zero of σ̂t
PSt probability density function of St
ϕt deterministic drift term of ATS
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Appendices

A Basic properties

We report some useful results for the proofs in Section 3. In the following lemmas we consider St
of Definition 2.1 with Laplace transform Lt(u; kt; α), at a given time t > 0. The proofs that
follow are for the α ∈ (0, 1) case. Similar proofs hold in the α = 0 case.

Lemma A.1. Let s ∈ (0, 1), then

E [Sst ] =

∫ ∞
0

Lt(u; kt; α)− 1

Γ(−s)us+1
du , (30)

where Γ is the Gamma function.

Proof. By elementary calculus and Fubini’s Theorem (see, e.g., Urbanik 1993, Lemma 4, p.325)

Lemma A.2. Let n be a positive integer, then

E[S−nt ] = Γ(n)−1

∫ ∞
0

un−1Lt(u; kt; α)du .

Proof. By elementary calculus and Fubini’s Theorem (see, e.g., Cressie et al. 1981, Ch.2, p.148)

Lemma A.3.

1. For all t > 0, c ≥ 1 and u ≥ 0

1− Lt(u; kt, α) ≤ 1− e−cu .

2. If β ≥ 1, Lt(u; kt, α) is non decreasing in t.

Proof. Let us observe that

1− Lt(u; kt, α) ≤ 1− e−cu

t

kt

1− α
α

{(
1 +

u kt
(1− α)t

)α
− 1

}
− cu ≤ 0 .

The last inequality is true for any c ≥ 1 and u ≥ 0 because the left hand side is null in u = 0 and
its first order derivative w.r.t. u is negative:

1(
1 + ktu

t(1−α)

)1−α − c < 0 .

This proves the first point.

We demonstrate that the logarithm of Lt(u; kt, α) is not decreasing. Consider a positive t,
s ∈ (0, t) and

h(u; s, t) :=
t

kt

{
1−

(
1 +

u kt
(1− α)t

)α}
− s

ks

{
1−

(
1 +

u ks
(1− α)s

)α}
.
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We observe that h(0; s, t) = 0 and the first order derivative

∂h(u; s, t)

∂u
=

1(
1 + ksu

s(1−α)

)1−α −
1(

1 + ktu
t(1−α)

)1−α

is non negative ∀u > 0 because kt/t is non decreasing in t, if β > 1, and is constant in t, if β = 1.
Thus, h(u; s, t) ≥ 0, ∀u ≥ 0, and Lt(u; kt, α) is non decreasing w.r.t. t. This proves point 2

Lemma A.4.

1. If β < 1 St goes to zero in distribution as t goes to zero.

2. If β > 1 St goes to one in distribution as t goes to zero.

3. If β = 1 the distribution of St does not depend from t.

Proof. Recall that convergence in the Laplace transform implies convergence in distribution (see,
e.g., Kijima 1997, Th.B.9, p.308).
We compute the limit of St Laplace transform for β < 1. By using the fact that kt/t goes to
infinity as t goes to zero we obtain

lim
t→0
Lt(u; kt, α) = lim

t→0
e
t
kt

1−α
α {1−(1+

u kt
(1−α)t)

α} = 1 .

Thus, St converges in distribution to the constant zero. This proves point 1.

We compute the limit of St Laplace transform for β > 1. By using the fact that kt/t goes to zero
as t goes to zero we obtain

lim
t→0
Lt(u; kt, α) = lim

t→0
e
t
kt

1−α
α {1−(1+

u kt
(1−α)t)

α} = e−u .

Thus, St converges in distribution to the constant one. This proves point 2.

Point 3 follows from the fact that, if β = 1, Lt(u; kt, α) is constant in t

Lemma A.5.

lim
t→0

E[
√
St] =


0 if β < 1

1 if β > 1

D if β = 1

, (31)

where D is a positive constant.

Proof. Recall that St is a positive r.v. and E[St] = 1. Then, its moment of order 1/2 is finite. By
Lemma A.1

E

[√
St

]
=

∫ ∞
0

Lt(u; kt, α)− 1

Γ(−1/2)u3/2
du ,

where −1
Γ(−1/2)

≈ 3.45. By Lemma A.3 point 1 with c = 2, the positive quantity (1−Lt(u; kt, α))/u3/2

is lower or equal than (1− e−2u)/u3/2. Thus,

0 ≤ E

[√
St

]
≤ −1

Γ(−1/2)

∫ ∞
0

1− e−2u

u3/2
du =

−4

Γ(−1/2)

∫ ∞
0

e−2u

u1/2
du =

√
2 , (32)
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where the first equality is obtained from integration by parts and the second from the definition
of Γ. Inequality (32) has two consequences. First, if β = 1,

lim
t→0

E[
√
St] = E[

√
St] := D ≤

√
2 , (33)

because, by Lemma A.4 point 3, E[
√
St] is constant w.r.t. to time. Second, we can apply the

dominated convergence theorem to (31) for all values of β. Recall that the limits for t that goes
to zero of Lt(u; kt, α) for β < 1 and for β > 1 are computed in the proof of Lemma A.4.
If β < 1

lim
t→0

E[
√
St] = lim

t→0

−1

Γ(−1/2)

∫ ∞
0

1− Lt(u; kt, α)

u3/2
du = 0 . (34)

If β > 1

lim
t→0

E[
√
St] = lim

t→0

−1

Γ(−1/2)

∫ ∞
0

1− Lt(u; kt, α)

Γ(−1/2)u3/2
du

=
−1

Γ(−1/2)

∫ ∞
0

1− e−u

u3/2
du =

−2

Γ(−1/2)

∫ ∞
0

e−u

u1/2
du = 1 , (35)

where the third equality is obtained from integration by parts and the third by the definition of
Γ. Equalities (33), (34) and (35) prove the thesis

Lemma A.6.
Consider ϕt in (2). For every δ and β in the additive process boundaries of Theorem 2.2

1.
ϕtt = tσ̄2ηt − tσ̄4η2

t kt/2 +O
(
tη3
t k

2
t

)
, (36)

where the second term tσ̄4η2
t kt/2 goes to zero faster than tσ̄2ηt as t goes to zero.

2.
ϕt
σ̄2ηt

≤ 1 .

3.
lim
t→0

ϕt
σ̄2ηt

= 1 , for δ > −min(1, β) .

Proof. We prove the asymptotic expansion (36). In the additive process boundaries of Theorem
2.2 at least either β = δ = 0 or δ > −min(1, β). In the former case (36) is trivial. In the latter,
thanks to (2), both tηt = t1+δη̄ and ηtkt = tβ+δη̄k̄ go to zero as t goes to zero. Using the Taylor
series expansion

ϕtt =
t(1− α)

kt

{
σ̄2 ηt kt
1− α

− σ̄4 η2
t k

2
t

2(1− α)
+O

(
η3
t k

3
t

)}
= t σ̄2 ηt − t σ̄4 η2

t kt/2 +O
(
t η3

t κ
2
t

)
.

This proves point 1.
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We prove that ϕt/(σ̄
2ηt) ≤ 1. We substitute the definition of ϕt in (2), for α > 0, in (36) and we

get

ϕt/(σ̄
2ηt) =

(1− α)

ασ̄2ηtkt

((
1 +

σ̄2ηtkt
1− α

)α
− 1

)
≤ 1 . (37)

We define z := σ̄2ηtkt
1−α . Then, (37) is equivalent to

(1 + z)α ≤ 1 + αz ,

which is a well known inequality. This proves point 2.

Point 3 is straightforward, given point 1, because, if δ > −min(1, β), ηtkt goes to zero as t goes
to zero

B Short time limits

Lemma B.1. Consider a family of positive random variables Xt s.t. limt→0Xt = X in distribution
and a sequence of functions gt(z) ≥ 0 and uniformly bounded s.t. limt→0 gt(z) = g(z).
If ∃ τ > 0 s.t. for t ∈ (0, τ)

i) gt(z) is Lipschitz continuous with bounded Lipschitz constant,

ii) |gt(z)− g(z)| < h(z) with limz→∞ h(z) = 0,

then
lim
t→0

E[gt(Xt)] = E[g(X)] .

Proof. It is possible to apply the Ascoli-Arzelá theorem (see, e.g.,, Rudin 1976, Th.7.25, p.158)
on every compact set [0, K], K > 0, because a sequence of Lipschitz continuous functions with
bounded Lipschitz constant is equicontinous on any compact set. Thus, a sub-sequence of gt(z)
converges uniformly to g(z) in any [0, K]. For every ε > 0, ∃K s.t.

lim
t→0

E[|gt(Xt)− g(Xt)|] = lim
t→0

E [|gt(Xt)− g(Xt)| 1Xt<K ] + lim
t→0

E [|gt(Xt)− g(Xt)| 1Xt>K ] < ε .

The first expected value goes to zero because gt(z) converges uniformly to g(z) on [0, K], as proven
above via Ascoli-Arzelá theorem. It exists K s.t. it is possible to bound the second with ε because
h(z) goes to zero as z goes to infinity.
Moreover, g(z) is bounded because it is the limit of a uniformly bounded sequence and

lim
t→0

E [|g(Xt)− g(X)|] = 0 .

by definition of convergence in distribution, because g(z) is bounded. We have that

0 ≤ lim
t→0

E[|gt(Xt)− g(X)|] ≤ lim
t→0
{E[|gt(Xt)− g(Xt)|] + E [|g(Xt)− g(X)|]} = 0 ,

this proves the thesis
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Lemma B.2. For δ = −1/2, let Xt be a sequence of positive random variable s.t. Xt → X in
distribution for t that goes to zero.
Then,

lim
t→0

E

[
N
(
σ̄η̄
(
−
√
Xt + ϕt/(σ̄

2
√
Xtηt)

)
− σ̄

√
tXt/2

)]
= E

[
N(σ̄η̄(−

√
X + 1/

√
X))

]
.

Proof. Define

gt(z) := N
(
σ̄η̄
(
−
√
z + ϕt/(σ̄

2
√
zηt)

)
− σ̄
√
t z/2

)
and g(z) := N(σ̄η̄(−

√
z + 1/

√
z)) .

We emphasize that gt(z) is uniformly bounded by one and gt(z) converges point-wise to g(z)
because, thanks to Lemma A.6 point 3, limt→0 ϕt/(σ̄

2ηt) = 1.
We prove that ∃ τ ∈ (0, 1) s.t. the derivative of gt(z) is uniformly bounded, if t ∈ (0, τ). Fix
τ ∈ (0, 1) s.t. 

ϕτ
σ̄2 ητ

> 2
3

σ̄η̄

σ̄η̄ + σ̄
√
τ/2

> 3
4

.

The following hold for t < τ ,∣∣∣∣∂gt∂z
∣∣∣∣

= N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄

2ηt
√
z)
)
− σ̄
√
zt/2

) ∣∣∣σ̄η̄ (−1/(2
√
z)− ϕt/(2σ̄2ηt z

3/2)
)
− σ̄
√
t/(4
√
z)
∣∣∣

= N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄

2ηt
√
z)
)
− σ̄
√
zt/2

)(
1 + ϕt/(σ̄

2ηtz) +
√
t/(2η̄)

)
σ̄η̄/

(
2
√
z
)

≤ N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄

2ηt
√
z)
)
− σ̄
√
zt/2

)
(1 + 1/z + 1/(2η̄)) σ̄η̄/

(
2
√
z
)

(38)

≤
[

1√
2π
1D2 +N ′

(
σ̄η̄
(
−
√
z + 2/(3

√
z)
)
− τ σ̄

√
z/2
)
1D1 +N ′

(
σ̄η̄
(
−
√
z + 1/

√
z
))
1D3

]
·

(1 + 1/z + 1/(2η̄)) σ̄η̄/
(
2
√
z
)

:= M(z) . (39)

Inequality (38) holds because, by Lemma A.6 point 2, ϕt/(σ̄
2ηt) < 1 and τ ∈ (0, 1). Let us

observe that (38) is the product of positive quantities. In (39) we bound from above only the first
factor, the only one that still depends from t. Inequality (39) is deduced by dividing the domain
of z ∈ R+ in the three sets D1 ≡ (0, 1/2], D2 ≡ (1/2, 3/2] and D3 ≡ (3/2,∞).
For z ∈ D2, we bound the first factor with its maximum 1√

2π
.

For z ∈ D1, we observe that for t < τ

σ̄η̄
(
−
√
z + ϕt/(σ̄

2ηt
√
z)
)
− σ̄
√
zt/2 > σ̄η̄

(
−
√
z + 2/(3

√
z)
)
− τ σ̄

√
z/2 > 0 .

Hence, because N ′ is a decreasing function of its argument in R
+,

N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄

2ηt
√
z)
)
− σ̄
√
zt/2

)
≤ N ′

(
σ̄η̄
(
−
√
z + 2/(3

√
z)
)
− τ σ̄

√
z/2
)
, z ∈ D1 .

Finally, for z ∈ D3

σ̄η̄
(
−
√
z + ϕt/(σ̄

2ηt
√
z)
)
− σ̄
√
tz/2 < σ̄η̄

(
−
√
z + 1/

√
z
)
< 0 . (40)

32



Thus, because N ′ is an increasing function of its argument in R
−

N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄

2ηt
√
z)
)
− σ̄
√
tz/2

)
< N ′

(
σ̄η̄
(
−
√
z + 1/

√
z
))

, z ∈ D3 .

Notice that M(z) is positive and bounded on R
+; this implies that the derivatives of gt(z) is

uniformly bounded. Thus, the sequence gt(z) is Lipschitz continuous in z with bounded Lipschitz
constant on (0, τ).
Moreover, for t < τ < 1 we have that

|gt(z)− g(z)| ≤ 1z∈(0,1] +N ′
(
σ̄η̄
(
−
√
z + 1/

√
z
))

(σ̄
√
zt/2 + σ̄η̄(1− ϕt/(σ̄2ηt))/

√
z)1z∈(1,∞)

≤ 1z∈(0,1] +N ′
(
σ̄η̄
(
−
√
z + 1/

√
z
))

(σ̄
√
z/2 + σ̄η̄/

√
z)1z∈(1,∞) := h(z) .

In the first inequality we divide the domain of z ∈ R+ in two sets, D1 ≡ (0, 1] and D2 ≡ (1,∞).
In the first domain the difference is bounded by one. In the second set, notice that (40) is still
valid for z > 1; then, the difference is lower than N ′ computed on the max of the arguments of N
multiplied by the positive difference of the arguments of N . The second inequality holds because
ϕt/(σ̄

2ηt) is positive and t < 1. We observe that h(z) goes to zero as z goes to infinity.
Notice that Xt converges to X in distribution, gt(z) is a sequence of positive function uniformly
bounded, Lipschitz continuous with bounded Lipschitz constant on (0, τ), and limz→∞ h(z)=0.
Thus, we prove the thesis via Lemma B.1

Lemma B.3. For t > 0,

sup
z

∣∣∣∣P(St < z)−N
(

(z − 1)

√
t

kt

)∣∣∣∣ ≤ 2− α
1− α

√
kt
t
, (41)

where St is the random variable of Definition 2.1 with Laplace transform Lt (u; kt, α).
Moreover, if β > 1,

1.

lim
t→0

P(St < 1) = lim
t→0

P(St ≥ 1) = lim
t→0

P

(
St ≤

ϕt
σ̄2ηt

)
=

1

2
.

2.

lim
t→0

P(St ≤ 1− tq) =


1/2 if q > β−1

2

N(−1/
√
k̄) if q = β−1

2

0 if q < β−1
2

.

3.

lim
t→0

P(St ≤ 1 + tq) =


1/2 if q > β−1

2

N(1/
√
k̄) if q = β−1

2

1 if q < β−1
2

.

Proof. We use an approach similar to Küchler and Tappe (2013, Th.4.7, p.4271). Given t > 0,
n ∈ N we define X i

t := Sit − 1 for i = 1, 2, ..., n with Sit independent positive random variables
with Laplace transform Lt (u; kt n, α). The standard deviation of Sit is Σn

t :=
√
ktn/t. We define

Qn
t :=

∑n
i=1X

i
t/(
√
nΣn

t ). Notice that Qn
t +
√
n/Σn

t has the same law of
√
t/ktSt by identity in

Laplace transform because

E

[
e−u(P

n
t +
√
n/Σnt )

]
= E

[
e−u

∑n
i=1 S

i
t/(
√
nΣnt )

]
= e

∑n
i=1

t(1−α)
ktαn

(
1−
(

1+
u
√
kt√

t(1−α)

)α)
= E

[
e
−u
√

t
kt
St

]
.
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Thus,
√
kt/t Q

n
t + 1 is equal in distribution to St. Moreover, for any t > 0

sup
z
|P(Qn

t < z)−N(z)| ≤
E

[
|X i

t |
3
]

(Σn
t )3√n

<
E [(Sit)

3] + 1

(Σn
t )3
√
n

= t3/2
2 + 3ktn

t
+

(2−α)k2
tn

2

(1−α)t2

k
3/2
t n2

=
2− α
1− α

√
kt
t

+O

(
1

n

)
.

The first inequality holds thanks to the Berry-Esseen theorem (see, e.g., Durrett 2019, Th.3.4.17,
p.136). The first equality is obtained by substituting the third moment of Sit and in the last
equality we emphasize the leading term in 1/n. Thus, ∀ ε > 0 it exists n such that

sup
z
|P(Qn

t < z)−N(z)| < 2− α
1− α

√
kt
t

+ ε .

By definition of cumulative distribution function, we get (41).
Equation (41) allow us to prove the limits of the probability.

1.
P(St ≤ 1) = N(0) +O

(
t(β−1)/2

)
= 1/2 +O

(
t(β−1)/2

)
,

where the first equality is due to (41) and second term goes to zero because β > 1. Moreover,

P

(
St ≤

ϕt
σ̄2ηt

)
= N

(
ϕt − σ̄2ηt
σ̄2ηt

√
t

kt

)
+O

(
t(β−1)/2

)
,

where limt→0N
(
ϕt−σ̄2ηt
σ̄2ηt

√
t
kt

)
= 1

2
thanks to Lemma A.6 point 3 observing that(

ϕt
σ̄2ηt

− 1

)√
t

kt
=
√
tσ̄2ηt

√
kt +O

(
t2δ+(3β+1)/2

)
= o(1) ,

because, in the additive process boundaries, for β > 1, δ + (β + 1)/2 > δ + 1 > 0.

2.

P(St ≤ 1− tq) = N

(
−tq
√

t

kt

)
+O

(
t(β−1)/2

)
,

where N
(
−tq
√

t
kt

)
goes to 1/2 if q > (β − 1)/2, to N(−1/(

√
k̄) if q = (β − 1)/2, and to 0

if q < (β − 1)/2. We emphasize that the second term goes to zero as O
(
t(β−1)/2

)
.

3.

P(St ≤ 1 + tq) = N

(
tq
√

t

kt

)
+O

(
t(β−1)/2

)
,

where N
(
tq
√

t
kt

)
goes to 1/2 if q > (β − 1)/2, to N(1/(

√
k̄) if q = (β − 1)/2, and to 1 if

q < (β − 1)/2. We emphasize that the second term goes to zero as O
(
t(β−1)/2

)
.

Lemma B.4. If δ = −1/2, ∃H > 1 s.t.

m(z) := N ′
(
−lzt +

σ̄
√
zt

2

)
σ̄
√
z , z > 0 ,

is increasing for z ∈ [1, H] for sufficiently small t, where lzt is the quantity defined in equation (6).
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Proof. We compute the derivative w.r.t. z of m(z) and study its sign at short time.

∂m(z)

∂z
=

∂N ′
(
−lzt+ σ̄

√
zt

2

)
σ̄
√
z

∂z

N ′
(
σ̄η̄
(√

z − ϕt
σ̄2ηt
√
z

)
+ σ̄

√
tz

2

)
σ̄

=
1

2
√
z
− 2

(
σ̄η̄

(√
z − ϕt

σ̄2
√
zηt

)
+
σ̄
√
tz

2

)(
σ̄η̄

(
1

2
+

ϕt
2σ̄2ηtz

)
+
σ̄
√
t

4

)
=

1

z3/2

(
z

2
− z2

(
σ̄η̄ + σ̄

√
t

2

)2

+ σ̄2η̄2 ϕ2
t

σ̄4η2
t

)
.

The derivative is positive if

0 < z <
1/2 +

√
1/4 + 4

(
σ̄η̄ + σ̄

√
t

2

)2

σ̄2η̄2 ϕt
σ̄4η2

t

2
(
σ̄η̄ + σ̄

√
t

2

)2 .

Notice that ∃ τ and H > 1 such that for every t < τ the derivative is positive if z < H because
for sufficiently small time

1/2 +

√
1/4 + 4

(
σ̄η̄ + σ̄

√
t

2

)2

σ̄2η̄2 ϕ2
t

σ̄4η2
t

2
(
σ̄η̄ + σ̄

√
t

2

)2 >
1/2

2(σ̄η̄ + σ̄
√
t/2)

+
η̄

η̄ +
√
t/2

ϕt
σ̄2ηt

> H > 1 ,

where the first inequality is obtained by bounding from below 1/4 with 0 inside the square root
and the second holds because, by Lemma A.6 point 3,

lim
t→0

1/2

2(σ̄η̄ + σ̄
√
t/2)

+
η̄

η̄ +
√
t/2

ϕt
σ̄2ηt

=
1

4σ̄4η̄2
+ 1 .

Thus, m(z) is increasing in [1,H] for sufficiently small t
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