The Averaging Method - Lecture 3

Douglas Duarte Novaes

July 16, 2021

Departamento de Matemática

Instituto de Matemática, Estatística e Computação Científica (IMECC) Universidade Estadual de Campinas (UNICAMP), São Paulo, Brasil ddnovaes@unicamp.br www.ime.unicamp.br/~ddnovaes

1. Averaging Method for Studying Periodic Solutions of Discontinuous Piecewise Smooth Differential Equations

Let $D \subset \mathbb{R}^d$ open bounded subset and $\mathbb{S}^1 = \mathbb{R}/T$ for some T > 0. Consider a finite sequence of open disjoints subset $(S_j) \subset \mathbb{S}^1 \times D$, $j = 1, \ldots, N$. Assume that the boundaries of S_j are piecewise C^k embedded hypersurfaces. Denote by Σ the union of all boundaries. Notice that the union of Σ with all S_j 's cover $\mathbb{S}^1 \times D$.

For $i \in \{1, \ldots, k\}$, let

$$F_i(t,x) = \sum_{j=1}^N \chi_{\overline{S}_j}(t,x) F_i^j(t,x) \text{ and } R(t,x,\varepsilon) = \sum_{j=1}^N \chi_{\overline{S}_j}(t,x) R^j(t,x),$$

where, for $A \subset \mathbb{S}^1 \times D$, $\chi_A(t, x)$ denotes the characteristic function

$$\chi_A(t,x) = \begin{cases} 1 & \text{if } (t,x) \in A, \\ 0 & \text{if } (t,x) \notin A. \end{cases}$$

Here, the functions $F_i^j : \mathbb{R} \times \overline{D} \to \mathbb{R}^n$, for i = 1, ..., k, and j = 1, ..., N, and $R : \mathbb{R} \times \overline{D} \times [0, \varepsilon_0] \to \mathbb{R}^n$ are assumed to be *T*-periodic in the variable *t* and smooth.

Consider regularly perturbed piecewise smooth non-autonomous differential equations given in the following **standard form**:

$$x' = \sum_{i=1}^{k} \varepsilon F_i(t, x) + \varepsilon^{k+1} R(t, x, \varepsilon), \ (t, x, \varepsilon) \in \mathbb{R} \times D \times (-\varepsilon_0, \varepsilon_0).$$
(1)

Crossing Hypothesis (CH) \exists an open bounded subset $C \subset D$ such that, for $\varepsilon = 0$, $\{(t, z) : t \in \mathbb{S}^1\} \cap \Sigma \subset \Sigma^c$.

1.1. First-Order Averaging Method

$$\mathbf{f}_1(z) = \int_0^T F_1(t, z) dt$$

Under hypothesis (CH), one can see that \mathbf{f}_1 is smooth on C. Then, the following result holds.

Theorem 1 ([15]). In addition to hypothesis (CH), assume that $z^* \in C$ is a simple zero of \mathbf{f}_1 . Then, for $|\varepsilon| \neq 0$ sufficiently small, the differential equation (1) admits a unique *T*-periodic solution $\varphi(t,\varepsilon)$ such that $\varphi(\cdot,\varepsilon) \to z^*$ as $\varepsilon \to 0$.

1.2. Example - Discontinuous Perturbed Harmonic Oscillator

$$x'' + x + b_{\varepsilon}x' = g_{\varepsilon}(x, x'),$$
where $b_{\varepsilon} = \varepsilon b_1 + \varepsilon^2 O(1) > 0$ and $g_{\varepsilon}(x, y) = \varepsilon g_1(x, y) + \varepsilon^2 O(1).$

$$(2)$$

Standard Form: $\frac{dr}{d\theta} = \varepsilon \sin(\theta) (b_1 r \sin(\theta) - g_1 (r \cos(\theta), r \sin(\theta)) + \varepsilon^2 O(1)$ First-Order Averaged Function: $\mathbf{f}_1(r) = b_1 \pi r - \int_0^{2\pi} \sin(\theta) g_1 (r \cos(\theta), r \sin(\theta)) d\theta$

Examplo 1.

$$g_1(x,y) = \begin{cases} \beta^+, & y \ge 0\\ \beta^-, & y \le 0 \end{cases} = \frac{\beta^+ + \beta^-}{2} + \operatorname{sign}(y) \frac{\beta^+ - \beta^-}{2}.$$

$$\frac{dr}{d\theta} = \varepsilon \begin{cases} \sin(\theta) \left(b_1 r \sin(\theta) - \beta^+ \right) + O(\varepsilon), & \theta \in [0, \pi/2] \\ \sin(\theta) \left(b_1 r \sin(\theta) - \beta^- \right) + O(\varepsilon), & \theta \in [\pi/2, 2\pi] \end{cases}$$
(3)

$$\mathbf{f}_1(r) = b_1 \pi r - \int_0^{2\pi} \sin(\theta) g_1(r\cos(\theta), r\sin(\theta)) d\theta$$
$$= b_1 \pi r - \int_0^{\pi} \beta^+ \sin(\theta) d\theta - \int_{\pi}^{2\pi} \beta^- \sin(\theta) d\theta$$
$$= -2(\beta^+ - \beta^-) + b_1 \pi r$$

Assuming $b_1(\beta^+ - \beta^-) > 0$, the equation $f_1(r) = 0$ a unique positive solution $r^* = \frac{2(\beta^+ - \beta^-)}{b_1 \pi}$. Hence, the **First-Order Averaging Method**, Theorem 1, provides the existence of a periodic solution $r(\theta, \varepsilon)$ of differential equation (3) such that $r(\cdot, \varepsilon) \to r^*$ as $\varepsilon \to 0$. Accordingly, one gets the existence of a periodic solution $(x(t, \varepsilon), x'(t, \varepsilon))$ of the differential equation (2) satisfying $|(x(\cdot, \varepsilon), x'(\cdot, \varepsilon))| \to r^*$ as $\varepsilon \to 0$.

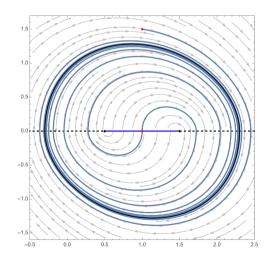


FIGURE 1. Forward trajectories of the differential system $(x', y') = (y, -x + \varepsilon y + \varepsilon g_1(x, y))$ for $\beta^+ = 3$, $\beta^- = 1$, and $\varepsilon = 0.5$. The red dots indicate the initial conditions (1, 0) and (1, 1.5). The blue segment indicates an escaping region and the dashed black segment a crossing region. The black closed curve indicates a limit cycle.

D. D. Novaes

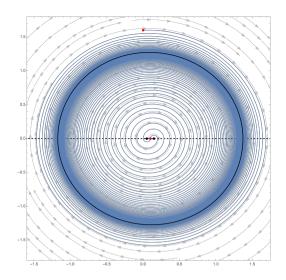


FIGURE 2. Forward trajectories of the differential system $(x', y') = (y, -x + \varepsilon y + \varepsilon g_1(x, y))$ for $\beta^+ = 3$, $\beta^- = 1$, and $\varepsilon = 0.05$ The red dots indicate the initial conditions (0.1, 0) and (0.1, 1.5). The blue segment indicates an escaping region and the dashed black segment a crossing region. The black closed curve indicates a limit cycle.

1.3. Second-Order Averaging Method

$$\mathbf{f}_{2}(z) = \int_{0}^{T} \left[F_{2}(t,z) + \partial_{x} F_{1}(t,z) y_{1}(t,z) \right] dt, \text{ where} \\ \partial_{x} F_{1}(t,z) = \sum_{j=1}^{N} \chi_{\overline{S}_{j}}(t,z) \partial_{x} F_{1}^{j}(t,z), \text{ and } y_{1}(t,z) = \int_{0}^{t} F_{1}(s,z) ds.$$

Theorem 2 ([15]). Suppose that $\mathbf{f}_1 = 0$. In addition to the hypothesis (HC) assume that

Hb2
$$(0, y_1(t, z)) \in T_{(t,z)}\Sigma$$
 for $(t, z) \in \Sigma$

Assume that $z^* \in D$ is a simple zero of \mathbf{f}_2 . Then, for $|\varepsilon| \neq 0$ sufficiently small, the differential equation (1) admits a unique T-periodic solution $\varphi(t,\varepsilon)$ such that $\varphi(\cdot,\varepsilon) \to z^*$ as $\varepsilon \to 0$.

Planar system with rays of discontinuity!

Discontinuity only in the time variable!

 \implies

Hypothesis Hb2 holds!

1.4. Example - Discontinuous Perturbation of Quadratic Homogeneous Center

Consider the following families of quadratic homogeneous center (see [11]):

$$Z_{1}: \begin{cases} \dot{x} = -y + x^{2} - y^{2}, \\ \dot{y} = x + 2xy. \end{cases} \quad Z_{2}: \begin{cases} \dot{x} = -y + x^{2}, \\ \dot{y} = x + xy. \end{cases} \quad Z_{3}: \begin{cases} \dot{x} = -y - \frac{4}{3}x^{2}, \\ \dot{y} = x - \frac{16}{3}xy. \end{cases}$$
(4)

FIGURE 3. Phase portrait of systems Z_1 , Z_2 , and Z_3 from left to right.

In [12] it was studied bifurcation of limit cycles from such families when they are perturbed by discontinuous piecewise quadratic polynomial systems as follows

$$Z_{i,\varepsilon} = \begin{cases} Z_i(x,y) + \varepsilon \left(P_1^+(x,y), Q_1^+(x,y)\right) + \varepsilon^2 \left(P_2^+(x,y), Q_2^+(x,y)\right), \text{ if } h(x,y) > 0, \\ Z_i(x,y) + \varepsilon \left(P_1^-(x,y), Q_1^-(x,y)\right) + \varepsilon^2 \left(P_2^-(x,y), Q_2^-(x,y)\right), \text{ if } h(x,y) < 0, \end{cases}$$
(5)

where ε is sufficiently small, $h(x, y) = y - \tan(\alpha)x$, and, for k = 1, 2,

$$P_k^{\pm}(x,y) = \sum_{j=0}^2 \sum_{i=0}^j p_{k,i,j-i}^{\pm} x^i y^{j-i} \quad \text{and} \quad Q_k^{\pm}(x,y) = \sum_{j=0}^2 \sum_{i=0}^j q_{k,i,j-i}^{\pm} x^i y^{j-i}.$$

In what follows we shall study the family S_2 for $\Sigma = \{y + \sqrt{3}x = 0\}$, that is, $\alpha = \pi/3$. Step 1 (Standard Form): Write system $Z_{2,\varepsilon}$ in the standard form of the averaging method.

Assume $P_k^{\pm}(0,0) = Q_k^{\pm}(0,0)$. The linearization stated in [11] of Z_2 is given by

$$x = -\frac{u}{v-1}$$
 and $y = -\frac{v}{v-1}$,

which has the following rational inverse

$$u = \frac{x}{y+1}$$
 and $v = \frac{y}{y+1}$

Notice that straight lines passing through the origin are fixed by the transformation. With this change of variables the differential equation Z_2 becomes the linear center (u', v') = (-v, u). Then, composing with the polar coordinates $u = r \cos \theta$ and $v = -r \sin \theta$ and taking θ as the new time variable, $Z_{2,\varepsilon}$ becomes

$$r'(\theta) = \frac{\dot{r}}{\dot{\theta}} = \varepsilon \frac{\mathcal{A}_1(r\cos\theta, r\sin\theta)}{1 + r\cos\theta} + \varepsilon^2 \frac{\mathcal{A}_2(r\cos\theta, r\sin\theta)}{1 + r\cos\theta} + \mathcal{O}(\varepsilon^3), \tag{6}$$

where $C(\theta, r) =$ and A_i , i = 1, 2, are piecewise functions

$$\mathcal{A}_{i}(r\cos\theta, r\sin\theta) = \begin{cases} \mathcal{A}_{i}^{+}(r\cos\theta, r\sin\theta) & \text{if } 0 < \theta \le \pi/3, \\ \mathcal{A}_{i}^{-}(r\cos\theta, r\sin\theta) & \text{if } \pi/3 < \theta \le 4\pi/3, \\ \mathcal{A}_{i}^{+}(r\cos\theta, r\sin\theta) & \text{if } 4\pi/3 < \theta \le 2\pi, \end{cases}$$
(7)

being \mathcal{A}_i^{\pm} polynomials of degree 3.

Step 2 (First Order Analysis): Compute f_1 and its zeros.

$$\mathbf{f}_1(r) = \int_0^{2\pi} \frac{\mathcal{A}_1(r\cos\theta, r\sin\theta)}{1 + r\cos\theta} d\theta = \sum_{n=0}^7 k_n f_n$$

with

$$\begin{split} f_{0}(\rho) &= \frac{\rho}{\rho^{2}+1}, \quad f_{1}(\rho) = \frac{\rho^{2}}{(\rho^{2}+1)^{2}}, \quad f_{2}(\rho) = \frac{\rho^{3}}{(\rho^{2}+1)^{2}}, \quad f_{4}(\rho) = \frac{\rho^{5}}{(\rho^{2}+1)^{2}}, \\ f_{3}(\rho) &= \frac{5(54733\rho^{4}+94452\rho^{2}+54733)}{6912(\rho^{2}+1)^{2}} + \frac{15(1366\rho^{4}+1847\rho^{2}+1366)}{1024(\rho^{2}+1)\rho} \widetilde{L}(\rho) \\ &+ \frac{25\sqrt{3}(236\rho^{4}-247\rho^{2}+236)(\rho^{2}-1)^{2}}{82944\rho(\rho^{2}+1)^{3}} \widetilde{\phi}(\rho), \\ f_{5}(\rho) &= -\frac{35(21835\rho^{4}+40596\rho^{2}+21835)}{6912(\rho^{2}+1)^{2}} - \frac{105(550\rho^{4}+797\rho^{2}+550)}{1024(\rho^{2}+1)\rho} \widetilde{L}(\rho) \\ &- \frac{175\sqrt{3}(176\rho^{4}-181\rho^{2}+176)(\rho^{2}-1)^{2}}{82944\rho(\rho^{2}+1)^{3}} \widetilde{\phi}(\rho), \\ f_{6}(\rho) &= \frac{245(227\rho^{4}+444\rho^{2}+227)}{768(\rho^{2}+1)^{2}} + \frac{315(122\rho^{4}+181\rho^{2}+122)}{1024(\rho^{2}+1)\rho} \widetilde{L}(\rho) \\ &+ \frac{35\sqrt{3}(116\rho^{4}-115\rho^{2}+116)(\rho^{2}-1)^{2}}{9216\rho(\rho^{2}+1)^{3}} \widetilde{\phi}(\rho), \\ f_{7}(\rho) &= -\frac{385(77\rho^{4}+156\rho^{2}+77)}{2304(\rho^{2}+1)^{2}} - \frac{3465(2\rho^{4}+3\rho^{2}+2)}{1024(\rho^{2}+1)\rho} \widetilde{L}(\rho) \\ &- \frac{385\sqrt{3}(8\rho^{4}-7\rho^{2}+8)(\rho^{2}-1)^{2}}{27648\rho(\rho^{2}+1)^{3}} \widetilde{\phi}(\rho). \end{split}$$

Here,

$$\widetilde{L}(\rho) = \log\left(\frac{\rho^2 - \rho + 1}{\rho^2 + \rho + 1}\right), \quad \widetilde{\phi}(\rho) = \phi\left(\frac{2\rho}{\rho^2 + 1}, \frac{2\pi}{3}\right) - \phi\left(-\frac{2\rho}{\rho^2 + 1}, \frac{2\pi}{3}\right)$$

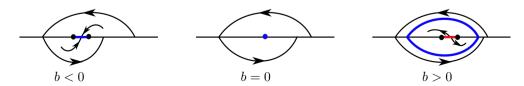
where

$$\phi(r,\theta) = \frac{1}{\sqrt{1-r^2}} \left(\theta - 2 \arctan\left(\sqrt{\frac{1-r}{1+r}} \tan\left(\frac{\theta}{2}\right)\right) \right),$$

and the parameters k_n , n = 0, 1, ..., 7, are arbitrary real numbers which depends on the parameters of perturbations. One can see that $f_i(\rho) = \rho^{i+1} + O(\rho^{i+2})$ for i = 0, 1, ..., 5, $f_6(\rho) = \rho^8 + O(\rho^9)$, and $f_7(\rho) = \rho^{10} + O(\rho^{11})$. Therefore, the ordered set of functions $[f_0, f_1, ..., f_7]$ is an ECT-system in a neighborhood of the origin (see [14, 19]).

Averaging Method \Rightarrow 7 limit cycles.

Pseudo-Hopf-Bifurcation



Averaging Method + Pseudo-Hopf Bifurcation $\Rightarrow 8$ limit cycles.

Step 3 (Second Order Analysis): Assume minimal conditions in order that $\mathbf{f}_1 = 0$ and compute \mathbf{f}_2 and its zeros.

Notice that $\mathbf{f}_1 = 0$ if, and only if, $k_i = 0$ for $i \in \{0, \dots, 7\}$.

$$\mathbf{f}_{2}(r) = \overbrace{\int_{0}^{2\pi} \frac{\mathcal{A}_{2}(r\cos\theta, r\sin\theta)}{1 + r\cos\theta} d\theta}^{I_{1}} + \underbrace{\int_{0}^{2\pi} \left[\frac{\partial}{\partial r} \left(\frac{\mathcal{A}_{1}(r\cos\theta, r\sin\theta)}{1 + r\cos\theta} \right) \int_{0}^{\theta} \frac{\mathcal{A}_{1}(r\cos\alpha, r\sin\alpha)}{1 + r\cos\alpha} d\alpha \right] d\theta}_{I_{2}}$$

An expression for I_1 can be obtained analogously to \mathbf{f}_1 . However, in order to obtain I_2 , one must integrate rational functions with denominators $(1 + r \cos \theta)^2$ and numerators depending on

$$\{r,\theta,\cos\theta,\sin\theta,\lambda(r,-\pi/3+\theta),\lambda(r,-4\pi/3+\theta),\phi(r,-\pi/3+\theta),\phi(r,-4\pi/3+\theta)\},$$

where ϕ is defined above and $\lambda(r, \theta) = \log(1 + r \cos \theta)$. Unfortunately, I_2 cannot be explicitly computed.

Computing the Taylor series of the integrand around r = 0 and then integrating one can see that

$$\mathbf{f}_2(r) = \sum_{i=1}^n f_i r^i + O(r^{n+1}).$$

The coefficients f_i 's depend linearly on $\{p_{2,i,j}^{\pm}, q_{2,i,j}^{\pm}\}$ and quadratically on $\{p_{1,i,j}^{\pm}, q_{1,i,j}^{\pm}\}$.

Poincaré-Miranda Theorem provides a transformation on the parameters such that

$$\mathbf{f}_2(r) = \sum_{i=1}^{16} d_i r^i + O(r^{n+1}),$$

where (d_1, \ldots, d_{16}) depends onto the parameters of perturbation in a surjective way around the origin $0 \in \mathbb{R}^{16}$.

Averaging Method \Rightarrow 15 limit cycles.

Averaging Method + Pseudo-Hopf Bifurcation \Rightarrow 16 limit cycles.

I THINK THAT IT IS THE BEST LOWER BOUND SO FAR

for the number of limit cycles in piecewise quadratic polynomial differential systems with two zones separated by a straight line.

1.5. Higher Order Averaging Method

Let $0 = \alpha_0 < \alpha_1 < \cdots < \alpha_{N-1} < \alpha_N = T$. Consider the differential equation

$$x'(\theta) = \sum_{i=1}^{k} \varepsilon^{i} F_{i}(\theta, x) + \varepsilon^{k+1} R(\theta, x, \varepsilon), \qquad (9)$$

where

$$F_{i}(\theta, x) = \sum_{j=0}^{N} \chi_{[\alpha_{j}, \alpha_{j+1}]}(\theta) F_{i}^{j}(\theta, x), \quad i = 0, 1, ..., k, \quad \text{and}$$

$$R(\theta, x, \varepsilon) = \sum_{j=0}^{N} \chi_{[\alpha_{j}, \alpha_{j+1}]}(\theta) R^{j}(\theta, x, \varepsilon).$$
(10)

Here, the functions $F_i^j : \mathbb{R} \times \overline{D} \to \mathbb{R}^n$, for i = 1, ..., k, and j = 1, ..., N, and $R : \mathbb{R} \times \overline{D} \times [0, \varepsilon_0] \to \mathbb{R}^n$ are assumed to be *T*-periodic in the variable *t* and smooth. Notice that $\Sigma = (\{\theta = 0\} \cup \{\theta = \alpha_1\} \cup \cdots \cup \{\theta = \alpha_{N-1}\}) \cap \mathbb{S}^1 \times D$ is the discontinuity set of (9).

Theorem 3 ([18]). Denote $\mathbf{f}_0 = 0$. Let $\ell \in \{1, \ldots, k\}$ satisfying $\mathbf{f}_0 = \cdots \mathbf{f}_{\ell-1} = 0$ and $\mathbf{f}_{\ell} \neq 0$. Assume that $z^* \in D$ is a simple zero of \mathbf{f}_{ℓ} . Then, for $|\varepsilon| \neq 0$ sufficiently small, the differential equation (9) admits a unique T-periodic solution $\varphi(t, \varepsilon)$ such that $\varphi(\cdot, \varepsilon) \to z^*$ as $\varepsilon \to 0$.

2. Bifurcation Functions in a More General Case

Consider, an open subset $D \subset \mathbb{R}^d$, $\mathbb{S}^1 = \mathbb{R}/T$ for some period T > 0, and k a positive integer. Let $\theta_j : D \to \mathbb{S}^1$, $j \in \{1, \ldots, N\}$, be C^{k-1} functions such that $\theta_0(x) \equiv 0 < \theta_1(x) < \cdots < \theta_N(x) < T \equiv \theta_{N+1}(x)$, for all $x \in D$. Under the assumptions above, we consider the following piecewise smooth differential system

$$\dot{x} = \sum_{i=1}^{k} \varepsilon^{i} F_{i}(t, x) + \varepsilon^{k+1} R(t, x, \varepsilon), \qquad (11)$$

where where

$$F_{i}(t,x) = \sum_{j=0}^{N} \chi_{[\theta_{j}(x),\theta_{j+1}(x)]}(t) F_{i}^{j}(t,x) = \begin{cases} F_{i}^{0}(t,x), & 0 < t < \theta_{1}(x), \\ F_{i}^{1}(t,x), & \theta_{1}(x) < t < \theta_{2}(x), \\ \vdots \\ F_{i}^{N}(t,x), & \theta_{N}(x) < t < T, \end{cases}$$

$$R(\theta, x, \varepsilon) = \sum_{j=0}^{N} \chi_{[\theta_j(x), \theta_{j+1}(x)]}(t) R^j(t, x, \varepsilon) = \begin{cases} R^0(t, x, \varepsilon), & 0 < t < \theta_1(x), \\ R^1(t, x, \varepsilon), & \theta_1(x) < t < \theta_2(x), \\ \vdots \\ R^N(t, x, \varepsilon), & \theta_N(x) < t < T, \end{cases}$$

with $F_i^j : \mathbb{S}^1 \times D \to \mathbb{R}^d$, $R^j : \mathbb{S}^1 \times D \times (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}^d$, for $i \in \{1, \ldots, k\}$ and $j \in \{1, \ldots, N\}$, being smooth functions and T-periodic in the variable t. In this case, the switching manifold is provided by $\Sigma = \{(\theta_i(x), x); x \in D, i \in \{0, 1, \ldots, N\}\}.$

2.1. Second-Order Bifurcation Function

Define second order bifurcation (Melnikov) function $\mathbf{m}_2: D \to \mathbb{R}^n$ by

$$\mathbf{m}_2(x) = \mathbf{f}_2(x) + \mathbf{f}_2^*(x),$$

where the increment \mathbf{f}_2^* is given by

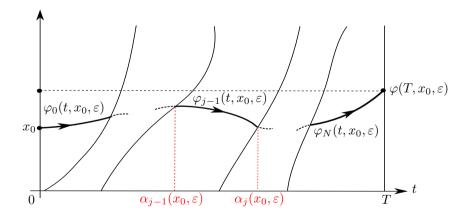
$$\mathbf{f}_{2}^{*}(x) = \sum_{j=1}^{N} \left(F_{1}^{j-1}(\theta_{j}(x), x) - F_{1}^{j}(\theta_{j}(x), x) \right) \partial_{x}\theta_{j}(x) \int_{0}^{\theta_{j}(x)} F_{1}(s, x) ds$$

Theorem 4 ([2]). Suppose that $\mathbf{f}_1 = 0$. Assume that $z^* \in D$ is a simple zero of \mathbf{m}_2 . Then, for $|\varepsilon| \neq 0$ sufficiently small, the differential equation (11) admits a unique *T*-periodic solution $\varphi(t, \varepsilon)$ such that $\varphi(\cdot, \varepsilon) \to z^*$ as $\varepsilon \to 0$.

Proof. We denote the solution of (11) by

$$\varphi(t, x, \varepsilon) = \begin{cases} \varphi_0(t, x, \varepsilon), \ 0 \le t \le \alpha_1(x, \varepsilon); \\ \varphi_1(t, x, \varepsilon), \ \alpha_1(x, \varepsilon) \le t \le \alpha_2(x, \varepsilon); \\ \cdots \\ \varphi_N(t, x, \varepsilon), \ \alpha_N(x, \varepsilon) \le t \le T. \end{cases}$$
(12)

In the above expression, $\alpha_j(x,\varepsilon)$ is the flight-time that the trajectory $\varphi_{j-1}(\cdot, x,\varepsilon)$, starting at $\varphi_{j-1}(\alpha_{j-1}^x(x,\varepsilon), x,\varepsilon) \in D$ for $t = \alpha_{j-1}(x,\varepsilon)$, reaches the manifold $\{(\theta_j(x), x) : x \in D\} \subset \Sigma$:



Notice that

$$\alpha_j(x,\varepsilon) = \theta_j(\varphi_{j-1}(\alpha_j(x,\varepsilon), x,\varepsilon)).$$

for j = 1, 2, ..., N, $\alpha_0(x, \varepsilon) = 0$, and $\alpha_{N+1}(x, \varepsilon) = T$. Moreover,

$$\frac{\partial \varphi_j}{\partial t}(t, x, \varepsilon) = F^j(t, \varphi_j(t, x, \varepsilon), \varepsilon), \text{ for } j = 0, 1, \dots, N, \text{ where}
\begin{cases}
\varphi_0(0, x, \varepsilon) = x, \\
\varphi_j(\alpha_j(x, \varepsilon), x, \varepsilon) = \varphi_{j-1}(\alpha_j(x, \varepsilon), x, \varepsilon), \text{ for } j = 1, 2, \dots, N.
\end{cases}$$
(13)

From (13) and from the differential dependence of the solutions on the initial conditions and on the parameter, we can see inductively that $\alpha_j(x,\varepsilon)$ and $\varphi_j(t,x,\varepsilon)$ are C^r functions, for $j = 0, 1, \ldots, N$.

We notice that the recurrence (13) describes initial value problems. Therefore, it is equivalent to the following recurrence:

$$\varphi_0(t, x, \varepsilon) = x + \int_0^t F^0(s, \varphi_0(s, x, \varepsilon), \varepsilon) ds,$$

$$\varphi_j(t, x, \varepsilon) = \varphi_{j-1}(\alpha_j(x, \varepsilon), x, \varepsilon) + \int_{\alpha_j(x, \varepsilon)}^t F^j(s, \varphi_j(s, x, \varepsilon), \varepsilon) ds,$$

for $j = 1, 2, \ldots, N$. So, we may compute

$$\varphi_N(t, x, \varepsilon) = x + \sum_{j=1}^N \int_{\alpha_{j-1}(x,\varepsilon)}^{\alpha_j(x,\varepsilon)} F^{j-1}(s, \varphi_{j-1}(s, x, \varepsilon), \varepsilon) ds + \int_{\alpha_N(x,\varepsilon)}^t F^N(s, \varphi_N(s, x, \varepsilon), \varepsilon) ds.$$

The displacement function is given by

$$\Delta(x,\varepsilon) = \varphi(T,x,\varepsilon) - x = \varphi_N(T,x_0,\varepsilon) - x.$$
(14)

Notice that, from the above comments, $\Delta(x, \varepsilon)$ is a C^r function. Since $\Delta(x, 0) = 0$, then, expanding (14) around $\varepsilon = 0$, we have

$$\Delta(x,\varepsilon) = \varepsilon \mathbf{m}_1(x) + \varepsilon^2 \mathbf{m}_2(x) + \mathcal{O}(\varepsilon^3).$$

On the other hand, the displacement function writes

$$\Delta(x,\varepsilon) = \varphi_N(T,x,\varepsilon) - x = \sum_{j=1}^{N+1} \int_{\alpha_{j-1}(x,\varepsilon)}^{\alpha_j(x,\varepsilon)} F^{j-1}(s,\varphi_{j-1}(s,x,\varepsilon),\varepsilon) ds.$$
(15)

In what follows, we compute the expansion, around $\varepsilon = 0$, of the N + 1 summands of (15). For the first one we obtain

$$\int_{0}^{\alpha_{1}(x,\varepsilon)} F^{0}(s,\varphi_{0}(s,x,\varepsilon),\varepsilon)ds$$

$$= \int_{0}^{\alpha_{1}(x,\varepsilon)} [\varepsilon F_{1}^{0}(s,\varphi_{0}(s,x,\varepsilon)) + \varepsilon^{2} F_{2}^{0}(s,\varphi_{0}(s,x,\varepsilon)) + \mathcal{O}(\varepsilon^{3})]ds$$

$$= \varepsilon \left(\int_{0}^{\theta_{1}(x)} F_{1}^{0}(s,x)ds\right) + \varepsilon^{2} \left(\int_{0}^{\theta_{1}(x)} \left[DF_{1}^{0}(s,x)\frac{\partial\varphi_{0}}{\partial\varepsilon}(s,x,0) + F_{2}^{0}(s,x)\right]ds + F_{1}^{0}(\theta_{1}(x),x)\frac{\partial\alpha_{1}}{\partial\varepsilon}(x,0)\right) + \mathcal{O}(\varepsilon^{3}).$$
(16)

In order to finish the computation of the second summand we have to compute the terms $\frac{\partial \varphi_0}{\partial \varepsilon}(s, x, 0)$ and $\frac{\partial \alpha_1}{\partial \varepsilon}(x, 0)$. Expanding the equation

$$\varphi_0(t, x, \varepsilon) = x + \int_0^t F^0(s, \varphi_0(s, x, \varepsilon), \varepsilon) ds$$

around $\varepsilon = 0$ we obtain

$$x + \varepsilon \frac{\partial \varphi_0}{\partial \varepsilon}(t, x, 0) + \mathcal{O}(\varepsilon^2) = x + \varepsilon \int_0^t F_1^0(s, x) ds + \mathcal{O}(\varepsilon^2).$$

So, we get

$$\frac{\partial\varphi_0}{\partial\varepsilon}(t,x,0) = \int_0^t F_1^0(s,x)ds.$$
(17)

In the same way, expanding the equation $\alpha_1(x,\varepsilon) = \theta_1(\varphi_0(\alpha_1(x,\varepsilon),x,\varepsilon))$ around $\varepsilon = 0$ we obtain

$$\alpha_1(x,0) + \varepsilon \frac{\partial \alpha_1}{\partial \varepsilon}(x,0) + \mathcal{O}(\varepsilon^2) = \\ \theta_1(x) + \varepsilon D_x \theta_1(x) \left(\frac{\partial \varphi_0}{\partial t}(\theta_1(x), x, 0) \frac{\partial \alpha_1}{\partial \varepsilon}(x, 0) + \frac{\partial \varphi_0}{\partial \varepsilon}(\theta_1(x), x, 0) \right) + \mathcal{O}(\varepsilon^2).$$

Since $\varphi_0(t, x, 0) = x$ for all t we get

$$\frac{\partial \alpha_1}{\partial \varepsilon}(x,0) = D_x \theta_1(x) \int_0^{\theta_1(x)} F_1^0(s,x) ds.$$
(18)

Substituting (17) and (18) in (16) we have the expression for the first summand of (15)

$$\int_{0}^{\alpha_{1}(x,\varepsilon)} F^{0}(s,\varphi_{0}(s,x,\varepsilon),\varepsilon)ds = \varepsilon \left(\int_{0}^{\theta_{1}(x)} F_{1}^{0}(s,x)ds\right) + \varepsilon^{2} \left(\int_{0}^{\theta_{1}(x)} \left[D_{x}F_{1}^{0}(s,x)\int_{0}^{s} F_{1}^{0}(t,x)dt + F_{2}^{0}(s,x)\right]ds$$
(19)
+ $F_{1}^{0}(\theta_{1}(x),x)D_{x}\theta_{1}(x)\int_{0}^{\theta_{1}(x)} F_{1}^{0}(s,x)ds\right) + \mathcal{O}(\varepsilon^{3}).$

The other summands of (15) can be computed in a similar way and they are given by

$$\int_{\alpha_{j-1}(x,\varepsilon)}^{\alpha_{j}(x,\varepsilon)} F^{j-1}(s,\varphi_{j-1}(s,x,\varepsilon),\varepsilon) ds = \varepsilon \left(\int_{\theta_{j-1}(x)}^{\theta_{j}(x)} F_{1}^{j-1}(s,x) ds \right) \\
+ \varepsilon^{2} \left(\int_{\theta_{j-1}(x)}^{\theta_{j}(x)} \left[D_{x} F_{1}^{j-1}(s,x) \int_{0}^{s} F_{1}(t,x) dt + F_{2}^{j-1}(s,x) \right] ds \\
+ F_{1}^{j-1}(\theta_{j}(x),x) D_{x} \theta_{j}(x) \int_{0}^{\theta_{j}(x)} F_{1}(s,x) ds \\
- F_{1}^{j-1}(\theta_{j-1}(x),x) D_{x} \theta_{j-1}(x) \int_{0}^{\theta_{j-1}(x)} F_{1}(s,x) ds \right) + \mathcal{O}(\varepsilon^{3}).$$
(20)

From (19) and (20), we have that

$$\mathbf{m}_1(x) = \int_0^T F_1(s, x) ds = \mathbf{f}_1(x)$$

and

$$\mathbf{m}_2(x) = \mathbf{f}_2(x) + \mathbf{f}_2^*(x),$$

where

$$\mathbf{f}_{2}(x) = \int_{0}^{T} \left[D_{x}F_{1}(s,x) \int_{0}^{s} F_{1}(t,x)dt + F_{2}(s,x) \right] ds$$

and

$$\mathbf{f}_{2}^{*}(x) = \sum_{j=1}^{N} \left(F_{1}^{j-1}(\theta_{j}(x), x) - F_{1}^{j}(\theta_{j}(x), x) \right) D_{x}\theta_{j}(x) \int_{0}^{\theta_{j}(x)} F_{1}(s, x) ds.$$

From here, the proof follows by applying the Implicit Function Theorem.

2.2. Higher Order Bifurcation Functions

In [1] it was obtained a sequence of function \mathbf{m}_i , $i \in \{1, \ldots, k\}$, satisfying the following result:

Theorem 5 ([1]). Denote $\mathbf{m}_0 = 0$. Let $\ell \in \{1, \ldots, k\}$ satisfying $\mathbf{m}_0 = \cdots \mathbf{m}_{\ell-1} = 0$ and $\mathbf{f}_{\ell} \neq 0$. Assume that $z^* \in D$ is a simple zero of \mathbf{m}_{ℓ} . Then, for $|\varepsilon| \neq 0$ sufficiently small, the differential equation (11) admits a unique *T*-periodic solution $\varphi(t, \varepsilon)$ such that $\varphi(\cdot, \varepsilon) \rightarrow z^*$ as $\varepsilon \rightarrow 0$.

2.3. Example - Piecewise Linear Differential Systems

Given a positive integer n, let H(n) denote the maximum number of limit cycles that planar piecewise linear systems with two zones separated by the curve $y = x^n$ can have. In order to provide lower bounds for H(n) consider the following class of piecewise linear differential system:

$$Z(x,y) = \begin{cases} X(x,y) = \begin{pmatrix} y + \sum_{i=1}^{k} \varepsilon^{i} P_{i}^{+}(x,y) \\ -x + \sum_{i=1}^{k} \varepsilon^{i} Q_{i}^{+}(x,y) \end{pmatrix}, & y - x^{n} > 0, \\ -x + \sum_{i=1}^{k} \varepsilon^{i} Q_{i}^{-}(x,y) \\ Y(x,y) = \begin{pmatrix} y + \sum_{i=1}^{k} \varepsilon^{i} P_{i}^{-}(x,y) \\ -x + \sum_{i=1}^{k} \varepsilon^{i} Q_{i}^{-}(x,y) \end{pmatrix}, & y - x^{n} < 0, \end{cases}$$
(21)

where n is a positive integer, and P_i^{\pm} and Q_i^{\pm} are affine functions provided by

$P_i^+(x,y)$	=	$a_{0i} + a_{1i}x + a_{2i}y,$
$P_i^-(x,y)$	=	$\alpha_{0i} + \alpha_{1i}x + \alpha_{2i}y,$
$Q_i^+(x,y)$	=	$b_{0i} + b_{1i}x + b_{2i}y,$
$Q_i^-(x,y)$	=	$\beta_{0i} + \beta_{1i}x + \beta_{2i}y,$

with $a_{ji}, \alpha_{ji}, b_{ji}, \beta_{ji} \in \mathbb{R}$, for $i \in \{1, \ldots, k\}$ and $j \in \{0, 1, 2\}$. The switching curve of system (21) is provided by $\Sigma = \{(x, y) \in \mathbb{R}^2 : y = x^n\}$.

Denote $\mathbf{m}_0 = 0$ and let \mathbf{m}_{ℓ} , for some $\ell \in \{1, 2, ..., k\}$, be the first non-vanishing bifurcation function, that is $\mathbf{m}_i = 0$ for $i \in \{0, ..., \ell-1\}$ and $\mathbf{m}_{\ell} \neq 0$. Accordingly, denote by $m_{\ell}(n)$ the maximum number of simple zeros that the first non-vanishing Melnikov function \mathbf{m}_{ℓ} can have for any choice of parameters $a_{ji}, \alpha_{ji}, b_{ji}, \beta_{ji} \in \mathbb{R}$, for $i \in \{1, ..., \ell\}$ and $j \in \{0, 1, 2\}$.

Notice that the values $m_{\ell}(n)$, for $\ell \in \{1, \ldots, k\}$, provide lower bounds for H(n), indeed $H(n) \ge m_{\ell}(n)$ for every $\ell \in \{1, \ldots, k\}$.

In [7], a higher order analysis of system (21) was performed assuming a straight line as the switching curve, that is n = 1. It was shown that $m_1(1) = m_2(1) = 1$, $m_3(1) = 2$, and $m_\ell(1) = 3$ for $\ell \in \{4, \ldots, 7\}$. The nonlinear case of switching curves was firstly addressed in [15] by means of *Averaging Theory*. In particular, it was shown that $m_1(3) = 3$ and $m_2(3) = 7$. The known values (before [1]) in research literature for $m_\ell(n)$, for $\ell \in \{1, \ldots, 6\}$, are summarized in Table 1. In particular, these previous studies provided $H(1) \ge 3$, $H(2) \ge 2$, and $H(3) \ge 7$.

Known results for $m_{\ell}(n)$

		Order ℓ							
		1	2	3	$4 \leq \ell \leq 6$				
u	1	1	1	2	3				
ree	2	3	_	-	—				
Degree n	3	3	7	-	—				
Ц	$\mathbf{n} \geq 4$	—	—	—	—				

TABLE 1. Known values (before [1]) in the research literature. In particular, $H(1) \ge 3$, $H(2) \ge 2$, and $H(3) \ge 7$.

In [1], using the Theorem 5 up to $\ell = 6$, we were able to complete table 1 as follows

		Order k						
		1	2	3	4	5	6	
u	1	1	1	2	3	3	3	
ree	2	3	4	4	4	4	4	
Degree	3	3	7	7	7	7	$8 \le m_6 \le 10$	
н	$\mathbf{n} \geq 4$ even	4	7	7	7	7	7	
	$\mathbf{n} \geq 5 \ \mathbf{odd}$	3	7	7	7	7	$9 \le m_6 \le 14$	

Our contribution

TABLE 2. Our main result competes Table 1. In particular, $H(2) \ge 4$, $H(3) \ge 8$, $H(n) \ge 7$, for $n \ge 4$ even, and $H(n) \ge 9$, for $n \ge 5$ odd

3. Other problems that can be approached by averaging method

3.1. Bifurcation of Periodic Solutions from Families of Periodic Solutions

$$x' = F_0(t, x) + \sum_{i=1}^{k} \varepsilon^i F_i(t, x) + \varepsilon^{k+1} R(t, x, \varepsilon),$$
(22)

For $m \leq n$, let V be an open bounded subset of \mathbb{R}^m and $\beta : \overline{V} \to \mathbb{R}^{n-m}$ a \mathcal{C}^{k+1} function. Define

$$\mathcal{Z} = \{ z_{\alpha} = (\alpha, \beta(\alpha)) : \alpha \in \overline{V} \}.$$
(23)

Denote by $x(t, z, \varepsilon)$ the solution of (22) such that $x(0, z, \varepsilon) = z$. As the main hypothesis we assume that:

 $\mathcal{Z} \subset D$ and, for each $\alpha \in \overline{V}, x(t, z_{\alpha}, 0)$ is *T*-periodic

Smooth systems: first order [3]; second order [4, 5]; third order [16]; any order [8, 13].

Lipschitz continuous systems: first order [6].

Discontinuous systems any order [17].

Example - Limit cycle in a 3D polynomial system:

Consider the following 3D autonomous polynomial differential system

$$\dot{u} = -v + \varepsilon \left(u^3 - u^2 - uv^2 - \pi v^3 \right),$$

$$\dot{v} = u + \varepsilon \left(\pi u^3 - 1 \right),$$

$$\dot{w} = w - \varepsilon u.$$
(24)

Writing the differential system (24) in the cylindrical coordinates

$$(u, v, w) = (r\cos\theta, r\sin\theta, w),$$

we get

$$\begin{split} \dot{r} &= \frac{\varepsilon}{4} \left(r^3 + r^2 (r(\pi \sin(4\theta) + 2\cos(2\theta) + \cos(4\theta)) - 3\cos\theta - \cos(3\theta)) - 4\sin\theta \right), \\ \dot{\theta} &= 1 + \frac{\varepsilon}{4r} \left(r^2 (\sin\theta + \sin(3\theta) - r\sin(4\theta) + \pi r\cos(4\theta) + 3\pi r) - 4\cos\theta \right), \\ \dot{w} &= w - \varepsilon r\cos\theta. \end{split}$$

Since $\dot{\theta} \neq 0$ for $|\varepsilon| \neq 0$ sufficiently small, we can take θ as the new independent variable. So

$$\frac{dr}{d\theta} = \varepsilon F_{11}(\theta, z) + \mathcal{O}(\varepsilon^2),$$

$$\frac{dz}{d\theta} = z + \varepsilon F_{12}(\theta, z) + \mathcal{O}(\varepsilon^2),$$
(25)

where $z = (r, w) \in \mathbb{R}^2$ and

$$F_{11}(\theta, z) = \frac{1}{4} \left(r^3 + r^2 (r(\pi \sin(4\theta) + 2\cos(2\theta) + \cos(4\theta)) - 3\cos\theta - \cos(3\theta)) - 4\sin\theta \right),$$

$$F_{12}(\theta, z) = \frac{-1}{4} \left(4\cos\theta \left(r^2 - z \right) + r^2 z (\sin\theta + \sin(3\theta) - r\sin(4\theta) + \pi r\cos(4\theta) + 3\pi r) \right).$$

The differential system (25) is 2π -periodic in the variable θ and it is written in the standard form form (9) with $F_0(\theta, z) = (0, z)$ and $F_1(\theta, z) = (F_{11}(\theta, z), F_{12}(\theta, z))$. Moreover the solution of the unperturbed differential system for a initial condition $z_0 = (r_0, w_0)$ is given by

$$\Phi(\theta, z_0) = (r_0, w_0 e^{\theta}).$$

Consider the set $\mathcal{Z} \subset \mathbb{R}^2$ such that $\mathcal{Z} = \{(\alpha, 0) : \alpha > 0\}$. Clearly for each $z_{\alpha} \in \mathcal{Z}$, the solution $\Phi(\theta, z_{\alpha})$ is 2π -periodic, and therefore the differential system (25) satisfies the hypothesis above.

Proposition 6 ([8]). For $|\varepsilon| > 0$ sufficiently small system (24) has a periodic solution $\varphi(t,\varepsilon) = (u(t,\varepsilon), v(t,\varepsilon), w(t,\varepsilon))$, such that

$$u(t,\varepsilon) = \sqrt{8\varepsilon} \cos t + \mathcal{O}(\varepsilon),$$

$$v(t,\varepsilon) = \sqrt{8\varepsilon} \sin t + \mathcal{O}(\varepsilon), \text{ and}$$

$$w(t,\varepsilon) = \mathcal{O}(\varepsilon).$$
(26)

3.2. Bifurcation of Tori

Consider two-parameter families of non-autonomous differential equations given by

$$\mathbf{x}'(t) = \sum_{i=1}^{k} \varepsilon^{i} F_{i}(t, \mathbf{x}; \mu) + \varepsilon^{k+1} R(t, \mathbf{x}; \mu, \varepsilon).$$
(27)

Here, F_i , i = 1, 2, ..., k, and R are smooth functions and T-periodic in the variable $t \in \mathbb{R}$, $\mathbf{x} = (x, y) \in D$ with D an open bounded subset of \mathbb{R}^2 , $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$ for some $\varepsilon_0 > 0$ small, and $\mu \in \mathbb{R}$.

Let ℓ be the index of the first non-vanishing averaged function. Consider the truncated averaged system

$$\dot{\mathbf{x}} = \varepsilon^{\ell} \mathbf{g}_{\ell}(\mathbf{x}; \mu). \tag{28}$$

Theorem 7 ([9]). If the truncated averaged system (28) undergoes a Hopf bifurcation (as μ crosses a critical value μ^*), then, for $|\varepsilon| \neq 0$ sufficiently small, the differential equation (27) undergoes a Torus Bifurcation (as μ crosses the critical value).

Example - Rössler System:

$$\begin{aligned} \dot{x} &= -y - z, \\ \dot{y} &= x + ay, \\ \dot{z} &= bx - cz + xz. \end{aligned} \tag{29}$$

Consider the parameter vector (a, b, c) of the Rössler system (29) ε -close to $(\overline{a}, 1, \overline{a})$, with $\overline{a} \in (-\sqrt{2}, \sqrt{2})$. More specifically, we assume that

$$(a,b,c) = \left(\overline{a} + \varepsilon \alpha_1 + \varepsilon^2 \alpha_2, 1 + \varepsilon \beta_1 + \varepsilon^2 \beta_2, \overline{a} + \varepsilon \gamma_1 + \varepsilon^2 \gamma_2\right) + \mathcal{O}(\varepsilon^3), \tag{30}$$

with $\overline{a} \in (-\sqrt{2}, \sqrt{2}) \setminus \{0\}$ and $\varepsilon, \alpha_i, \beta_i, \gamma_i \in \mathbb{R}$, for i = 1, 2. Also, define

$$d_{0} = \left(\alpha_{1} - \gamma_{1} + \beta_{1}\overline{a}\left(\overline{a}^{2} - 1\right)\right) \left(\alpha_{1}\left(\overline{a}^{2} - 1\right) + \overline{a}(\beta_{1} - \overline{a}\gamma_{1}) + \gamma_{1}\right),$$

$$d_{1} = \gamma_{1} - \alpha_{1} + \beta_{1}\overline{a}, \text{ and}$$

$$\ell_{1} = 12\pi\overline{a}^{4} \left(\overline{a}^{4} - 16\right) - \overline{a} \left(4\overline{a}^{8} - 12\overline{a}^{6} + 193\overline{a}^{4} - 640\overline{a}^{2} - 144\right) \sqrt{2 - \overline{a}^{2}}.$$
(31)

Notice that the parameters above, d_0, d_1 , and ℓ_1 , do not depend on ε .

Theorem 8 ([10]). Let (a, b, c) be given by (30).

- (i) If d₀ > 0, then for |ε| ≠ 0 sufficiently small the Rössler System (29) admits a periodic solution φ(t, ε) satisfying φ(t, ε) → (0,0,0) when ε → 0. Moreover, for ε > 0, such a periodic solution is asymptotically stable (resp. unstable) provided that d₁ > 0 (resp. d₁ < 0). Denote φ(t, γ₁, ε) = φ(t, ε).
- (ii) In addition, if l₁ ≠ 0, then there exist a smooth curve γ(ε), defined for ε > 0 sufficiently small and satisfying γ(ε) = γ
 ₁ + O(ε) with γ
 ₁ = α₁ āβ₁, and intervals J_ε containing γ(ε) such that a unique invariant torus bifurcates from the periodic solution φ(t, γ(ε), ε) as γ₁ passes through γ(ε). Such a torus exists whenever γ₁ ∈ J_ε and l₁(γ₁ γ(ε)) > 0, and surrounds the periodic solution f(t, γ₁, ε). In addition, if l₁ > 0 (resp. l₁ < 0) the torus is unstable (resp. asymptotically stable), whereas the periodic solution φ(t, γ₁, ε) is asymptotically stable (resp. unstable).

Example 2.
$$\overline{a} = \frac{1}{2}$$
, $\alpha_1 = 2$, $\beta_1 = 2$, $\alpha_2 = -2$, $\beta_2 = -1$ and $\gamma_2 = -1$

We compute $\overline{\gamma}_1 = 1$ and $\ell_1 \simeq 155.66 > 0$. Theorem 8 predicts, for $\varepsilon > 0$ small enough, the existence of an asymptotically stable periodic solution of (29) surrounded by an unstable invariant torus:

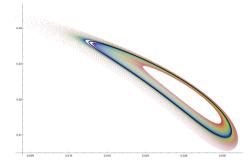


FIGURE 4. Poincaré section $\{z = 0 \text{ and } x > 0\}$ of the Rössler System (29) for $\varepsilon = 10^{-2}$. Trajectories starting at $(2982 \times 10^{-5}, 9656 \times 10^{-6}, 0)$ and $(3020 \times 10^{-5}, 9260 \times 10^{-6}, 0)$. The unstable invariant torus corresponds to an unstable invariant closed curve of the Poincaré map.

Example 3. $\overline{a} = -\frac{39}{32}$, $\alpha_1 = 1$, $\beta_1 = 2$, $\alpha_2 = -2$, $\beta_2 = -1$, and $\gamma_2 = -1$.

We compute $\overline{\gamma}_1 = \frac{55}{16}$ and $\ell_1 \simeq -1122.13 < 0$. Theorem 8 predicts, for $\varepsilon > 0$ small enough, the existence of an unstable periodic solution of (29) surrounded by an asymptotically stable invariant torus:

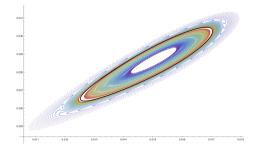


FIGURE 5. Poincaré section $\{z = 0 \text{ and } x > 0\}$ of the Rössler System (29) for $\varepsilon = 10^{-2}$. Trajectories starting at $(1504 \times 10^{-5}, 2852 \times 10^{-5}, 0)$ and $(1523 \times 10^{-5}, 2695 \times 10^{-5}, 0)$. The asymptotically stable invariant torus corresponds to an asymptotically stable invariant closed curve of the Poincaré map.

References

- K. d. S. Andrade, O. A. R. Cespedes, D. R. Cruz, and D. D. Novaes. Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear switching curve. J. Differential Equations, 287:1–36, 2021.
- [2] J. L. Bastos, C. A. Buzzi, J. Llibre, and D. D. Novaes. Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold. *Journal of Differential Equations*, 267(6):3748 – 3767, 2019.
- [3] A. Buică, J.-P. Françoise, and J. Llibre. Periodic solutions of nonlinear periodic differential systems with a small parameter. *Commun. Pure Appl. Anal.*, 6(1):103–111, 2007.
- [4] A. Buică, J. Giné, and J. Llibre. A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter. *Phys. D*, 241(5):528–533, 2012.
- [5] A. Buică, J. Giné, and J. Llibre. Periodic solutions for nonlinear differential systems: the second order bifurcation function. *Topol. Methods Nonlinear Anal.*, 43(2):403–419, 2014.
- [6] A. Buică, J. Llibre, and O. Makarenkov. Bifurcations from nondegenerate families of periodic solutions in Lipschitz systems. J. Differential Equations, 252(6):3899–3919, 2012.
- [7] C. Buzzi, C. Pessoa, and J. Torregrosa. Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst., 33(9):3915–3936, 2013.
- [8] M. R. Cândido, J. Llibre, and D. D. Novaes. Persistence of periodic solutions for higher order perturbed differential systems via lyapunov-schmidt reduction. *Nonlinearity*, 30(9):3560, 2017.
- [9] M. R. Cândido and D. D. Novaes. On the torus bifurcation in averaging theory. J. Differential Equations, 268(8):4555–4576, 2020.
- [10] M. R. Cândido, D. D. Novaes, and C. Valls. Periodic solutions and invariant torus in the Rössler system. *Nonlinearity*, 33(9):4512–4538, 2020.
- [11] J. Chavarriga and M. Sabatini. A survey of isochronous centers. Qual. Theory Dyn. Syst., 1(1):1–70, 1999.
- [12] L. P. C. da Cruz, D. D. Novaes, and J. Torregrosa. New lower bound for the Hilbert number in piecewise quadratic differential systems. J. Differential Equations, 266(7):4170– 4203, 2019.
- [13] J. Giné, J. Llibre, K. Wu, and X. Zhang. Averaging methods of arbitrary order, periodic solutions and integrability. J. Differential Equations, 260(5):4130–4156, 2016.
- [14] S. Karlin and W. Studden. Tchebycheff systems: With applications in analysis and statistics. 1966.
- [15] J. Llibre, A. C. Mereu, and D. D. Novaes. Averaging theory for discontinuous piecewise differential systems. J. Differential Equations, 258(11):4007–4032, 2015.
- [16] J. Llibre and D. D. Novaes. Improving the averaging theory for computing periodic solutions of the differential equations. Z. Angew. Math. Phys., 66(4):1401–1412, 2015.
- [17] J. Llibre, D. D. Novaes, and C. A. Rodrigues. Bifurcations from families of periodic solutions in piecewise differential systems. *Physica D: Nonlinear Phenomena*, 404:132342, Mar. 2020.
- [18] J. Llibre, D. D. Novaes, and C. A. B. Rodrigues. Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones. *Phys.* D, 353/354:1–10, 2017.
- [19] D. D. Novaes and J. Torregrosa. On extended chebyshev systems with positive accuracy. Journal of Mathematical Analysis and Applications, 448(1):171 – 186, 2017.

Douglas Duarte Novaes