
The Averaging Method - Lecture 3

Douglas Duarte Novaes

July 16, 2021

Departamento de Matemática

Instituto de Matemática, Estat́ıstica e Computação Cient́ıfica (IMECC)

Universidade Estadual de Campinas (UNICAMP), São Paulo, Brasil

ddnovaes@unicamp.br

www.ime.unicamp.br/~ddnovaes

1. Averaging Method for Studying Periodic Solutions of Discontinuous

Piecewise Smooth Differential Equations

Let D ⊂ Rd open bounded subset and S1 = R/T for some T > 0. Consider a finite

sequence of open disjoints subset (Sj) ⊂ S1×D, j = 1, . . . , N . Assume that the boundaries

of Sj are piecewise Ck embedded hypersurfaces. Denote by Σ the union of all boundaries.

Notice that the union of Σ with all Sj ’s cover S1 ×D.
For i ∈ {1, . . . , k}, let

Fi(t, x) =

N∑
j=1

χSj
(t, x)F ji (t, x) and R(t, x, ε) =

N∑
j=1

χSj
(t, x)Rj(t, x),

where, for A ⊂ S1 ×D, χA(t, x) denotes the characteristic function

χA(t, x) =

{
1 if (t, x) ∈ A,
0 if (t, x) /∈ A.

Here, the functions F ji : R×D → Rn, for i = 1, . . . , k, and j = 1, . . . , N , and R : R×D×
[0, ε0]→ Rn are assumed to be T−periodic in the variable t and smooth.

Consider regularly perturbed piecewise smooth non-autonomous differential equa-

tions given in the following standard form:

x′ =

k∑
i=1

εFi(t, x) + εk+1R(t, x, ε), (t, x, ε) ∈ R×D × (−ε0, ε0). (1)
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Crossing Hypothesis (CH) ∃ an open bounded subset C ⊂ D such that, for ε = 0,

{(t, z) : t ∈ S1} ∩ Σ ⊂ Σc.

1.1. First-Order Averaging Method

f1(z) =

∫ T

0

F1(t, z)dt

Under hypothesis (CH), one can see that f1 is smooth on C. Then, the following result

holds.

Theorem 1 ([15]). In addition to hypothesis (CH), assume that z∗ ∈ C is a simple zero

of f1. Then, for |ε| 6= 0 sufficiently small, the differential equation (1) admits a unique

T -periodic solution ϕ(t, ε) such that ϕ(·, ε)→ z∗ as ε→ 0.
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1.2. Example - Discontinuous Perturbed Harmonic Oscillator

x′′ + x+ bεx
′ = gε(x, x

′), (2)

where bε = εb1 + ε2O(1) > 0 and gε(x, y) = εg1(x, y) + ε2O(1).

Standard Form:
dr

dθ
= ε sin(θ)

(
b1r sin(θ)− g1(r cos(θ), r sin(θ)

)
+ ε2O(1)

First-Order Averaged Function: f1(r) = b1πr −
∫ 2π

0

sin(θ)g1(r cos(θ), r sin(θ))dθ

Examplo 1.

g1(x, y) =

{
β+, y ≥ 0

β−, y ≤ 0
=
β+ + β−

2
+ sign(y)

β+ − β−

2
.

dr

dθ
= ε

{
sin(θ)

(
b1r sin(θ)− β+

)
+O(ε), θ ∈ [0, π/2]

sin(θ)
(
b1r sin(θ)− β−

)
+O(ε), θ ∈ [π/2, 2π]

(3)

f1(r) = b1πr −
∫ 2π

0

sin(θ)g1(r cos(θ), r sin(θ))dθ

= b1πr −
∫ π

0

β+ sin(θ)dθ −
∫ 2π

π

β− sin(θ)dθ

= −2(β+ − β−) + b1πr

Assuming b1(β+ − β−) > 0, the equation f1(r) = 0 a unique positive solution

r∗ = 2(β+−β−)
b1π

. Hence, the First-Order Averaging Method ,Theorem 1, provides the

existence of a periodic solution r(θ, ε) of differential equation (3) such that r(·, ε) → r∗

as ε → 0. Accordingly, one gets the existence of a periodic solution (x(t, ε), x′(t, ε)) of

the differential equation (2) satisfying |(x(·, ε), x′(·, ε))| → r∗ as ε→ 0.

Figure 1. Forward trajectories of the differential system (x′, y′) =(
y,−x + ε y + εg1(x, y)

)
for β+ = 3, β− = 1, and ε = 0.5. The red

dots indicate the initial conditions (1, 0) and (1, 1.5). The blue segment

indicates an escaping region and the dashed black segment a crossing

region. The black closed curve indicates a limit cycle.
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Figure 2. Forward trajectories of the differential system (x′, y′) =(
y,−x+ ε y + εg1(x, y)

)
for β+ = 3, β− = 1, and ε = 0.05 The red dots

indicate the initial conditions (0.1, 0) and (0.1, 1.5). The blue segment

indicates an escaping region and the dashed black segment a crossing

region. The black closed curve indicates a limit cycle.

1.3. Second-Order Averaging Method

f2(z) =

∫ T

0

[
F2(t, z) + ∂xF1(t, z)y1(t, z)

]
dt, where

∂xF1(t, z) =

N∑
j=1

χSj
(t, z)∂xF

j
1 (t, z), and y1(t, z) =

∫ t

0

F1(s, z)ds.

Theorem 2 ([15]). Suppose that f1 = 0. In addition to the hypothesis (HC) assume that

Hb2
(
0, y1(t, z)

)
∈ T(t,z)Σ for (t, z) ∈ Σ

Assume that z∗ ∈ D is a simple zero of f2. Then, for |ε| 6= 0 sufficiently small, the

differential equation (1) admits a unique T -periodic solution ϕ(t, ε) such that ϕ(·, ε)→ z∗

as ε→ 0.

Planar system with rays of discontinuity!

=⇒
Discontinuity only in the time variable!

=⇒
Hypothesis Hb2 holds!
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1.4. Example - Discontinuous Perturbation of Quadratic Homogeneous Center

Consider the following families of quadratic homogeneous center (see [11]):

Z1 :

{
ẋ = −y + x2 − y2,

ẏ = x+ 2xy.
Z2 :

{
ẋ = −y + x2,

ẏ = x+ xy.
Z3 :


ẋ = −y − 4

3
x2,

ẏ = x− 16

3
xy.

(4)

Figure 3. Phase portrait of systems Z1, Z2, and Z3 from left to right.

In [12] it was studied bifurcation of limit cycles from such families when they are

perturbed by discontinuous piecewise quadratic polynomial systems as follows

Zi,ε =

{
Zi(x, y) + ε (P+

1 (x, y), Q+
1 (x, y)) + ε2 (P+

2 (x, y), Q+
2 (x, y)), if h(x, y) > 0,

Zi(x, y) + ε (P−1 (x, y), Q−1 (x, y)) + ε2 (P−2 (x, y), Q−2 (x, y)), if h(x, y) < 0,
(5)

where ε is sufficiently small, h(x, y) = y − tan(α)x, and, for k = 1, 2,

P±k (x, y) =

2∑
j=0

j∑
i=0

p±k,i,j−ix
iyj−i and Q±k (x, y) =

2∑
j=0

j∑
i=0

q±k,i,j−ix
iyj−i.

In what follows we shall study the family S2 for Σ = {y +
√

3x = 0}, that is, α = π/3.

Step 1 (Standard Form): Write system Z2,ε in the standard form of the averaging method.

Assume P±k (0, 0) = Q±k (0, 0). The linearization stated in [11] of Z2 is given by

x = − u

v − 1
and y = − v

v − 1
,

which has the following rational inverse

u =
x

y + 1
and v =

y

y + 1
.

Notice that straight lines passing through the origin are fixed by the transformation. With

this change of variables the differential equation Z2 becomes the linear center (u′, v′) =

(−v, u). Then, composing with the polar coordinates u = r cos θ and v = −r sin θ and

taking θ as the new time variable, Z2,ε becomes

r′(θ) =
ṙ

θ̇
= ε
A1(r cos θ, r sin θ)

1 + r cos θ
+ ε2

A2(r cos θ, r sin θ)

1 + r cos θ
+O(ε3), (6)

where C(θ, r) = and Ai, i = 1, 2, are piecewise functions

Ai(r cos θ, r sin θ) =


A+
i (r cos θ, r sin θ) if 0 < θ ≤ π/3,
A−i (r cos θ, r sin θ) if π/3 < θ ≤ 4π/3,

A+
i (r cos θ, r sin θ) if 4π/3 < θ ≤ 2π,

(7)

being A±i polynomials of degree 3.
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Step 2 (First Order Analysis): Compute f1 and its zeros.

f1(r) =

∫ 2π

0

A1(r cos θ, r sin θ)

1 + r cos θ
dθ =

7∑
n=0

knfn,

with

f0(ρ) =
ρ

ρ2 + 1
, f1(ρ) =

ρ2

(ρ2 + 1)2
, f2(ρ) =

ρ3

(ρ2 + 1)2
, f4(ρ) =

ρ5

(ρ2 + 1)2
,

f3(ρ) =
5(54733ρ4 + 94452ρ2 + 54733)

6912(ρ2 + 1)2
+

15(1366ρ4 + 1847ρ2 + 1366)

1024(ρ2 + 1)ρ
L̃(ρ)

+
25
√

3(236ρ4 − 247ρ2 + 236)(ρ2 − 1)2

82944ρ(ρ2 + 1)3
φ̃(ρ),

f5(ρ) =− 35(21835ρ4 + 40596ρ2 + 21835)

6912(ρ2 + 1)2
− 105(550ρ4 + 797ρ2 + 550)

1024(ρ2 + 1)ρ
L̃(ρ)

− 175
√

3(176ρ4 − 181ρ2 + 176)(ρ2 − 1)2

82944ρ(ρ2 + 1)3
φ̃(ρ),

f6(ρ) =
245(227ρ4 + 444ρ2 + 227)

768(ρ2 + 1)2
+

315(122ρ4 + 181ρ2 + 122)

1024(ρ2 + 1)ρ
L̃(ρ)

+
35
√

3(116ρ4 − 115ρ2 + 116)(ρ2 − 1)2

9216ρ(ρ2 + 1)3
φ̃(ρ),

f7(ρ) =− 385(77ρ4 + 156ρ2 + 77)

2304(ρ2 + 1)2
− 3465(2ρ4 + 3ρ2 + 2)

1024(ρ2 + 1)ρ
L̃(ρ)

− 385
√

3(8ρ4 − 7ρ2 + 8)(ρ2 − 1)2

27648ρ(ρ2 + 1)3
φ̃(ρ).

(8)

Here,

L̃(ρ) = log

(
ρ2 − ρ+ 1

ρ2 + ρ+ 1

)
, φ̃(ρ) = φ

(
2ρ

ρ2 + 1
,

2π

3

)
− φ

(
− 2ρ

ρ2 + 1
,

2π

3

)
.

where

φ(r, θ) =
1√

1− r2

(
θ − 2 arctan

(√
1− r
1 + r

tan

(
θ

2

)))
,

and the parameters kn, n = 0, 1, . . . , 7, are arbitrary real numbers which depends on the

parameters of perturbations. One can see that fi(ρ) = ρi+1 +O(ρi+2) for i = 0, 1, . . . , 5,

f6(ρ) = ρ8 + O(ρ9), and f7(ρ) = ρ10 + O(ρ11). Therefore, the ordered set of functions

[f0, f1, . . . , f7] is an ECT-system in a neighborhood of the origin (see [14, 19]).

Averaging Method ⇒ 7 limit cycles.

Pseudo-Hopf-Bifurcation

b < 0 b = 0 b > 0

Averaging Method + Pseudo-Hopf Bifurcation ⇒ 8 limit cycles.
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Step 3 (Second Order Analysis): Assume minimal conditions in order that f1 = 0 and

compute f2 and its zeros.

Notice that f1 = 0 if, and only if, ki = 0 for i ∈ {0, . . . , 7}.

f2(r) =

I1︷ ︸︸ ︷∫ 2π

0

A2(r cos θ, r sin θ)

1 + r cos θ
dθ

+

∫ 2π

0

[
∂

∂r

(
A1(r cos θ, r sin θ)

1 + r cos θ

)∫ θ

0

A1(r cosα, r sinα)

1 + r cosα
dα

]
dθ︸ ︷︷ ︸

I2

An expression for I1 can be obtained analogously to f1. However, in order to obtain I2,

one must integrate rational functions with denominators (1 + r cos θ)2 and numerators

depending on

{r, θ, cos θ, sin θ, λ(r,−π/3 + θ), λ(r,−4π/3 + θ), φ(r,−π/3 + θ), φ(r,−4π/3 + θ)},

where φ is defined above and λ(r, θ) = log(1 + r cos θ). Unfortunately, I2 cannot be

explicitly computed.

Computing the Taylor series of the integrand around r = 0 and then integrating

one can see that

f2(r) =

n∑
i=1

fir
i +O(rn+1).

The coefficients fi’s depend linearly on {p±2,i,j , q
±
2,i,j} and quadratically on {p±1,i,j , q

±
1,i,j}.

Poincaré-Miranda Theorem provides a transformation on the parameters such that

f2(r) =

16∑
i=1

dir
i +O(rn+1),

where (d1, . . . , d16) depends onto the parameters of perturbation in a surjective way

around the origin 0 ∈ R16.

Averaging Method ⇒ 15 limit cycles.

Averaging Method + Pseudo-Hopf Bifurcation ⇒ 16 limit cycles.

I THINK THAT IT IS THE BEST LOWER BOUND SO FAR

for the number of limit cycles in piecewise quadratic polynomial differential systems

with two zones separated by a straight line.
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1.5. Higher Order Averaging Method

Let 0 = α0 < α1 < · · · < αN−1 < αN = T . Consider the differential equation

x′(θ) =

k∑
i=1

εiFi(θ, x) + εk+1R(θ, x, ε), (9)

where

Fi(θ, x) =

N∑
j=0

χ[αj ,αj+1](θ)F
j
i (θ, x), i = 0, 1, ..., k, and

R(θ, x, ε) =

N∑
j=0

χ[αj ,αj+1](θ)R
j(θ, x, ε).

(10)

Here, the functions F ji : R×D → Rn, for i = 1, . . . , k, and j = 1, . . . , N , and R : R×D×
[0, ε0] → Rn are assumed to be T−periodic in the variable t and smooth. Notice that

Σ = ({θ = 0} ∪ {θ = α1} ∪ · · · ∪ {θ = αN−1}) ∩ S1 ×D is the discontinuity set of (9).

Theorem 3 ([18]). Denote f0 = 0. Let ` ∈ {1, . . . , k} satisfying f0 = · · · f`−1 = 0 and

f` 6= 0. Assume that z∗ ∈ D is a simple zero of f`. Then, for |ε| 6= 0 sufficiently small, the

differential equation (9) admits a unique T -periodic solution ϕ(t, ε) such that ϕ(·, ε)→ z∗

as ε→ 0.

2. Bifurcation Functions in a More General Case

Consider, an open subset D ⊂ Rd, S1 = R/T for some period T > 0, and k a positive

integer. Let θj : D → S1, j ∈ {1, . . . , N}, be Ck−1 functions such that θ0(x) ≡ 0 <

θ1(x) < · · · < θN (x) < T ≡ θN+1(x), for all x ∈ D. Under the assumptions above, we

consider the following piecewise smooth differential system

ẋ =

k∑
i=1

εiFi(t, x) + εk+1R(t, x, ε), (11)

where where

Fi(t, x) =

N∑
j=0

χ[θj(x),θj+1(x)](t)F
j
i (t, x) =


F 0
i (t, x), 0 < t < θ1(x),

F 1
i (t, x), θ1(x) < t < θ2(x),

...

FNi (t, x), θN (x) < t < T,

R(θ, x, ε) =

N∑
j=0

χ[θj(x),θj+1(x)](t)R
j(t, x, ε) =


R0(t, x, ε), 0 < t < θ1(x),

R1(t, x, ε), θ1(x) < t < θ2(x),
...

RN (t, x, ε), θN (x) < t < T,

with F ji : S1 × D → Rd, Rj : S1 × D × (−ε0, ε0) → Rd, for i ∈ {1, . . . , k} and j ∈
{1, . . . , N}, being smooth functions and T−periodic in the variable t. In this case, the

switching manifold is provided by Σ = {(θi(x), x); x ∈ D, i ∈ {0, 1, . . . , N}}.
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2.1. Second-Order Bifurcation Function

Define second order bifurcation (Melnikov) function m2 : D → Rn by

m2(x) = f2(x) + f∗2 (x),

where the increment f∗2 is given by

f∗2 (x) =

N∑
j=1

(
F j−11 (θj(x), x)− F j1 (θj(x), x)

)
∂xθj(x)

∫ θj(x)

0

F1(s, x)ds.

Theorem 4 ([2]). Suppose that f1 = 0. Assume that z∗ ∈ D is a simple zero of m2. Then,

for |ε| 6= 0 sufficiently small, the differential equation (11) admits a unique T -periodic

solution ϕ(t, ε) such that ϕ(·, ε)→ z∗ as ε→ 0.

Proof. We denote the solution of (11) by

ϕ(t, x, ε) =


ϕ0(t, x, ε), 0 ≤ t ≤ α1(x, ε);

ϕ1(t, x, ε), α1(x, ε) ≤ t ≤ α2(x, ε);

· · ·
ϕN (t, x, ε), αN (x, ε) ≤ t ≤ T.

(12)

In the above expression, αj(x, ε) is the flight-time that the trajectory ϕj−1(·, x, ε), start-

ing at ϕj−1(αj−1(x, ε), x, ε) ∈ D for t = αj−1(x, ε), reaches the manifold {(θj(x), x) : x ∈
D} ⊂ Σ:

x0

x

t

ϕ(T, x0, ε)

0 αj−1(x0, ε) αj(x0, ε)

θ1(x) · · · θj−1(x) θj(x) · · · θN (x)

T

ϕ0(t, x0, ε)
ϕj−1(t, x0, ε)

ϕN (t, x0, ε)

Notice that

αj(x, ε) = θj(ϕj−1(αj(x, ε), x, ε)).

for j = 1, 2, . . . , N, α0(x, ε) = 0, and αN+1(x, ε) = T. Moreover,

∂ϕj
∂t

(t, x, ε) = F j(t, ϕj(t, x, ε), ε), for j = 0, 1, . . . , N, where{
ϕ0(0, x, ε) = x,

ϕj(αj(x, ε), x, ε) = ϕj−1(αj(x, ε), x, ε), for j = 1, 2, . . . , N.

(13)
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From (13) and from the differential dependence of the solutions on the initial conditions

and on the parameter, we can see inductively that αj(x, ε) and ϕj(t, x, ε) are Cr functions,

for j = 0, 1, . . . , N.

We notice that the recurrence (13) describes initial value problems. Therefore, it is

equivalent to the following recurrence:

ϕ0(t, x, ε) = x+

∫ t

0

F 0(s, ϕ0(s, x, ε), ε)ds,

ϕj(t, x, ε) = ϕj−1(αj(x, ε), x, ε) +

∫ t

αj(x,ε)

F j(s, ϕj(s, x, ε), ε)ds,

for j = 1, 2, . . . , N. So, we may compute

ϕN (t, x, ε) = x+

N∑
j=1

∫ αj(x,ε)

αj−1(x,ε)

F j−1(s, ϕj−1(s, x, ε), ε)ds

+

∫ t

αN (x,ε)

FN (s, ϕN (s, x, ε), ε)ds.

The displacement function is given by

∆(x, ε) = ϕ(T, x, ε)− x = ϕN (T, x0, ε)− x. (14)

Notice that, from the above comments, ∆(x, ε) is a Cr function. Since ∆(x, 0) = 0, then,

expanding (14) around ε = 0, we have

∆(x, ε) = εm1(x) + ε2m2(x) +O(ε3).

On the other hand, the displacement function writes

∆(x, ε) = ϕN (T, x, ε)− x =

N+1∑
j=1

∫ αj(x,ε)

αj−1(x,ε)

F j−1(s, ϕj−1(s, x, ε), ε)ds. (15)

In what follows, we compute the expansion, around ε = 0, of the N + 1 summands of

(15). For the first one we obtain∫ α1(x,ε)

0

F 0(s, ϕ0(s, x, ε), ε)ds

=

∫ α1(x,ε)

0

[εF 0
1 (s, ϕ0(s, x, ε)) + ε2F 0

2 (s, ϕ0(s, x, ε)) +O(ε3)]ds

= ε

(∫ θ1(x)

0

F 0
1 (s, x)ds

)
+ ε2

(∫ θ1(x)

0

[
DF 0

1 (s, x)
∂ϕ0

∂ε
(s, x, 0)

+ F 0
2 (s, x)

]
ds+ F 0

1 (θ1(x), x)
∂α1

∂ε
(x, 0)

)
+O(ε3).

(16)

In order to finish the computation of the second summand we have to compute the terms
∂ϕ0

∂ε (s, x, 0) and ∂α1

∂ε (x, 0). Expanding the equation

ϕ0(t, x, ε) = x+

∫ t

0

F 0(s, ϕ0(s, x, ε), ε)ds

around ε = 0 we obtain

x+ ε
∂ϕ0

∂ε
(t, x, 0) +O(ε2) = x+ ε

∫ t

0

F 0
1 (s, x)ds+O(ε2).
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So, we get
∂ϕ0

∂ε
(t, x, 0) =

∫ t

0

F 0
1 (s, x)ds. (17)

In the same way, expanding the equation α1(x, ε) = θ1(ϕ0(α1(x, ε), x, ε)) around ε = 0

we obtain

α1(x, 0) + ε
∂α1

∂ε
(x, 0) +O(ε2) =

θ1(x) + εDxθ1(x)

(
∂ϕ0

∂t
(θ1(x), x, 0)

∂α1

∂ε
(x, 0) +

∂ϕ0

∂ε
(θ1(x), x, 0)

)
+O(ε2).

Since ϕ0(t, x, 0) = x for all t we get

∂α1

∂ε
(x, 0) = Dxθ1(x)

∫ θ1(x)

0

F 0
1 (s, x)ds. (18)

Substituting (17) and (18) in (16) we have the expression for the first summand of (15)∫ α1(x,ε)

0

F 0(s, ϕ0(s, x, ε), ε)ds = ε

(∫ θ1(x)

0

F 0
1 (s, x)ds

)

+ ε2

(∫ θ1(x)

0

[
DxF

0
1 (s, x)

∫ s

0

F 0
1 (t, x)dt+ F 0

2 (s, x)

]
ds

+ F 0
1 (θ1(x), x)Dxθ1(x)

∫ θ1(x)

0

F 0
1 (s, x)ds

)
+O(ε3).

(19)

The other summands of (15) can be computed in a similar way and they are given by∫ αj(x,ε)

αj−1(x,ε)

F j−1(s, ϕj−1(s, x, ε), ε)ds = ε

(∫ θj(x)

θj−1(x)

F j−11 (s, x)ds

)

+ ε2

(∫ θj(x)

θj−1(x)

[
DxF

j−1
1 (s, x)

∫ s

0

F1(t, x)dt+ F j−12 (s, x)

]
ds

+ F j−11 (θj(x), x)Dxθj(x)

∫ θj(x)

0

F1(s, x)ds

− F j−11 (θj−1(x), x)Dxθj−1(x)

∫ θj−1(x)

0

F1(s, x)ds

)
+O(ε3).

(20)

From (19) and (20), we have that

m1(x) =

∫ T

0

F1(s, x)ds = f1(x)

and

m2(x) = f2(x) + f∗2 (x),

where

f2(x) =

∫ T

0

[
DxF1(s, x)

∫ s

0

F1(t, x)dt+ F2(s, x)

]
ds

and

f∗2 (x) =

N∑
j=1

(
F j−11 (θj(x), x)− F j1 (θj(x), x)

)
Dxθj(x)

∫ θj(x)

0

F1(s, x)ds.

From here, the proof follows by applying the Implicit Function Theorem. �
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2.2. Higher Order Bifurcation Functions

In [1] it was obtained a sequence of function mi, i ∈ {1, . . . , k}, satisfying the following

result:

Theorem 5 ([1]). Denote m0 = 0. Let ` ∈ {1, . . . , k} satisfying m0 = · · ·m`−1 = 0

and f` 6= 0. Assume that z∗ ∈ D is a simple zero of m`. Then, for |ε| 6= 0 sufficiently

small, the differential equation (11) admits a unique T -periodic solution ϕ(t, ε) such that

ϕ(·, ε)→ z∗ as ε→ 0.

2.3. Example - Piecewise Linear Differential Systems

Given a positive integer n, let H(n) denote the maximum number of limit cycles that

planar piecewise linear systems with two zones separated by the curve y = xn can have.

In order to provide lower bounds for H(n) consider the following class of piecewise linear

differential system:

Z(x, y) =



X(x, y) =


y +

k∑
i=1

εiP+
i (x, y)

−x+

k∑
i=1

εiQ+
i (x, y)

 , y − xn > 0,

Y (x, y) =


y +

k∑
i=1

εiP−i (x, y)

−x+

k∑
i=1

εiQ−i (x, y)

 , y − xn < 0,

(21)

where n is a positive integer, and P±i and Q±i are affine functions provided by

P+
i (x, y) = a0i + a1ix+ a2iy,

P−i (x, y) = α0i + α1ix+ α2iy,

Q+
i (x, y) = b0i + b1ix+ b2iy,

Q−i (x, y) = β0i + β1ix+ β2iy,

with aji, αji, bji, βji ∈ R, for i ∈ {1, . . . , k} and j ∈ {0, 1, 2}. The switching curve of

system (21) is provided by Σ = {(x, y) ∈ R2 : y = xn}.
Denote m0 = 0 and let m`, for some ` ∈ {1, 2, . . . , k}, be the first non-vanishing

bifurcation function, that is mi = 0 for i ∈ {0, . . . , `−1} and m` 6= 0. Accordingly, denote

by m`(n) the maximum number of simple zeros that the first non-vanishing Melnikov

function m` can have for any choice of parameters aji, αji, bji, βji ∈ R, for i ∈ {1, . . . , `}
and j ∈ {0, 1, 2}.

Notice that the values m`(n), for ` ∈ {1, . . . , k}, provide lower bounds for H(n),

indeed H(n) ≥ m`(n) for every ` ∈ {1, . . . , k}.
In [7], a higher order analysis of system (21) was performed assuming a straight

line as the switching curve, that is n = 1. It was shown that m1(1) = m2(1) = 1,

m3(1) = 2, and m`(1) = 3 for ` ∈ {4, . . . , 7}. The nonlinear case of switching curves

was firstly addressed in [15] by means of Averaging Theory. In particular, it was shown

that m1(3) = 3 and m2(3) = 7. The known values (before [1]) in research literature for

m`(n), for ` ∈ {1, . . . , 6}, are summarized in Table 1. In particular, these previous studies

provided H(1) ≥ 3, H(2) ≥ 2, and H(3) ≥ 7.
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Known results for m`(n)

Order `

1 2 3 4 ≤ ` ≤ 6

D
eg

re
e
n 1 1 1 2 3

2 3 – – –

3 3 7 – –

n ≥ 4 – – – –

Table 1. Known values (before [1]) in the research literature. In par-

ticular, H(1) ≥ 3, H(2) ≥ 2, and H(3) ≥ 7.

In [1], using the Theorem 5 up to ` = 6, we were able to complete table 1 as follows

Our contribution

Order k

1 2 3 4 5 6

D
eg

re
e
n 1 1 1 2 3 3 3

2 3 4 4 4 4 4

3 3 7 7 7 7 8 ≤ m6 ≤ 10

n ≥ 4 even 4 7 7 7 7 7

n ≥ 5 odd 3 7 7 7 7 9 ≤ m6 ≤ 14

Table 2. Our main result competes Table 1. In particular, H(2) ≥ 4,

H(3) ≥ 8, H(n) ≥ 7, for n ≥ 4 even, and H(n) ≥ 9, for n ≥ 5 odd

3. Other problems that can be approached by averaging method

3.1. Bifurcation of Periodic Solutions from Families of Periodic Solutions

x′ = F0(t, x) +

k∑
i=1

εiFi(t, x) + εk+1R(t, x, ε), (22)

For m ≤ n, let V be an open bounded subset of Rm and β : V → Rn−m a Ck+1

function. Define

Z = {zα = (α, β(α)) : α ∈ V }. (23)

Denote by x(t, z, ε) the solution of (22) such that x(0, z, ε) = z. As the main hy-

pothesis we assume that:

Z ⊂ D and, for each α ∈ V , x(t, zα, 0) is T -periodic

Smooth systems: first order [3]; second order [4, 5]; third order [16]; any order [8, 13].

Lipschitz continuous systems: first order [6].

Discontinuous systems any order [17].
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Example - Limit cycle in a 3D polynomial system:

Consider the following 3D autonomous polynomial differential system

u̇ =− v + ε
(
u3 − u2 − uv2 − πv3

)
,

v̇ =u+ ε
(
πu3 − 1

)
, (24)

ẇ =w − εu.

Writing the differential system (24) in the cylindrical coordinates

(u, v, w) = (r cos θ, r sin θ, w),

we get

ṙ =
ε

4

(
r3 + r2(r(π sin(4θ) + 2 cos(2θ) + cos(4θ))− 3 cos θ − cos(3θ))− 4 sin θ

)
,

θ̇ =1 +
ε

4r

(
r2(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ) + 3πr)− 4 cos θ

)
,

ẇ =w − εr cos θ.

Since θ̇ 6= 0 for |ε| 6= 0 sufficiently small, we can take θ as the new independent variable.

So
dr

dθ
=εF11(θ, z) +O(ε2),

dz

dθ
=z + εF12(θ, z) +O(ε2),

(25)

where z = (r, w) ∈ R2 and

F11(θ, z) =
1

4

(
r3 + r2(r(π sin(4θ) + 2 cos(2θ) + cos(4θ))− 3 cos θ − cos(3θ))

− 4 sin θ
)
,

F12(θ, z) =
−1

4

(
4 cos θ

(
r2 − z

)
+ r2z(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ)

+ 3πr)
)
.

The differential system (25) is 2π-periodic in the variable θ and it is written in

the standard form form (9) with F0(θ, z) =
(
0, z
)

and F1(θ, z) =
(
F11(θ, z), F12(θ, z)

)
.

Moreover the solution of the unperturbed differential system for a initial condition z0 =

(r0, w0) is given by

Φ(θ, z0) =
(
r0, w0e

θ
)
.

Consider the set Z ⊂ R2 such that Z = {(α, 0) : α > 0}. Clearly for each zα ∈ Z, the

solution Φ(θ, zα) is 2π–periodic, and therefore the differential system (25) satisfies the

hypothesis above.

Proposition 6 ([8]). For |ε| > 0 sufficiently small system (24) has a periodic solution

ϕ(t, ε) =
(
u(t, ε), v(t, ε), w(t, ε)

)
, such that

u(t, ε) =
√

8 ε cos t+O(ε),

v(t, ε) =
√

8 ε sin t+O(ε), and (26)

w(t, ε) =O(ε).
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3.2. Bifurcation of Tori

Consider two-parameter families of non-autonomous differential equations given by

x′(t) =

k∑
i=1

εiFi(t,x;µ) + εk+1R(t,x;µ, ε). (27)

Here, Fi, i = 1, 2, . . . , k, and R are smooth functions and T -periodic in the variable t ∈ R,
x = (x, y) ∈ D with D an open bounded subset of R2, ε ∈ (−ε0, ε0) for some ε0 > 0

small, and µ ∈ R.
Let ` be the index of the first non-vanishing averaged function. Consider the trun-

cated averaged system

ẋ = ε`g`(x;µ). (28)

Theorem 7 ([9]). If the truncated averaged system (28) undergoes a Hopf bifurcation (as

µ crosses a critical value µ∗), then, for |ε| 6= 0 sufficiently small, the differential equation

(27) undergoes a Torus Bifurcation (as µ crosses the critical value).

Example - Rössler System:

ẋ = −y − z,

ẏ = x+ ay,

ż = bx− cz + xz.

(29)

Consider the parameter vector (a, b, c) of the Rössler system (29) ε-close to (a, 1, a),

with a ∈ (−
√

2,
√

2). More specifically, we assume that

(a, b, c) =
(
a+ εα1 + ε2α2, 1 + εβ1 + ε2β2, a+ εγ1 + ε2γ2

)
+O(ε3), (30)

with a ∈ (−
√

2,
√

2) \ {0} and ε, αi, βi, γi ∈ R, for i = 1, 2. Also, define

d0 =
(
α1 − γ1 + β1a

(
a2 − 1

)) (
α1

(
a2 − 1

)
+ a(β1 − aγ1) + γ1

)
,

d1 = γ1 − α1 + β1a, and

`1 = 12πa4
(
a4 − 16

)
− a

(
4a8 − 12a6 + 193a4 − 640a2 − 144

)√
2− a2.

(31)

Notice that the parameters above, d0, d1, and `1, do not depend on ε.

Theorem 8 ([10]). Let (a, b, c) be given by (30).

(i) If d0 > 0, then for |ε| 6= 0 sufficiently small the Rössler System (29) admits a

periodic solution ϕ(t, ε) satisfying ϕ(t, ε) → (0, 0, 0) when ε → 0. Moreover, for

ε > 0, such a periodic solution is asymptotically stable (resp. unstable) provided

that d1 > 0 (resp. d1 < 0). Denote ϕ(t, γ1, ε) = ϕ(t, ε).

(ii) In addition, if `1 6= 0, then there exist a smooth curve γ(ε), defined for ε > 0

sufficiently small and satisfying γ(ε) = γ1 +O(ε) with γ1 = α1− aβ1, and intervals

Jε containing γ(ε) such that a unique invariant torus bifurcates from the periodic

solution ϕ(t, γ(ε), ε) as γ1 passes through γ(ε). Such a torus exists whenever γ1 ∈ Jε
and `1(γ1 − γ(ε)) > 0, and surrounds the periodic solution f(t, γ1, ε). In addition,

if `1 > 0 (resp. `1 < 0) the torus is unstable (resp. asymptotically stable), whereas

the periodic solution ϕ(t, γ1, ε) is asymptotically stable (resp. unstable).
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Examplo 2. a =
1

2
, α1 = 2, β1 = 2, α2 = −2, β2 = −1 and γ2 = −1

We compute γ1 = 1 and `1 ' 155.66 > 0. Theorem 8 predicts, for ε > 0 small

enough, the existence of an asymptotically stable periodic solution of (29) surrounded

by an unstable invariant torus:

Figure 4. Poincaré section {z = 0 and x > 0} of the Rössler System

(29) for ε = 10−2. Trajectories starting at (2982× 10−5, 9656× 10−6, 0)

and (3020 × 10−5, 9260 × 10−6, 0). The unstable invariant torus corre-

sponds to an unstable invariant closed curve of the Poincaré map.

Examplo 3. a = −39

32
, α1 = 1, β1 = 2, α2 = −2, β2 = −1, and γ2 = −1.

We compute γ1 =
55

16
and `1 ' −1122.13 < 0. Theorem 8 predicts, for ε > 0

small enough, the existence of an unstable periodic solution of (29) surrounded by an

asymptotically stable invariant torus:

Figure 5. Poincaré section {z = 0 and x > 0} of the Rössler System

(29) for ε = 10−2. Trajectories starting at (1504× 10−5, 2852× 10−5, 0)

and (1523 × 10−5, 2695 × 10−5, 0). The asymptotically stable invariant

torus corresponds to an asymptotically stable invariant closed curve of

the Poincaré map.
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[6] A. Buică, J. Llibre, and O. Makarenkov. Bifurcations from nondegenerate families of periodic

solutions in Lipschitz systems. J. Differential Equations, 252(6):3899–3919, 2012.

[7] C. Buzzi, C. Pessoa, and J. Torregrosa. Piecewise linear perturbations of a linear center.

Discrete Contin. Dyn. Syst., 33(9):3915–3936, 2013.

[8] M. R. Cândido, J. Llibre, and D. D. Novaes. Persistence of periodic solutions for higher order

perturbed differential systems via lyapunov-schmidt reduction. Nonlinearity, 30(9):3560,

2017.

[9] M. R. Cândido and D. D. Novaes. On the torus bifurcation in averaging theory. J. Differ-

ential Equations, 268(8):4555–4576, 2020.

[10] M. R. Cândido, D. D. Novaes, and C. Valls. Periodic solutions and invariant torus in the
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