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1. Averaging Method for Studying Periodic Solutions of Discontinuous
Piecewise Smooth Differential Equations

Let D C R open bounded subset and S' = R/T for some T > 0. Consider a finite
sequence of open disjoints subset (S;) C S'xD, j = 1,..., N. Assume that the boundaries
of S; are piecewise C* embedded hypersurfaces. Denote by ¥ the union of all boundaries.
Notice that the union of ¥ with all S;’s cover S' x D.
For i e {1,...,k}, let
N N
Fy(t,x) =Y xg,(t,2)F/(t,z) and R(t,z,e) =Y x5 (t, )R’ (t,),
j=1

Jj=1
where, for A C S' x D, xa(t,z) denotes the characteristic function

)it (tx) € A,
XA(t’x)_{o it (ta) ¢ A.

Here, the functions FZJ RxD —R" fori=1,...,k,and j=1,...,N,and R: Rx D x
[0,e0] — R™ are assumed to be T'—periodic in the variable ¢ and smooth.

Consider regularly perturbed piecewise smooth non-autonomous differential equa-
tions given in the following standard form:

k
= ZsFi(t,x) + e*FLR(t, x,€), (t,x,e) € R x D x (—eg,&0). (1)
i=1
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Crossing Hypothesis (CH) 3 an open bounded subset C' C D such that, for e = 0,
{t,2): tesS'}n cx-

1.1. First-Order Averaging Method
T
£1(2) = / Fu(t, 2)dt
0

Under hypothesis (CH), one can see that f; is smooth on C. Then, the following result
holds.

Theorem 1 ([I5]). In addition to hypothesis (CH), assume that z* € C is a simple zero
of f1. Then, for |e| # 0 sufficiently small, the differential equation admits a unique
T-periodic solution o(t,e) such that o(-,&) — z* as e — 0.
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1.2. Example - Discontinuous Perturbed Harmonic Oscillator
2 +x+ba’ =g (x,2),
where b, = by +¢20(1) > 0 and g.(z,y) = eg1(x,y) + 20(1).

Standard Form: % = esin(6) (by7sin(f) — g1 (r cos(h),rsin(6)) + £20(1)

2m
First-Order Averaged Function: f;(r) = bymr — / sin(6)g1 (r cos(0), rsin(0))do
0

Examplo 1.

+ _ —
+ sign(y)%.

+, 70 + -
91(x7y)={ g_ ZZO :#

- ﬂJr) + O(E)’ 0 € [Ovﬂ/Q]
)= B7)+0(), 6¢€[r/2,2n]

dr { sin(6) (byr sin(6)
do 0

B sin() (b1 sin(

fi(r) = blwr—/o 7Tsin(@)gl(rcos(ﬂ),rsin(@))d@

bymr — /7T B sin(0)do — B~ sin(6)dd
0 ™
= 2Bt =p7)+binr

Assuming b1 (8T — 87) > 0, the equation fi(r) = 0 a unique positive solution

* 2(8t-87)

r blT(

. Hence, the First-Order Averaging Method ,Theorem provides the

existence of a periodic solution (6, ) of differential equation such that r(-,&) — r*
as ¢ — 0. Accordingly, one gets the existence of a periodic solution (z(t,¢), 2’ (t,€)) of

the differential equation satisfying |(z(-,e),2'(-,€))] = r* as e = 0.
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FIGURE 1. Forward trajectories of the differential system (2',y’) =
(y,—x + ey +egi(z,y)) for 7 =3, B~ =1, and ¢ = 0.5. The red
dots indicate the initial conditions (1,0) and (1,1.5). The blue segment
indicates an escaping region and the dashed black segment a crossing
region. The black closed curve indicates a limit cycle.
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FIGURE 2. Forward trajectories of the differential system (2/,y’) =
(y, —x+ey+ Egl(a:7y)) for B+ =3, B~ =1, and € = 0.05 The red dots
indicate the initial conditions (0.1,0) and (0.1,1.5). The blue segment
indicates an escaping region and the dashed black segment a crossing
region. The black closed curve indicates a limit cycle.

1.3. Second-Order Averaging Method

T
f2(2) :/0 [Fg(t, z) +3zF1(t,z)y1(t,z)]dt, where

N t
0. F1(t, 2) Z (t,2)0, Fl(t,z), and yy(t, 2) :/ Fi(s,z)ds.
0

Theorem 2 ([I5]). Suppose that f; = 0. In addition to the hypothesis (HC) assume that

Hb2 (O,yl(t, Z)) c T(t,z)z for (t,Z) D>

Assume that z* € D is a simple zero of f5. Then, for |e| # 0 sufficiently small, the
differential equation admits a unique T-periodic solution ¢(t,€) such that p(-,€) — 2z*
as € — 0.

Planar system with rays of discontinuity!
—
Discontinuity only in the time variable!

=
Hypothesis Hb2 holds!
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1.4. Example - Discontinuous Perturbation of Quadratic Homogeneous Center

Consider the following families of quadratic homogeneous center (see [11]):
. 4 ,
j’lz_y+m2_y27 $':—y+$2, x:_y_gxa
Z1 : Z2 : . Zd : 16 (4)
y:JC—F.Ty. y:x_?xy.

F1GURE 3. Phase portrait of systems Z1, Z5, and Z3 from left to right.

Y=z + 2zy.

In [12] it was studied bifurcation of limit cycles from such families when they are
perturbed by discontinuous piecewise quadratic polynomial systems as follows

g {Zi(m,y)+€(P1+(w7y)7621+(x,y))+52 (P (2,y), Q3 (x,y)), if h(z,y) >0,
Y Zi(ayy) e (P (2,y), Q1 (2,y) + €2 (Py (2,), Qz (2, y), if h(z,y) <0, 5
5

where ¢ is sufficiently small, h(z,y) = y — tan(a)z, and, for k = 1,2,

2 2 J
Pi(wy) =Y pri@'y’ ™ and Qp(wy) =) iy "

J
§=0i=0 §=0 i=0
In what follows we shall study the family Sy for ¥ = {y + v/3z = 0}, that is, a = 7/3.
Step 1 (Standard Form): Write system Zs . in the standard form of the averaging method.
Assume P,f(O, 0) = Qf(O7 0). The linearization stated in [I1] of Zs is given by

Uu v
= _ d -
v—1 MY v—17
which has the following rational inverse
u= x and v = L.
y+1 y+1

Notice that straight lines passing through the origin are fixed by the transformation. With
this change of variables the differential equation Z; becomes the linear center (u',v’) =
(—=v,u). Then, composing with the polar coordinates u = rcosf and v = —rsiné and
taking 6 as the new time variable, Z5 . becomes

') = 7 Ai(rcosf,rsinf) = 5 Ax(rcosf,rsind)
' _9_6 14+ rcosf 1+ 7rcosf

where C(0,r) = and A;, i = 1,2, are piecewise functions
Af(rcos,rsinf) if 0<6<n/3,
A;(rcosf,rsinf) =< A7 (rcosf,rsinf) if /3 <0 <d4w/3, (7)

(3

Af(reos,rsinf) if 4r/3 <0 <2m,

+ O(e%), (6)

being .Aii polynomials of degree 3.
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Step 2 (First Order Analysis): Compute f; and its zeros.

2 . 7
Aj(rcosf,rsing)
f1(r) = A9 = knfn,
1) 0 14 rcosé nz::o f
with
2 3 5
__r __ __ __r
fO(p) _p2+17 fl(p) (p2+1)27 f2(p) (p2+1)2a f4(p) (p2+1)27
5(54733p% + 94452p% + 54733)  15(1366p* + 1847p? 4 1366) ~
f3(p) = B P) + D) L(p)
6912(p2 + 1) 1024(p% + 1)p
N 251/3(236p* — 247p% + 236)(p* — 1)2 o)
82044p(p% + 1)3 Pl
f(p) = — 35(21835p" + 40596p> + 21835)  105(550p™ 4 797p* + 550) ()
W)= 6912(p2 + 1) 1024(p% + 1)p P
175v/3(176p* — 181p2 + 176)(p* — 1)% ~
_ 1rv3L 1O = V7 5, ®)
82944p(p? + 1)
245(227p* + 444p% + 227)  315(122p* + 181p% + 122) ~
folp) = 6807 + 17 > L(p)
pr+1) 1024(p% + 1)p
35v/3(116p* — 115p% + 116)(p? — 1)% ~
9216p(p2 + 1)
385(77p* + 156p% + 77)  3465(2p* + 3p> +2) ~
f7(p):_ ( ) 2 ) - ( B )L(p)
2304(p2 + 1) 1024(p2 + 1)p
385v/3(8p" — 7p* +8)(p* — 1)? )
27643p(p2 + 1) pJ-
Here,
2
= pr—p+1 ~ 2p 27 20 27
0 =tox (55201) . B =0 (2 5) o (-5
where
1 1— 6
o(r,0) = ——— [ 8 — 2 arctan "tan ( 2 ,
1—72 1+r 2
and the parameters k,, n =0,1,...,7, are arbitrary real numbers which depends on the

parameters of perturbations. One can see that fi(p) = p**! + O(p'*?) for i = 0,1,...,5,
fo(p) = p® + O(p%), and f7(p) = p'® + O(p!'!). Therefore, the ordered set of functions
[fo, f1,- -+, f7] is an ECT-system in a neighborhood of the origin (see [14] [19]).

Averaging Method = 7 limit cycles.
Pseudo-Hopf-Bifurcation

b=20

Averaging Method + Pseudo-Hopf Bifurcation = 8 limit cycles.
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Step 3 (Second Order Analysis): Assume minimal conditions in order that f; = 0 and
compute fy and its zeros.
Notice that f; = 0 if, and only if, k; =0 for i € {0,...,7}.

I
2 .
[T Aa(rcosf,rsind)
folr) = o 1+rcosf d0
Jr/% 0 (Ai(rcosf,rsinb) /9 .Al(rcosa,rsina)d a0
= o
0 or 14 rcosé 0 14+ rcosa

Iy
An expression for I; can be obtained analogously to f;. However, in order to obtain I,
one must integrate rational functions with denominators (1 + 7 cos)? and numerators
depending on

{r,0,cos0,sin 0, \(r, —w /3 + 0), \(r, =47 /3 + 0), d(r, =7 /3 + 0), d(r, —47 /3 + )},

where ¢ is defined above and A(r,0) = log(1l + rcosf). Unfortunately, I cannot be
explicitly computed.
Computing the Taylor series of the integrand around r = 0 and then integrating
one can see that .
f2(r) = fir' + O(r™t1).
i=1
The coefficients f;’s depend linearly on {pf’m7 qii’j} and quadratically on {pfi’j, qli”}
Poincaré-Miranda Theorem provides a transformation on the parameters such that
16
fo(r) = Zdﬂ‘i + O(r™t),
i=1
where (dy,...,dig) depends onto the parameters of perturbation in a surjective way
around the origin 0 € R16,

Averaging Method = 15 limit cycles.

Averaging Method + Pseudo-Hopf Bifurcation = 16 limit cycles.

I THINK THAT IT IS THE BEST LOWER BOUND SO FAR
for the number of limit cycles in piecewise quadratic polynomial differential systems
with two zones separated by a straight line.
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1.5. Higher Order Averaging Method

Let 0=ap < a1 <--- <ay_1 <any =T. Consider the differential equation
k
"(0) = ZE’Fi(Q,x) + "1 R0, x,¢), (9)

where

N
= ZX[%%H](G)Fij(G,x), i=0,1,...k, and
= (10)
R(0,x,¢) Zxa] 1) YRI(0,x,¢).
7=0

Here, the functions F] RxD —R” fori=1,...,k,and j=1,...,N,and R: Rx D x
[0,e0] — R™ are assumed to be T—periodic in the variable ¢ and smooth. Notice that
S={0=0u{=o1}U---U{0 =an_1})NS' x D is the discontinuity set of (9).

Theorem 3 ([I8]). Denote fo = 0. Let ¢ € {1,...,k} satisfying fo = ---f,_1 = 0 and
f, # 0. Assume that z* € D is a simple zero of f,. Then, for |e| # 0 sufficiently small, the
differential equation (9) admits a unique T-periodic solution (t,e) such that (-, &) — z*
as € — 0.

2. Bifurcation Functions in a More General Case

Consider, an open subset D C R? S! = R/T for some period T' > 0, and k a positive
integer. Let 0; : D — S, j € {1,...,N}, be C*~! functions such that 6y(z) = 0 <
O1(x) < --- < On(x) <T = 0On11(x), for all z € D. Under the assumptions above, we
consider the following piecewise smooth differential system

i =Y e'Fi(t,x) + " R(t 2, 2), (11)

where where

F)(t,x), 0<t<b(x),
> J Fil(tax)7 91(37) <t<92(1‘),
ZXQ (x),0541(x)] N F] () = .
Jj=0

FN(t,x), On(z)<t<T,

3

RO(t,x,e), 0<t<b(x),

RY(t,xz,e), 0i(x) <t <Ba(x),
. Re), 0ie) <t <00

-

I
=)

X0, )0, (D (8,0,8) = §
; :
RN (t,z,e), On(z)<t<T,

with F/ : S' x D — R% R/ : S' x D x (—gg,60) — R, for i € {1,...,k} and j €
{1,..., N}, being smooth functions and T—periodic in the variable ¢. In this case, the
switching manifold is provided by ¥ = {(0;(x),z); z € D, i € {0,1,...,N}}.
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2.1. Second-Order Bifurcation Function

Define second order bifurcation (Melnikov) function ms : D — R™ by
my (z) = f5(z) + £5(2),
where the increment f5 is given by

N 0;(x)

50 = Y (F7 0000 - RO0).0))0.050) [ Fils.)is

Theorem 4 ([2]). Suppose that f; = 0. Assume that z* € D is a simple zero of my. Then,
for |e| # 0 sufficiently small, the differential equation admits a unique T-periodic
solution p(t,e) such that p(-,€) — 2* ase — 0.

Proof. We denote the solution of by

@0(@3775), 0 S t S al(x,é);

<t < :
ot 3,6) = p1(t,z,e), ar(z,e) <t < as(x,e); (12)

on(t,z,e), ay(z,e) <t <T.

In the above expression aj(x,¢) is the flight-time that the trajectory ;1 (-, z,¢€), start-
ing at ¢;_ 1(aj 1(z,€),z,¢) € D for t = aj_1(x,¢), reaches the manifold {(6;(x),z) : x €
Dy C v o) 65 T ) Ona)

-------------------------------------------------------------------------------------- (T, 20, €)

047'71(1‘0, 04,7'(1’()7 5)

Notice that
aj(x,g) = gj(‘pjfl(o‘j(xvs)vmvs))'
for j =1,2,...,N, ap(x,e) =0, and anyi(x,e) = T. Moreover,
Op;
ot
0o(0,z,¢) =z,
{ pjlaj(z,e),z,e) = ¢j_1(oj(x,e),x,€), for j =1,2,...,N.

(t,x,e) = Fi(t,0i(t,z,¢),¢), for j =0,1,..., N, where
(13)
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From and from the differential dependence of the solutions on the initial conditions
and on the parameter, we can see inductively that a;(x, €) and ¢; (¢, z, €) are C” functions,
for y=0,1,...,N.

We notice that the recurrence describes initial value problems. Therefore, it is
equivalent to the following recurrence:

t
cpo(t,x,e):x—i—/ Fo(s7ap0(s,x75),5)ds,
0

t
@j(t,x,f) = @j_l(aj(x,ﬁ),Z',&) +/ F](S,gﬁj(s,x,é‘),é‘)d{?,

oj(z,e)
for j =1,2,...,N. So, we may compute

N aj (z,e)

on(t,z,e) = a:—I—Z/ Fi=Y (s, p;-1(s,2,¢),€)ds
=1 oj—1(x,e)

t
+/ FN(s,wN(s,z,s),s)ds.

~(z,e)

The displacement function is given by
Az, e) = o(T,z,e) —x = on(T, x0,€) — . (14)

Notice that, from the above comments, A(x,¢) is a C” function. Since A(z,0) = 0, then,
expanding around € = 0, we have

A(z,e) = emy (x) + e?my(z) + O(?).
On the other hand, the displacement function writes

N+1 O‘J'(I7E) .
Az e) = pn(T,x,6) —x = Z / FI=Y(s, pj-1(s,7,¢),€)ds. (15)

j=1 Jai-1(z.e)

In what follows, we compute the expansion, around ¢ = 0, of the N + 1 summands of
. For the first one we obtain

ay(z,e)
/ FO(S’SDO(Saxa€)7€)dS
0

ay(x,e)
= / [EFlo(s, wols,z,e)) + eng(s, wo(s,z,€)) + (’)(53)](15
0

01 () 61 () Do
=c / F)(s,x)ds | + €* / |:DF10(5, x)——(s,2,0)
0 0 Oe

+ FY(s, x)} ds + (6, (z), J;)%(az, 0)) +0O(e%).

(16)

In order to finish the computation of the second summand we have to compute the terms

%(s,x, 0) and %(a:, 0). Expanding the equation

t
L)0()<t7*7:a5) =T +/ F0(87(p0(8,:1,‘78)76)d8
0
around € = 0 we obtain

t
T+ 5%(@% 0)+0E*) =z + 5/ FY(s,z)ds + O(e?).
0
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So, we get
t
aa“?(um):/o FO(s, z)ds. (17)

In the same way, expanding the equation aq(z,e) = 01(o(a1(z,€),z,¢)) around € = 0
we obtain

a1(z,0) + 5%(90, 0) + O(e?) =

Oe
Opo Oay % 2
01(x) +5D101(x)<m(ﬂl(x),x,())ag(x,O) + 9% (01(x),z,0) ) +O(7).
Since g (t, z,0) = z for all ¢t we get
91(£)
%(:370) = Dxﬁl(ac)/ F(s,x)ds. (18)
Oe 0

Substituting and in we have the expression for the first summand of

a1 (z,e) 61(x)
/ FO(s,00(s,2,€),€)ds = é‘(/ Ff(s,x)ds)
0 0

+52< /0 e [DIFIO(S,x) /O | Ff(t,x)dHFg(s,x)]ds (19)

QI(I)
+ F2(6, (x),a:)Dzﬁl(:c)/ Flo(s,:c)ds> +O(e?).
0

The other summands of can be computed in a similar way and they are given by

aj(z.e) 0;(z) N
/ Fi=Y(s,0,_1(s,2,¢),e)ds = ¢ / F} ™ (s,z)ds
« [4

j—1(w,)

0;(z) ) s .
+52</ [Dfol(s,:r)/ Fl(t,:v)dtJrFQJl(s,x)} ds
0j,1(x) 0 (20)

. 0;(x)
+ FN0(2), ) Daby () / Fi(s,2)ds
0

0

_ 6;—1(x)
- Ff_l(ﬁj_l(a:),x)Dij_l(x)/ Fﬂs,x)ds) +0O(e?).
From and , we have that

T
my(z) = /0 Fi(s,x)ds = f1(x)

and
my(z) = fa2(z) + £ (2),
where - .
fo(x) = /0 {DzFl(sm)/o Fi(t,x)dt + FQ(S,:U)] ds
and N A , 0;(x)
G50 =3 (F 0. 0) - H 0000 ) Data) [ Fats. .
j=1 0

From here, the proof follows by applying the Implicit Function Theorem. O
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2.2. Higher Order Bifurcation Functions

In [1] it was obtained a sequence of function m;, ¢ € {1,...,k}, satisfying the following
result:
Theorem 5 ([I]). Denote mog = 0. Let ¢ € {1,...,k} satisfying mg = ---my_; = 0

and £, # 0. Assume that z* € D is a simple zero of my. Then, for || # 0 sufficiently
small, the differential equation admits a unique T-periodic solution ¢(t,e) such that
o(,e) = 2" ase — 0.

2.3. Example - Piecewise Linear Differential Systems

Given a positive integer n, let H(n) denote the maximum number of limit cycles that
planar piecewise linear systems with two zones separated by the curve y = z can have.
In order to provide lower bounds for H(n) consider the following class of piecewise linear
differential system:
k
y+> &P (zy)
X(:L’,y): izli , yfmn >0’
—z+ Y £Qf (w,y)
i=1
Z(x,y) = (21)

k
y+y &P (x,y)
Y(.’l?,y) = i:é , y— " < O,
—z+ Y £Q; (z,y)

i=1

where n is a positive integer, and Pii and Q?[ are affine functions provided by

Pz‘+($7 y) = aoi +aur + ay,
P (z,y) = oo+ anuz+ agy,
Qf (x,y) = boi + bz + by,

Q; (z,y) = Boi+ Prix+ Py,

with aji, aji,b5, 80 € R, for i € {1,...,k} and j € {0,1,2}. The switching curve of
system is provided by ¥ = {(z,y) € R? : y = a"}.

Denote my = 0 and let my, for some ¢ € {1,2,...,k}, be the first non-vanishing
bifurcation function, that is m; = 0 for i € {0,...,¢—1} and my # 0. Accordingly, denote
by my(n) the maximum number of simple zeros that the first non-vanishing Melnikov
function my, can have for any choice of parameters aj;, i, bji, s € R, for i € {1,...,¢}
and j € {0,1,2}.

Notice that the values me(n), for ¢ € {1,...,k}, provide lower bounds for H(n),
indeed H(n) > my(n) for every £ € {1,...,k}.

In [7], a higher order analysis of system was performed assuming a straight
line as the switching curve, that is n = 1. It was shown that mi(1) = mo(1) = 1,
mg(1) = 2, and my(l) = 3 for ¢ € {4,...,7}. The nonlinear case of switching curves
was firstly addressed in [I5] by means of Averaging Theory. In particular, it was shown
that m1(3) = 3 and ms(3) = 7. The known values (before [1]) in research literature for
me(n), for £ € {1,...,6}, are summarized in Table In particular, these previous studies
provided H(1) >3, H(2) > 2, and H(3) > 7.
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Known results for my(n)

Order ¢
1 314</¢<6
< 1 112 3
o 2 31— -
o
X3 [3]7]- —
Rlasal | |- -

TABLE 1. Known values (before [I]) in the research literature. In par-
ticular, H(1) >3, H(2) > 2, and H(3) > 7.

In [1], using the Theorem [5|up to ¢ = 6, we were able to complete table (1| as follows

Our contribution

Order k
1/2(3(4|5 6
IS 1 1111233 3
§ 2 314|444 4
& 3 3|77 7]7][8<me<10
A n>4even |4 |7|7|7|7 7
n>5o0dd [3|7|7|7]|7]9<mg<14

TABLE 2. Our main result competes Table |1} In particular, H(2) > 4,
H@3)>8, H(n) > 7, for n > 4 even, and H(n) > 9, for n > 5 odd

3. Other problems that can be approached by averaging method

3.1. Bifurcation of Periodic Solutions from Families of Periodic Solutions
k

¥ = Fy(t,x) + Z e'Fy(t, ) + "I R(t, x, ¢), (22)
i=1
For m < n, let V be an open bounded subset of R™ and 3 : V — R*»™™ a Ck+!
function. Define
Z={z2o=(,B(a)): a €V} (23)
Denote by x(t, z,¢) the solution of such that z(0,z,€) = z. As the main hy-
pothesis we assume that:

Z C D and, for each a €V, x(t,24,,0) is T-periodic

Smooth systems: first order [3]; second order [} [5]; third order [16]; any order [8| [13].
Lipschitz continuous systems: first order [6].

Discontinuous systems any order [17].
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Example - Limit cycle in a 3D polynomial system:
Consider the following 3D autonomous polynomial differential system

uz—v+€(u3—u2—uv2—7w3),
b=u+e(mu’®—1), (24)
wW =W — EU.

Writing the differential system in the cylindrical coordinates
(u,v,w) = (rcos@,rsinf,w),
we get
=2 (1 4 %(r(wsin(46) + 2cos(20) + cos(46)) — 3 cos b — cos(30)) — 4sinb)
0 =1+ i (r*(sin 6 + sin(30) — rsin(46) + 7r cos(46) + 3mr) — 4 cos ) ,
W =w — ercos .

Since 6 # 0 for le| # 0 sufficiently small, we can take 6 as the new independent variable.
So

% ZEFH(H, Z) + 0(52),
e (25)
0= +eF12(0, 2) + O(e%),

where z = (r,w) € R? and
Fi1(0,2) :i (r® + 7% (r(7 sin(40) + 2 cos(20) + cos(46)) — 3 cos § — cos(30))
— 4sin 0),
Fi2(6, 2) :_Tl (4cos (r® — z) + r?2(sin 0 + sin(30) — rsin(40) + mr cos(49)

+ 3mr)).

The differential system is 2m-periodic in the variable 6 and it is written in
the standard form form (9) with Fy(,z) = (0,2) and Fy(6,2) = (F11(6, 2), F12(0, 2)).
Moreover the solution of the unperturbed differential system for a initial condition zy =
(ro,wp) is given by

D(0,z9) = (ro,woea).

Consider the set Z C R? such that Z = {(a,0) : @ > 0}. Clearly for each z, € Z, the
solution ®(0, z,,) is 2m—periodic, and therefore the differential system satisfies the
hypothesis above.

Proposition 6 ([§]). For |e| > 0 sufficiently small system has a periodic solution
o(t,e) = (ult,e), v(t,e), w(t,)), such that

u(t,e) =v8e cost + O(e),
,€) =V8esint + O(e), and (26)
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3.2. Bifurcation of Tori

Consider two-parameter families of non-autonomous differential equations given by
k
x'(t) = Z e F;(t,x; 1) + "I R(E, x5 1, €). (27)
i=1

Here, F;,i=1,2,...,k, and R are smooth functions and T-periodic in the variable ¢t € R,
x = (x,y) € D with D an open bounded subset of R?, ¢ € (—¢&g,&0) for some gy > 0
small, and p € R.

Let ¢ be the index of the first non-vanishing averaged function. Consider the trun-
cated averaged system

x = e'go(x; ). (28)

Theorem 7 ([9]). If the truncated averaged system undergoes a Hopf bifurcation (as
W crosses a critical value p* ), then, for |e| # 0 sufficiently small, the differential equation
(27) undergoes a Torus Bifurcation (as p crosses the critical value).

Example - Rossler System:

T=—-y -2z,
Y=+ ay, (29)

Z=br —cz+ xz.
Consider the parameter vector (a, b, ¢) of the Rossler system e-close to (a, 1, a),
with @ € (—v/2,v/2). More specifically, we assume that

(a,b,c) = (6 +eoq +%an, 1+ e + 2B, a+ ey + 5272) +0(e%), (30)
with @ € (—v/2,v/2) \ {0} and ¢, ay, Bi, v € R, for i = 1,2. Also, define
do= (a1 —m+pa(@-1)) (a(@—1)+a(Br —an)+mn),
di = v —aj+ Bia, and (31)
0= 12na* (@ — 16) —a (4a° — 12a° + 193a* — 640a° — 144) /2 — @°.
Notice that the parameters above, dg, dy, and ¢1, do not depend on .

Theorem 8 ([I0]). Let (a,b,c) be given by .

(i) If dy > 0, then for |e| # O sufficiently small the Rdssler System admits a
periodic solution ¢(t,€) satisfying p(t,e) — (0,0,0) when ¢ — 0. Moreover, for
e > 0, such a periodic solution is asymptotically stable (resp. unstable) provided
that di > 0 (resp. dy < 0). Denote p(t,v1,¢€) = ¢(t, €).

(ii) In addition, if {1 # 0, then there exist a smooth curve y(g), defined for ¢ > 0
sufficiently small and satisfying v(e) = 7, + O(e) with ¥, = a1 —aB1, and intervals
Je containing y(g) such that a unique invariant torus bifurcates from the periodic
solution o(t,v(g),€) as y1 passes through y(g). Such a torus exists whenever vy, € J.
and l1(y1 — v(g)) > 0, and surrounds the periodic solution f(t,v1,€). In addition,
if {1 > 0 (resp. ¢1 < 0) the torus is unstable (resp. asymptotically stable), whereas
the periodic solution o(t,v1,¢€) is asymptotically stable (resp. unstable).
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1
Examplo 2. a = 3 a1 =2, 1=2, ap=-2, fa=—1 and v =-1

We compute 7; = 1 and ¢; ~ 155.66 > 0. Theorem [§| predicts, for £ > 0 small
enough, the existence of an asymptotically stable periodic solution of surrounded
by an unstable invariant torus:

FIGURE 4. Poincaré section {z = 0 and = > 0} of the Réssler System
for ¢ = 1072, Trajectories starting at (2982 x 107°,9656 x 1076, 0)
and (3020 x 107°,9260 x 107¢,0). The unstable invariant torus corre-
sponds to an unstable invariant closed curve of the Poincaré map.

39
— 55 1 = 1, ﬂl == 2a Qg = 727 BQ = 717 and Yo = —1.

Examplo 3. @ =
32

55
We compute 7, = 16 and ¢; ~ —1122.13 < 0. Theorem E predicts, for ¢ > 0
small enough, the existence of an unstable periodic solution of (29) surrounded by an

asymptotically stable invariant torus:

A

FIGURE 5. Poincaré section {z = 0 and « > 0} of the Rossler System
for ¢ = 1072, Trajectories starting at (1504 x 107°,2852 x 107, 0)
and (1523 x 1075,2695 x 107°,0). The asymptotically stable invariant
torus corresponds to an asymptotically stable invariant closed curve of
the Poincaré map.
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