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1. Averaging Method for Studying Periodic Solutions of Smooth

Differential Equations

Consider regularly perturbed smooth non-autonomous differential equations given in the

following standard form:

x′ =

k∑
i=1

εFi(t, x) + εk+1R(t, x, ε), (t, x, ε) ∈ R×D × (−ε0, ε0). (1)

Here,D is an open bounded subset of Rn, ε0 > 0 small, and the functions Fi : R×D → Rn,
for i = 1, . . . , k, and R : R×D×[0, ε0]→ Rn are assumed to be T−periodic in the variable

t and smooth.

For i ∈ {1, . . . , k}, the averaged function of order i, f i : D → Rn, is defined by

fi(z) =
yi(T, z)

i!
, (2)

where

y1(t, z) =

∫ t

0

F1(s, z) ds and

yi(t, z) =

∫ t

0

(
i!Fi(s, z) +

i−1∑
j=1

j∑
m=1

i!

j!
∂mx Fi−j(s, z)Bj,m

(
y1, . . . , yj−m+1

)
(s, z)

)
ds,

(3)

for i ∈ {2, . . . , k}.

Recall that

f1(z) =

∫ T

0

F1(t, z)dt and f2(z) =

∫ T

0

(
F2(t, z) +DxF1(t, z)

∫ t

0

F1(s, z)ds
)
dt
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Theorem 1 ([2]). Denote f0 = 0. Let ` ∈ {1, . . . , k} satisfying f0 = · · · f`−1 = 0 and

f` 6= 0. Assume that z∗ ∈ D is a simple zero of f`. Then, for |ε| 6= 0 sufficiently small, the

differential equation (1) admits a unique T -periodic solution ϕ(t, ε) such that ϕ(·, ε)→ z∗

as ε→ 0.

Stability: In addition, if z∗ is a hyperbolic singularity of the truncated averaged equation

z′ = ε`f`(z), then the stability of the periodic solution ϕ(·, ε) coincides with the stability

of the singularity z∗.

1.1. Example - Smooth Perturbed Harmonic Oscillator

x′′ + x+ bεx
′ = gε(x, x

′), (4)

where

bε = εb1 + ε2b2 + ε3O(1) > 0, and gε(x, y) = εg1(x, y) + ε2g2(x, y) + ε3O(1)

is a sufficiently differentiable function.

Notice that, by taking y = x′, the second order differential equation (4) writes

x′ = y,

y′ = −x− bεy + gε(x, y).
(5)

Remark: Due to the dumping effect (bε > 0), if gε = 0 the above system has a glob-

ally asymptotically stable equilibrium at (x, x′) = (0, 0) (Eigenvalues: (−bε±
√
b2ε − 4)/2).

Our goal is to find a “forcing term” gε in order to this system to have a periodic orbit.
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Step 1 (Standard Form): Write system (4) in the standard form (1) in order to apply

the averaging theorem.

Writting the vector field (5) in polar coordinates (x, y) =
(
r cos(θ), r sin(θ)

)
, we get

r′ = sin(θ)
(
gε(r cos(θ), r sin(θ))− bεr sin(θ)

)
,

θ′ = −1 +
cos(θ)gε(r cos(θ), r sin(θ))

r
− bε cos(θ) sin(θ).

Fixing the domain D = [r0, r1], for some 0 < r0 < r1, we notice that there exists ε0 > 0

small such that θ′ < 0 for (θ, r, ε) ∈ R×D × (−ε0, ε0). Thus, taking θ as the new time:

dr

dθ
=

r′

θ′
=

r sin(θ)
(
gε(r cos(θ), r sin(θ))− bεr sin(θ)

)
−r + cos(θ)gε(r cos(θ), r sin(θ)) + bε cos(θ) sin(θ)

= ε sin(θ)
(
b1r sin(θ)− g1(r cos(θ), r sin(θ)

)
+
ε2

r
sin(θ)

(
cos(θ)

(
b1r sin(θ)− g1(r cos(θ), r sin(θ))

)2
+r
(
b2r sin(θ)− g2(r cos(θ), r sin(θ))

))
+ ε3O(1)

= εF1(θ, r) + ε2F2(θ, r) + ε3R(θ, r, ε),

(6)

where
F1(θ, r) = sin(θ)

(
b1r sin(θ)− g1(r cos(θ), r sin(θ)

)
,

F2(θ, r) =
1

r
sin(θ)

(
cos(θ)

(
b1r sin(θ)− g1(r cos(θ), r sin(θ))

)2
+ r
(
b2r sin(θ)− g2(r cos(θ), r sin(θ))

))
.

Attention! θ′ < 0, then the above time rescaling change the direction of the flow

and, consequently, the stability of the periodic solutions, if any.
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Examplo 1 (Quadratic Example).

g1(x, y) = a20x
2 + a11xy + a02y

2

g2(x, y) = α20x
2 + α11xy + α02y

2

Step 2 (First Order Analysis): Compute the first-order averaged function and its zeros.

In this case, f1(r) = πb1r. The equation f1(r) = 0 has a unique solution r = r∗ =

0. Since r∗ is not in the domain D, then the First-Order Averaging Method, that is,

Theorem 1 for ` = 1, does not provide the existence of a periodic solutions.

Step 3 (Second Order Analysis): Assume minimal conditions on the parameters of per-

turbation in order to ensure that f1 = 0 and compute the second-order averaged function

and its zeros.

Notice that f1 = 0 if, and only if, b1 = 0. Under this condition,

f2(r) = π r

(
b2 −

πa11(a02 + a20)

4
r2

)
.

The equation f2(r) = 0 has 3 solutions, namely

r1 = 0, r2 = −2

√
b2

a11(a02 + a20)
, and r3 = 2

√
b2

a11(a02 + a20)
.

Assuming b2a11(a02 + a20) > 0, r∗ = r3 is contained in the domain D. Hence, the

Second-Order Averaging Method, that is, Theorem 1 for ` = 2, provides the existence

of a periodic solution r(θ, ε) of differential equation (6) such that r(·, ε)→ r∗ as ε → 0.

Accordingly, going back to the changes of variables, one gets the existence of a periodic

solution (x(t, ε), x′(t, ε)) of the system (4) satisfying |(x(·, ε), x′(·, ε))| → r∗ as ε→ 0.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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Figure 1. Mathematica simulation of some backward trajectories of the

differential system (x′, y′) =
(
y,−x+ε (2x2 +2xy)−ε2y

)
for ε = 0.1 The

red dots indicate the initial conditions (0.8, 0) and (1.4, 0). and (2.4, 0).

The black closed curve indicates a limit cycle.
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Examplo 2 (Cubic Example).

g1(x, y) = a30x
3 + a21x

2y + a12xy
2 + a03y

3

g2(x, y) = α30x
3 + α21x

2y + α12xy
2 + α03y

3

Step 2 (First Order Analysis): Compute the first-order averaged function and its zeros.

f1(r) = πb1r −
π(3a03 + a21)

4
r2.

The equation f1(r) = 0 has 3 solutions, namely

r1 = 0, r2 = −2

√
b1

3a03 + a21
, and r3 = 2

√
b1

3a03 + a21
.

Assuming b1(3a03 + a21) > 0, r∗ = r3 is contained in the domain D. Hence, the First-

Order Averaging Method provides the existence of a periodic solution r(θ, ε) of dif-

ferential equation (6) such that r(·, ε) → r∗ as ε → 0. Accordingly, one gets the ex-

istence of a periodic solution (x(t, ε), x′(t, ε)) of the differential equation (4) satisfying

|(x(·, ε), x′(·, ε))| → r∗ as ε→ 0.
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Figure 2. Mathematica simulation of two backwards trajectories of the

differential system (x′, y′) =
(
y,−x − ε y + ε y3

)
for ε = 0.1. The red

dots indicate the initial conditions (0.9, 0) and (1.4, 0). The black closed

curve indicates the limit cycle.
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Step 3 (Second Order Analysis): Assume minimal conditions on the parameters of per-

turbation in order to ensure that f1 = 0 and compute the second-order averaged function

and its zeros.

Notice that f1 = 0 if, and only if, b1 = 0 and a21 = −3a03. Under this condition,

f2(r) =
πr

8

(
a03(a12 + 3a30)r4 − 2(3α03 + α21)r2 + 8b2

)
.

Conditions can be assumed in order that the equation f2(r) = 0 has zero, one or two

positive simple solutions.

For instance, by taking g1(x, y) = y3 + 2xy2 − 3x2y, g2(x, y) = 5x2y + 2xy2, and

b2 = 1, we get that

f2(r) =
πr

4

(
r4 − 5r2 + 4).

The equation f2(r) = 0 has two positive solutions, namely r∗1 = 1 and r∗2 = 2. Hence,

the Second-Order Averaging Method provides the existence of two periodic solutions

r1(θ, ε) and r2(θ, ε) of differential equation (6) such that r1(·, ε) → r∗1 and r2(·, ε) → r∗2
as ε→ 0. Accordingly, one gets the existence of periodic solutions (x1(t, ε), x′1(t, ε)) and

(x2(t, ε), x′2(t, ε)) of the differential equation (4) satisfying |(x1(·, ε), x′1(·, ε))| → r∗1 and

|(x2(·, ε), x′2(·, ε))| → r∗2 as ε→ 0.

-2 -1 0 1 2
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0
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Figure 3. Mathematica simulation of some trajectories of the differen-

tial system (x′, y′) =
(
y,−x+ε (y3+2xy2−3x2y)+ε2(−y+5x2y+2xy2)

)
for ε = 0.1 The red dots indicate the initial conditions (0.8, 0), (1.4, 0),

and (2.4, 0). The blue continuous lines indicate: the backward trajectory

for initial condition (0.8, 0); the orbit for initial condition (1.4, 0); and

the forward trajectory for the initial condition (2.4, 0). The black closed

curves indicate limit cycles.
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2. Averaging Method for Studying Periodic Solutions of Lipschitz

Continuous Differential Equations

If, instead of the smoothness of differential system (1), we assume

• Fi(t, ·) ∈ Ck−i, Dk−i
x Fi is locally Lipschitz in the second variable, and

• R is a continuous function, locally Lipschitz in the second variable,

Theorem 1 remains valid as follows:

Theorem 2 ([2]). Denote f0 = 0. Let ` ∈ {1, . . . , k} satisfying f0 = · · · f`−1 = 0 and

f` 6= 0. Assume that for z∗ ∈ D, such that f`(z
∗) = 0, there exists a neighborhood V ⊂ D

of z∗ satisfying f`(z) 6= 0 for every z ∈ V \ {z∗} and dB(f`, V, 0) 6= 0. Then, for |ε| 6= 0

sufficiently small, the differential equation (1) admits a T -periodic solution ϕ(t, ε) such

that ϕ(·, ε)→ z∗ as ε→ 0.

2.1. Brouwer degree

Let X = Rn = Y and V ⊂ X be an open bounded subset. Consider a continuou map

f : V → Y , and a point y0 in Y such that y0 /∈ f(∂V ). Then each triple (f, V, y0)

corresponds to an integer dB(f, V, y0) having the following three properties.

(i) If dB(f, V, y0) 6= 0, then y0 ∈ f(V ), and dB
(
Id
∣∣
V
, V, y0

)
= 1.

(ii) If V1 and V2 are disjoint open subsets of V such that y0 /∈ f(V \(V1 ∪ V2)), then

dB (f, V, y0) = dB (f, V1, y0) + dB (f, V1, y0) .

(iii) (Invariance under homotopy) Let {ft : 0 ≤ t ≤ 1} be a continuous homotopy of

maps of V into Y . Let {yt : 0 ≤ t ≤ 1} be a continuous curve in Y such that

yt /∈ ft(∂V ) for any t ∈ [0, 1]. Then dB(ft, V, yt) is constant in t ∈ [0, 1].

Moreover the degree function dB(f, V, y0) is uniquely determined by the three above

conditions.

When f : V ⊂ X → Y is a C1 function and det(Df(x)) 6= 0 for every x ∈ f−1(y0),

the Brouwer degree may be computed as follows:

dB(f, V, y0) =
∑

x∈f−1(y0)

sign (det(Df(x))) . (7)

Remark 3. The above formula implies that if z∗ is a point of X such that f(z∗) = 0 and

det(Df(z∗)) 6= 0, then there exists a neighborhood V ⊂ X of z∗ such that f(z) 6= 0 for

every z ∈ V \ {z∗} and dB(f, V, 0) 6= 0.
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2.2. Example - Lipschitz Continuous Perturbed Harmonic Oscillator

x′′ + x+ bεx
′ = gε(x, x

′), (8)

where bε = εb1 + ε2O(1) > 0 and gε(x, y) = εg1(x, y) + ε2O(1) is a continuous function.

Standard Form:
dr

dθ
= ε sin(θ)

(
b1r sin(θ)− g1(r cos(θ), r sin(θ)

)
+ ε2O(1)

First-Order Averaged Function: f1(r) = b1πr −
∫ 2π

0

sin(θ)g1(r cos(θ), r sin(θ))dθ

Examplo 3. g1(x, y) =

{
β+y2, y ≥ 0

β−y2, y ≤ 0
=
β+

2
(y + |y|)y +

β2

2
(y − |y|)y.

f1(r) = b1πr −
∫ 2π

0

sin(θ)g1(r cos(θ), r sin(θ))dθ

= b1πr −
∫ π

0

β+r sin3(θ)dθ −
∫ 2π

π

β−r sin3(θ)dθ =
r

3

(
3b1π + 4r(β− − β+)

)
Assuming b1(β+ − β−) > 0, the equation f1(r) = 0 a unique positive solution

r∗ = 3b1π
4(β+−β−) . Hence, the First-Order Averaging Method, that is, Theorem 2 for ` =

1, provides the existence of a periodic solution r(θ, ε) of differential equation (8) such

that r(·, ε) → r∗ as ε → 0. Accordingly, one gets the existence of a periodic solution

(x(t, ε), x′(t, ε)) of the differential equation (4) satisfying |(x(·, ε), x′(·, ε))| → r∗ as ε→ 0.

Figure 4. Mathematica simulation of some backward trajectories of

the differential system (x′, y′) =
(
y,−x + ε(−y + g1(x, y))

)
for β1 = 1,

β2 = 2, and ε = 0.1 The red dots indicate the initial conditions (0, 1.9)

and (0, 2.6). The black closed curves indicate limit cycles.
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3. Averaging Method for Studying Periodic Solutions of non-Lipschitz

Continuous Differential Equations

Consider the regularly perturbed continuous non-autonomous differential equation:

x′ = εF (t, x, ε). (9)

Again, D is an open bounded subset of Rn, ε0 > 0 small, and F : R ×D × [0, ε0] → Rn

is assumed to be T−periodic in the variable t and continuous.

3.1. First-Order Averaging Method

Define the first-order averaged function h1 : D → Rn by

h1(z) =
1

T

∫ T

0

F (s, z, 0)ds.

Theorem 4 ([1, 4]). Let z∗ ∈ D be an isolated zero of h1 and assume that there exists a

neighbourhood V ⊂ Rn of z∗, with V ⊂ D and h1(z) 6= 0 for every z ∈ V \ {z∗}, such

that dB(h1, V, 0) 6= 0. Then, for |ε| sufficiently small, the differential equation (9) has a

T−periodic solution ϕ(t, ε) satisfying ϕ(t, ε) ∈ V , for every t ∈ [0, T ], and ϕ(·, ε) → z∗

uniformly as ε→ 0.

3.2. Higher Order Averaging Method

Now, assume that

x′ = F (t, x, ε) :=

k∑
i=1

εiFi(t, x) + εk+1R(t, x, ε). (10)

For i = 1, . . . , k, define the ith-order averaged function function hi : D → Rn by

hi(z) =
1

T

∫ T

0

Fi(s, z)ds.

Assume that, for a given open bounded subset V ⊂ Rn, with V ⊂ D,

H. there exists ε1 ∈ (0, ε0] such that, for each λ ∈ (0, 1) and ε ∈ (0, ε1], any T -periodic

solution of the differential equation

x′ = ελF (t, x, ε), x ∈ V , (11)

is entirely contained in V.

Theorem 5 ([4]). Denote h0 = 0. Let ` ∈ {1, 2, . . . , k} satisfying h0 = . . . = h`−1 = 0,

and h` 6= 0. Assume that for z∗ ∈ D, such that h`(z
∗) = 0, there exists a neighbourhood

V ⊂ Rn of z∗, with V ⊂ D, satisfying h`(z) 6= 0 for z ∈ V \ {z∗}, such that hypothesis

H holds and dB(h`, V, 0) 6= 0. Then, for |ε| sufficiently small, the differential equation

(10) has a T−periodic solution ϕ(t, ε) satisfying ϕ(t, ε) ∈ V , for every t ∈ [0, T ], and

ϕ(·, ε)→ z∗ uniformly as ε→ 0.
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Remark 6. The negation of hypothesis H provides:

• numerical convergent sequences (εm)m∈N ⊂ (0, ε0) and (λm)m∈N ⊂ (0, 1), such that

εm → 0 as m→∞,
• and a sequence of T -periodic solutions xm(t) ∈ V of

x′ = εmλmF (t, x, εm)

for which there exists tm ∈ [0, T ] such that xm(tm) ∈ ∂V for each m ∈ N. In

particular,

xm(t) = xm(0) + εmλm

∫ t

0

F (s, xm(s), εm)ds and∫ T

0

F (t, xm(t), εm)dt = 0,

for each m ∈ N.
• Furthermore, as an application of Arzelá-Ascoli’s Theorem, the sequence of func-

tions (xm)m∈N can be considered uniformly convergent to a constant function in

∂V.

Remark 7. When the boundary of V , ∂V, is a smooth manifold, hypothesis H holds

provided that:

“there exists ε1 ∈ (0, ε0] such that, for each z ∈ ∂V, F (t, z, ε) is transversal to ∂V at z,

for every t ∈ [0, T ] and ε ∈ (0, ε1]”.

3.3. General Averaging Method and Idea of the Proof

Define the full averaged function h : D × [0, ε0] → Rn as the average of the right-hand

side of (9), that is,

h(z, ε) =
1

T

∫ T

0

εF (s, z, ε)ds.

Theorems 4 and 5 are consequences of the following result:

Theorem 8 ([4]). Assume that for a given open subset V ⊂ Rn, with V ⊂ D, hypothesis

H holds,

h(z, ε) 6= 0, for all z ∈ ∂V and ε ∈ (0, ε1], (12)

and dB(h(·, ε∗), V, 0) 6= 0, for some ε∗ ∈ (0, ε1]. Then, for each ε ∈ (0, ε1], there exists

a T−periodic solution ϕ(t, ε) of the differential equation (10) satisfying ϕ(t, ε) ∈ V , for

every t ∈ [0, T ].
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Proof. Define the following real Banach spaces

X = {x ∈ C([0, T ],Rn) : x(0) = x(T )} and Y = {x ∈ C([0, T ],Rn) : x(0) = 0},

where C([0, T ],Rn) denotes the space of continuous functions x : [0, T ] → Rn endowed

with the sup-norm.

Denote

Ω = {x ∈ X : x(t) ∈ V, ∀ t ∈ [0, T ]},
which is an open bounded subset of X.

Define the linear map L : X → Y by

Lx(t) = x(t)− x(0).

Notice that ImL = X ∩ Y, which is closed in Y. In addition,

kerL =
{
x ∈ X : x(t) = z, z ∈ Rn

}
,

which can be identified with Rn.
Notice that a function x ∈ X can be continuously extended to a T−periodic solution

of the differential equation (10) in V if, and only if, it is a solution of the operator equation

Lx = Nε(x), x ∈ Ω. (13)

Finally, define the projection Q : Y → Y given by

Qy(t) =
y(T )

T
, for t ∈ [0, T ].

The next result is a consequence of [3, Theorem IV.13] (abstract continuation result

for operator equation) and will be used for proving Theorem 8.

Proposition 9. Let L, Nε, and Q be like above. Assume that the following conditions are

verified for every ε ∈ (0, ε1]:

H.1 Lx 6= λNε(x), for every x ∈ (dom L \ kerL) ∩ ∂Ω and λ ∈ (0, 1);

H.2 QNε(x) 6= 0, for every x ∈ kerL ∩ ∂Ω; and

H.3 dB(QNε
∣∣
Ω∩kerL

,Ω ∩ kerL, 0) 6= 0.

Then, for every ε ∈ (0, ε1], the operator equation (13) admits a solution in Ω ∩ dom L.

Hypothesis H and condition (12) imply, respectively, that hypothesis H.1 and H.2

hold for operation equation (13).

In addition, for x ∈ kerL ∩ ∂Ω, that is, x(t) ≡ z ∈ ∂V,

QNε(x)(t) =
1

T

∫ T

0

εF (s, z, ε)ds = h(z, ε). (14)

Thus,

dB(QNε
∣∣
kerL∩Ω

, kerL ∩ Ω, 0) = dB(h(·, ε), V, 0),

for ε 6= 0. By hypothesis, there exists ε∗ ∈ (0, ε1] such that dB(h(·, ε∗), V, 0) 6= 0. Using

that the Brouwer degree is piecewise constant, then by a connectedness and compactness

topological argument we can show that dB(h(·, ε), V, 0) 6= 0 for every ε ∈ (0, ε1]. Hence,

hypothesis H.3 holds for operation equation (13).

Therefore, from Proposition 9 we get the existence of a solution of the operator

equation (13) and, consequently, a T−periodic solution ϕ(t, ε) of the differential equation

(10), for each ε ∈ (0, ε1], such that ϕ(t, ε) ∈ V for every t ∈ [0, T ]. �
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3.4. Example - non-Lipschitz Continuous Perturbed Harmonic Oscillator

• Consider the continuous higher order perturbation of a harmonic oscillator:

ẍ = −x+ ε(x2 + ẋ2) + εkẋ
3
√
x2 + ẋ2 − 1 + εk+1E(x, ẋ, ε). (15)

• Notice that (15) is not Lipschitz in any neighborhood of S1 = {(x, y) ∈ R2 : x2 +

ẋ2 = 1}.

Proposition 10. For any positive integer k and |ε| 6= 0 sufficiently small, the differential

equation (15) admits a periodic solution x(t; ε) satisfying (x(t; ε), ẋ(t; ε))→ S1 uniformly

as ε→ 0.

Proof. Changing to polar coordinates, we obtain
dr

dθ
= εF (θ, r, ε), where

F (θ, r, ε) = −
k−1∑
i=1

εi−1ri+1 cosi−1 θ sin θ

+εk−1r
(

3
√
r2 − 1 sin θ − rk cosk−1 θ

)
sin θ + εkR(θ, r, ε),

which is not Lipschitz in any neighbourhood of r = 1.

Notice that

hi = 0, for i ∈ {1, 2, . . . , k − 1}, and hk(r) =
r 3
√
r2 − 1

2
.

Moreover, hk has a unique positive zero r∗ = 1 and is homotopic to the mapping

r 7→ r − 1 in V = (1− α, 1 + α), 0 < α < 1. Therefore, dB(hk, V, 0) 6= 0.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.2

0.2

0.4

0.6

0.8

Figure 5. Graph of hk.

In order to apply Theorem 5, it remains to check hypothesis H.

The negation of hypothesis H provides:

• numerical convergent sequences (εm)m∈N ⊂ (0, ε0] and (λm)m∈N ⊂ (0, 1), such that

εm → 0 as m→∞,
• and a sequence (rm)m∈N of 2π-periodic solutions of

r′ = εmλmF (θ, r, εm), r ∈ V , (16)

for which there exists θm ∈ [0, 2π] such that rm(θm) ∈ ∂V for each m ∈ N.
As an application of Arzelá-Ascoli’s Theorem, the sequence of functions (rm)m∈N can be

taken uniformly convergent to a constant function r0 ∈ ∂V = {1± α}. In particular,∫ 2π

0

F (θ, rm(θ), εm)dθ = 0.
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Therefore,

∫ 2π

0

rm(θ) 3
√
rm(θ)2 − 1 sin2 θdθ =

1

εk−1
m

k∑
i=1

εi−1
m Gi+1,i−1

m +O(εm),

where

Gi,jm =

∫ 2π

0

rm(θ)i cosj(θ) sin(θ) dθ.

By applying integration by parts and using that rm(θ) is 2π−periodic, we obtain

Gi,jm =
i

j + 1

∫ 2π

0

rm(θ)i−1 cosj+1(θ)r′m(θ) dθ.

Since rm(θ) satisfies (16), we conclude that

Gi,jm = − i

j + 1

k−1∑
l=1

λmε
l
m

∫ 2π

0

rm(θ)j+l cosj+l(θ) sin θ dθ +O(εkm)

= − i

j + 1

k−1∑
l=1

λmε
l
mGi+l,j+l(rm) +O(εkm) = O(εm).

Applying the last procedure recursively, we get Gi,jm = O(εkm). Thus,

∫ 2π

0

rm(θ) 3
√
rm(θ)2 − 1 sin2 θdθ = O(εm).

Since rm → r0 ∈ {1± α} uniformly, we compute the limit of the integral above as

∫ 2π

0

r0
3

√
r2
0 − 1 sin2 θdθ = 0,

which is an absurd, because

∫ 2π

0

r0
3

√
r2
0 − 1 sin2 θdθ = πr0

3

√
r2
0 − 1 6= 0,

for r0 /∈ {−1, 0, 1}. Thus, we obtain that hypothesis H holds and Theorem 5 can be

applied in order to conclude this proof. �
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Figure 6. Mathematica simulation of some backwards trajectories of

the differential system (x′, y′) =
(
y,−x+ε(x2 +y2)+εky 3

√
x2 + y2 − 1

)
for k = 2, ε = 0.1 The red dots indicate the initial conditions (0.6, 0)

and (1.4, 0). The black closed curve indicates a limit cycle.

Displacement function of

(x′, y′) =
(
y,−x+ ε(x2 + y2) + εky 3

√
x2 + y2 − 1

)
for k = 1 and ε = 1/20 (left) and ε = 1/100 (right).
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Displacement function of

(x′, y′) =
(
y,−x+ ε(x2 + y2) + εky 3

√
x2 + y2 − 1

)
for k = 2 and ε = 1/20 (left) and ε = 1/100 (right).
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Displacement function of

(x′, y′) =
(
y,−x+ ε(x2 + y2) + εky 3

√
x2 + y2 − 1

)
for k = 3 and ε = 1/20 (left) and ε = 1/100 (right).
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