The Averaging Method - Lecture 2

Douglas Duarte Novaes

July 14, 2021

Departamento de Matemdtica

Instituto de Matemdtica, Estatistica e Computagao Clientifica (IMECC)
Universidade Estadual de Campinas (UNICAMP), Sao Paulo, Brazil
ddnovaes@unicamp.br

www.ime.unicamp.br/~ddnovaes

1. Averaging Method for Studying Periodic Solutions of Smooth
Differential Equations

Consider regularly perturbed smooth non-autonomous differential equations given in the
following standard form:

k
o' =Y eFi(t,z) + "' R(t, x,e), (t,7,6) €R x D x (—£0,%0). (1)
=1

Here, D is an open bounded subset of R”, gy > 0 small, and the functions F;: RxD — R",
fori =1,...,k and R: Rx D x[0, 9] — R" are assumed to be T'—periodic in the variable
t and smooth.

For i € {1,...,k}, the averaged function of order 4, f; : D — R", is defined by

7!

where

y1(t, 2) 2/0 Fi(s,z)ds and
K kA (3)
yi(t, z) :/0 (i!Fi(S, z) + Z Z f"(?;”Fifj(s, Z)Bj’m (yl, . ,yj,m+1) (s, z)>d37

j=1m=1 J:

fori € {2,...,k}.

Recall that

fi(z) = /OT Fi(t,z)dt| and |fa(z) = /OT (Fz(t,2> + D, Fi(t, 2) /Ot Fl(s,z)ds)dt
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Theorem 1 ([2]). Denote fy = 0. Let ¢ € {1,...,k} satisfying fo = ---f,_1 = 0 and
f, £ 0. Assume that z* € D is a simple zero of f,. Then, for |e| # 0 sufficiently small, the
differential equation admits a unique T-periodic solution (t,€) such that ¢(-,€) — 2z*
as € — 0.

Stability: In addition, if z* is a hyperbolic singularity of the truncated averaged equation
2 = 'y(2), then the stability of the periodic solution ¢(-,€) coincides with the stability
of the singularity z*.

1.1. Example - Smooth Perturbed Harmonic Oscillator
'+ +ba’ = g (x,2'), (4)
where
be = eby + %y +°0(1) > 0, and g-(z,y) = g1 (2, y) + £%g2(2,y) +£°0(1)
is a sufficiently differentiable function.
Notice that, by taking y = 2/, the second order differential equation (4f) writes
r_
e (5)
y'=—x—by+g:(z,y).
Remark: Due to the dumping effect (b > 0), if g- = 0 the above system has a glob-
ally asymptotically stable equilibrium at (z, z’) = (0,0) (Eigenvalues: (—b.£+/b2 — 4)/2).
Our goal is to find a “forcing term” g. in order to this system to have a periodic orbit.
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Step 1 (Standard Form): Write system in the standard form in order to apply
the averaging theorem.
Writting the vector field in polar coordinates (x,y) = (7’ cos(0),r sin(@)), we get
" = sin(6)(g-(r cos(6),rsin(f)) — b.rsin(6)),
cos(0)ge(r cos(8), rsin(d))
r
Fixing the domain D = [rg, 1], for some 0 < g < r1, we notice that there exists g9 > 0
small such that 6’ < 0 for (6,r,¢) € R x D x (—¢eg,&0). Thus, taking 6 as the new time:
dr v rsin(8)(ge(rcos(0),rsin(f)) — bersin(6))
d9 0 —r+cos(6)ge(rcos(f),rsin(f)) + b. cos(d) sin(6)

)
= ssir21( ) (b1 sin(0) — g1 (r cos(8), 7 sin(f))

+€7 sin(6) ( cos(8) (byr sin(8) — g1 (r cos(8), rsin(8)))” (6)
+7(bgr sin(#) — ga(r cos(6), r sin(H)))) +e30(1)

0 =—-1+

— b, cos(0) sin(6).

= eF(0,r) +e2Fy(0,r) + 2 R(0,r,¢),
where
F1(0,r) =sin(0) (byrsin(d) — g1 (r cos(0), rsin(6)),

Fy(0,7) _! sin(ﬁ)(cos(@)(blr sin(0) — g1 (r cos(), rsin(9)))2

r

+ r(bgrsin(f) — go(r cos(6), r Sin(ﬁ)))) .

Attention! §’ < 0, then the above time rescaling change the direction of the flow
and, consequently, the stability of the periodic solutions, if any.
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Examplo 1 (Quadratic Example).
g1(z,y) = az0x® + an1xy + a2y’
92(2,y) = a20x® + a1y + apay’

Step 2 (First Order Analysis): Compute the first-order averaged function and its zeros.

In this case, fi(r) = wbyr. The equation f1(r) = 0 has a unique solution r = r* =
0. Since r* is not in the domain D, then the First-Order Averaging Method, that is,
Theorem [1| for £ = 1, does not provide the existence of a periodic solutions.

Step 3 (Second Order Analysis): Assume minimal conditions on the parameters of per-
turbation in order to ensure that f; = 0 and compute the second-order averaged function
and its zeros.

Notice that f; = 0 if, and only if, by = 0. Under this condition,

£(r) = 77 (b2 _ wﬁ) ,

4
The equation fa(r) = 0 has 3 solutions, namely
ry =0, 12 = b and rg =
a11(ao2 + azo) a1 (a2 + ao)
Assuming boaii(age2 + age) > 0, r* = rg is contained in the domain D. Hence, the

Second-Order Averaging Method, that is, Theorem [I] for ¢ = 2, provides the existence
of a periodic solution (6, ) of differential equation (6]) such that r(-,e) — r* as e — 0.
Accordingly, going back to the changes of variables, one gets the existence of a periodic
solution (z(t,€), 2’ (¢, €)) of the system (4)) satisfying |(z(-,€),2'(-,€))| = r* as e — 0.
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FIGURE 1. Mathematica simulation of some backward trajectories of the
differential system (2’,y') = (y, —z+¢ (222 + 2zy) —e?y) for e = 0.1 The
red dots indicate the initial conditions (0.8,0) and (1.4,0). and (2.4,0).
The black closed curve indicates a limit cycle.
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Examplo 2 (Cubic Example).
91(z,y) = agox® + azn 2’y + ar122y® + aosy’

g2(z,y) = as0z” + a1 2%y + a127y® + sy’

Step 2 (First Order Analysis): Compute the first-order averaged function and its zeros.

fi(r) = wbyr — —77(3a034+ azl)r2.

The equation f;(r) = 0 has 3 solutions, namely

bl bl
ro= 07 ro = —2 —_—, and T3 = 2 .
! ? V 3aos + a1 3 V 3aos + a2

Assuming by (3aps 4+ a21) > 0, r* = r3 is contained in the domain D. Hence, the First-
Order Averaging Method provides the existence of a periodic solution 7(6,¢) of dif-
ferential equation @ such that r(-,e) — r* as ¢ — 0. Accordingly, one gets the ex-
istence of a periodic solution (z(t,¢),2’(¢,¢)) of the differential equation @ satisfying
[(z(-,e),2'(-,¢))| = r* as e — 0.
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FIGURE 2. Mathematica simulation of two backwards trajectories of the
differential system (2’,y) = (y,—z — ey + £y?®) for ¢ = 0.1. The red
dots indicate the initial conditions (0.9, 0) and (1.4, 0). The black closed
curve indicates the limit cycle.
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Step 3 (Second Order Analysis): Assume minimal conditions on the parameters of per-
turbation in order to ensure that f; = 0 and compute the second-order averaged function
and its zeros.

Notice that f; = 0 if, and only if, by = 0 and as; = —3ag3. Under this condition,

r
fo(r) = g(aog(alg + 3(130)7'4 —2(3ap3 + 021)7‘2 + 81)2)

Conditions can be assumed in order that the equation f3(r) = 0 has zero, one or two
positive simple solutions.
For instance, by taking g1(z,y) = v* + 2xy? — 322y, g2(x,y) = 5%y + 2xy?, and
by = 1, we get that
f(r) = %(r‘l —5r® +4).

The equation f5(r) = 0 has two positive solutions, namely r7 = 1 and r5 = 2. Hence,
the Second-Order Averaging Method provides the existence of two periodic solutions
r1(6,¢) and r2(6,€) of differential equation (6) such that ry(-,e) = r} and ro(-,€) — 3
as € — 0. Accordingly, one gets the existence of periodic solutions (z1(t,¢),z}(t,€)) and
(z2(t, ), zh(t,€)) of the differential equation () satisfying |(z1(-,€),z(-,€))| — r} and
[(z2(- ), 25(-,¢))| = r3 as e — 0.
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FIGURE 3. Mathematica simulation of some trajectories of the differen-
tial system (2/,y') = (y, —z+e (y>+22y* —32%y) +e?(—y+52y+22y?))
for ¢ = 0.1 The red dots indicate the initial conditions (0.8,0), (1.4,0),
and (2.4,0). The blue continuous lines indicate: the backward trajectory
for initial condition (0.8,0); the orbit for initial condition (1.4,0); and
the forward trajectory for the initial condition (2.4,0). The black closed
curves indicate limit cycles.
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2. Averaging Method for Studying Periodic Solutions of Lipschitz
Continuous Differential Equations

If, instead of the smoothness of differential system , we assume

o Fi(t,") € ck—i, D’;_iFi is locally Lipschitz in the second variable, and

e R is a continuous function, locally Lipschitz in the second variable,
Theorem [I] remains valid as follows:
Theorem 2 ([2]). Denote fo = 0. Let £ € {1,...,k} satisfying fo = ---f,_1 = 0 and
f, £ 0. Assume that for z* € D, such that f,(2*) = 0, there exists a neighborhood V.C D
of z* satisfying f,(z) # 0 for every z € V \ {z*} and dp(f,,V,0) # 0. Then, for |g| # 0
sufficiently small, the differential equation admits a T-periodic solution ¢(t,€) such
that o(-, &) = z* as e — 0.

2.1. Brouwer degree

Let X = R" =Y and V C X be an open bounded subset. Consider a continuou map
f:V — Y, and a point yo in Y such that yo ¢ f(0V). Then each triple (f,V,vo)
corresponds to an integer dg(f,V,yo) having the following three properties.

(1) If dB(f, V, yo) 7é 0, then Yo € f(V), and dp <Id|V’ ‘/,yo) =1.

(ii) If Vi and V4 are disjoint open subsets of V such that yo ¢ f(V\(Vi U V2)), then
dg (f,Viyo) = dp (f,Vi,y0) +dB (f,V1,90) -

(iii) (Invariance under homotopy) Let {f: : 0 < t < 1} be a continuous homotopy of
maps of V into Y. Let {y: : 0 <t < 1} be a continuous curve in Y such that
ye ¢ f1(OV) for any t € [0,1]. Then dg(f;, V,y:) is constant in ¢ € [0, 1].
Moreover the degree function dg(f, V, yo) is uniquely determined by the three above
conditions.

When f:V C X — Y is a C! function and det(Df(x)) # 0 for every z € f~*(yo),
the Brouwer degree may be computed as follows:

ds(f, Vi) = S sign(det(DF(x))). (7)
z€f~1(yo)
Remark 3. The above formula implies that if z* is a point of X such that f(z*) =0 and
det(Df(z*)) # 0, then there exists a neighborhood V- C X of z* such that f(z) # 0 for
every z € V\ {z*} and dg(f,V,0) # 0.
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2.2. Example - Lipschitz Continuous Perturbed Harmonic Oscillator

2+ + b2’ =g (x,2'), (8)
where b. = eb; +£20(1) > 0 and g.(,y) = €g1(x,y) + £2O(1) is a continuous function.

d
Standard Form: d—; = esin(0) (b17sin(f) — g1 (r cos(#),rsin(f)) 4 20(1)
2
First-Order Averaged Function: f;(r) = bynr — / sin(6)g1 (r cos(0), rsin(6))do
0

gry?, y=0 _ Bt Ba
By y<0 2 (y+ vy + — (@ — vy

Examplo 3. ¢1(x,y) = { 2

2
filry= bimr —/ sin(0) gy (r cos(8),r sin(0))do
0
T 27
= br— | Brrsin®(0)do — B~ rsin®(0)d = %(3b17r +4r(8~ - BT))
0 T
Assuming b1 (8T — 87) > 0, the equation fi(r) = 0 a unique positive solution
r* = %. Hence, the First-Order Averaging Method, that is, Theorem [2| for ¢ =
1, provides the existence of a periodic solution r(6,¢) of differential equation such
that r(-,e) — r* as ¢ — 0. Accordingly, one gets the existence of a periodic solution

(z(t,e), 2 (t,€)) of the differential equation (4)) satisfying |(z(-,),2'(-,¢))| = r* ase — 0.

3
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FIGURE 4. Mathematica simulation of some backward trajectories of
the differential system (z',y) = (y, —x + (—y + g1(z,y))) for B = 1,
B2 =2, and € = 0.1 The red dots indicate the initial conditions (0, 1.9)
and (0,2.6). The black closed curves indicate limit cycles.



The Averaging Method - Lecture 2 9

3. Averaging Method for Studying Periodic Solutions of non-Lipschitz
Continuous Differential Equations

Consider the regularly perturbed continuous non-autonomous differential equation:

¥ =eF(t,z,¢). 9)
Again, D is an open bounded subset of R", g9 > 0 small, and F': R x D x [0,&0] — R"
is assumed to be T'—periodic in the variable ¢ and continuous.
3.1. First-Order Averaging Method
Define the first-order averaged function hy : D — R"™ by

1 /7
:T/o F(s,z,0)ds

Theorem 4 ([I, [@]). Let z* € D be an isolated zero of hy and assume that there exists a
neighbourhood V. C R™ of z*, with V. C D and hy(z) # 0 for every z € V \ {z*}, such
that dg(hy,V,0) # 0. Then, for || sufficiently small, the differential equation @ has a
T—periodic solution ¢(t,e) satisfying o(t,e) € V, for every t € [0,T)], and ¢(-,¢) — 2*
uniformly as e — 0.

3.2. Higher Order Averaging Method

Now, assume that

/

' =F(t,x,¢) Zs Fy(t,z) + " R(t,z,¢). (10)

For i =1,...,k, define the ith-order avemged function function h;: D — R™ by

h;(z) = %/0 Fi(s,z)ds.

Assume that, for a given open bounded subset V' C R™, with V C D,

H. there exists 1 € (0, &g] such that, for each X € (0,1) and € € (0, 1], any T-periodic
solution of the differential equation

¥ =eAF(t,x,e), z €V, (11)

is entirely contained in V.

Theorem 5 ([4]). Denote hg = 0. Let ¢ € {1,2,...,k} satisfyinghg = ... =hy_1 =0,
and hy # 0. Assume that for z* € D, such that hy(z*) = 0, there exists a neighbourhood
V CR™ of z*, with V. C D, satisfying hy(z) # 0 for z € V' \ {z*}, such that hypothesis
H holds and dg(hy, V,0) # 0. Then, for |e| sufficiently small, the differential equation
has a T—periodic solution ¢(t,€) satisfying ¢(t,e) € V, for every t € [0,T], and
o(-,€) = 2% uniformly as € — 0.



10 D. D. Novaes

Remark 6. The negation of hypothesis H provides:
o numerical convergent sequences (€m)men C (0,€0) and (Am)men C (0,1), such that
em — 0 as m — o0,
e and a sequence of T-periodic solutions x.,(t) € V of

¥ =enAmF(t,z,em)

for which there exists t, € [0,T] such that Xy (ty,) € OV for each m € N. In
particular,

¢
T (t) = 2 (0) + gm)\m/ F(s,2m(s),em)ds and
0

T
/ F(t,2m(t), em)dt = 0,
0

for each m € N.
e Furthermore, as an application of Arzeld-Ascoli’s Theorem, the sequence of func-
tions (T )men can be considered uniformly convergent to a constant function in

av.

Remark 7. When the boundary of V, OV, is a smooth manifold, hypothesis H holds
provided that:

“there exists 1 € (0,e9] such that, for each z € IV, F(t,z,¢€) is transversal to IV at z,
for every t € [0,T] and £ € (0,e1]”.

3.3. General Averaging Method and Idea of the Proof

Define the full averaged function h : D x [0,e9] — R™ as the average of the right-hand
side of (9)), that is,

1 /7
h(z,e) = —/ eF(s,z,e)ds.

T Jo
Theorems [ and [f] are consequences of the following result:

Theorem 8 ([4]). Assume that for a given open subset V. C R", with V. C D, hypothesis
H holds,

h(z,e) #0, forall 2€0V and €€ (0,e], (12)
and dp(h(-,e*),V,0) # 0, for some e* € (0,e1]. Then, for each € € (0,e1], there exists
a T—periodic solution @(t,e) of the differential equation satisfying ¢(t,€) € V, for
every t € [0, 7.
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Proof. Define the following real Banach spaces
X ={zeC(0,T,R"): z(0) =x(T)} and Y = {x € C([0,T],R"): x(0) = 0},

where C([0,T],R™) denotes the space of continuous functions z : [0,7] — R™ endowed
with the sup-norm.
Denote

Q={rveX:z(t)eV,Vte[0,T]},
which is an open bounded subset of X.
Define the linear map L: X — Y by

Lz(t) = x(t) — x(0).
Notice that ImL = X NY, which is closed in Y. In addition,
ker L = {z € X : z(t) = z, z € R"},

which can be identified with R™.
Notice that a function z € X can be continuously extended to a T'—periodic solution
of the differential equation in V if, and only if, it is a solution of the operator equation

Lz = N.(z), z € Q. (13)
Finally, define the projection @ : Y — Y given by

_y(T)
T

The next result is a consequence of [3| Theorem IV.13] (abstract continuation result
for operator equation) and will be used for proving Theorem

, for te€][0,T].

Proposition 9. Let L, N, and Q be like above. Assume that the following conditions are
verified for every e € (0,e1]:

H.1 Lz # AN.(x), for every x € (dom L\ ker L) N9Q and X € (0,1);

H.2 QN.(z) # 0, for every x € ker L N 09; and

H.3 dp(QN:|gne 1 Nker L,0) # 0.

Then, for every e € (0,£1], the operator equation admits a solution in QN dom L.

Hypothesis H and condition imply, respectively, that hypothesis H.1 and H.2
hold for operation equation .
In addition, for « € ker L N 0%2, that is, z(t) = z € 9V,

QN (z)(t) = %/0 eF(s,z,e)ds =h(z,¢). (14)

Thus,
dp(QNe|,, 1o Ker LNQ,0) = dp(h(-,¢),V,0),

for € # 0. By hypothesis, there exists ¢* € (0,e1] such that dg(h(-,&*),V,0) # 0. Using
that the Brouwer degree is piecewise constant, then by a connectedness and compactness
topological argument we can show that dg(h(-,),V,0) # 0 for every ¢ € (0,&;]. Hence,
hypothesis H.3 holds for operation equation .

Therefore, from Proposition [9] we get the existence of a solution of the operator
equation and, consequently, a T'—periodic solution ¢(t, ) of the differential equation
(10), for each e € (0,&1], such that ¢(t,e) € V for every t € [0,T]. O
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3.4. Example - non-Lipschitz Continuous Perturbed Harmonic Oscillator
e Consider the continuous higher order perturbation of a harmonic oscillator:
i=—r+e@®+i?)+eeva?+i2 — 1+ E(n b, ). (15)
e Notice that is not Lipschitz in any neighborhood of St = {(z,y) € R? : 22 +
? =1}

Proposition 10. For any positive integer k and |e| # 0 sufficiently small, the differential
equation admits a periodic solution x(t; ) satisfying (x(t;€),(t;€)) — St uniformly
as € — 0.

d
Proof. Changing to polar coordinates, we obtain d—g =¢eF(0,r,e), where
k—1
F,re)= - Z et cosi ™1 @ sin O

i=1
+€k_17“(\?/1"27—15in9 — rk cogh—1 9) sinf +e*R(0, 7, ¢),
which is not Lipschitz in any neighbourhood of r = 1.
Notice that
rv/re —1
2

Moreover, hy has a unique positive zero r* = 1 and is homotopic to the mapping
r—>r—1inV=(1-al+a),0<a< 1. Therefore, dg(hy,V,0) # 0.

h; =0, for i € {1,2,...,k—1}, and hg(r) =

FIGURE 5. Graph of hy.

In order to apply Theorem [5| it remains to check hypothesis H.
The negation of hypothesis H provides:

e numerical convergent sequences (&,,)men C (0,e0] and (Ap,)men C (0,1), such that
€m — 0 as m — oo,
e and a sequence (7, )men of 2m-periodic solutions of

7' =enAnF(0,r,em), TEV, (16)
for which there exists 6, € [0, 27] such that r,,(6,,) € OV for each m € N.

As an application of Arzeld-Ascoli’s Theorem, the sequence of functions (7, )men can be
taken uniformly convergent to a constant function rg € 9V = {1 + a}. In particular,

2m
/ F0,7rm(0),e,)d0 = 0.
0
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Therefore,

P

2w k
1 . . .
/ o (0) /rm (O — Tsin 00 = —— 3" i G114 O(c,),
0 i=1
where
GJ :/ Tm (0)" cos” (0) sin(0) db.
0
By applying integration by parts and using that r,,(0) is 2r—periodic, we obtain

ij_ "

2m
/ 7 (0) 1 cos? T (0)7! () db.
0

Since 7., (0) satisfies (16]), we conclude that

. k—1 27
Gl = —— j_ : Z )\msﬁn/ T (0)7 T cos? T (0) sin§ df + O(ek)
J =1 0

i

k—1
=711 Z A€ Gitt ji(rm) + O(eh,) = Oem).
J =1

Applying the last procedure recursively, we get G&J = O(eF,). Thus,
2m
/ o (0) &/1m (0)2 — 1sin? 0dO = O(e,,).
0
Since r,,, — ro € {1 & o} uniformly, we compute the limit of the integral above as

27
/ o4/ — 1sin® 0df = 0,
0

which is an absurd, because

2m
/ ro /12 — 1sin® 0df = 7ro /12 — 1 # 0,
0

13

for 1o ¢ {—1,0,1}. Thus, we obtain that hypothesis H holds and Theorem [5| can be

applied in order to conclude this proof.

O
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FiGURE 6. Mathematica simulaotgon of s&osme backwards t;ajectories of
the differential system (2/,y) = (y, —z +e(2? +y?) +Fy /a2 + 42 — 1)
for k = 2, ¢ = 0.1 The red dots indicate the initial conditions (0.6, 0)
and (1.4,0). The black closed curve indicates a limit cycle.

Displacement function of

(@, y) = (y,—z +e(@® + ) + Py a2 +y? — 1)

for k =1 and e = 1/20 (left) and e = 1/100 (right).
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(@',y) = (y.—z +e(@® +y?) +ery¥a? +y*> - 1)
for k =2 and € = 1/20 (left) and e = 1/100 (right).
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Displacement function of

(@, y) = (y,—z +e(z® + y?) + efy /a2 + 42 — 1)

for k =3 and € = 1/20 (left) and € = 1/100 (right).
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