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Douglas Duarte Novaes

1. Regularly Perturbed Differential Equations

In this course we shall focuses on regularly perturbed differential equations of the follow-

ing kind:

x′ = εF (t, x, ε) :=

k∑
i=1

εiFi(t, x) + εk+1R(t, x, ε), (1)

(t, x, ε) ∈ R × D × (−ε0, ε0), where D is an open bounded subset of Rn, ε0 > 0 small,

and the functions Fi : R × D → Rn, for i = 1, . . . , k, and R : R × D × [0, ε0] → Rn are

T−periodic in the variable t.

At principle, for the sake of simplicity, we also assume the smoothness of the func-

tions Fi, for i = 1, . . . , k, and R. This assumption with be relaxed latter on.

1.1. Existence, Uniqueness, and Maximality of Solutions

Theorem 1. There exists ε, 0 < ε < ε0, such that for each z ∈ D and ε ∈ [−ε, ε],
the differential equation (1) admits a unique maximal solution x(·, z, ε) : I(z, ε) → D

satisfying x(0, z, ε) = z. Moreover, [0, T ] ⊂ I(z, ε) for every (z, ε) ∈ D × [−ε, ε]. Here,

I(z, ε) is the maximal interval of definition of solution, which is an open interval.
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1.2. Periodic Solutions

Theorem 2. Given (z, ε) ∈ D × [−ε, ε], the solution x(t, z, ε) of the differential equation

(1) is T -periodic in the variable t if, and only if, x(T, z, ε) = z.

1.2.1. Displacement Function Approach. ∆ : D × [−ε, ε]→ Rn is defined by

∆(z, ε) := x(T, z, ε)− z. (2)

As a consequence of Theorems 1 and 2 we have the following result:

Theorem 3. Given (z∗, ε∗) ∈ D × [−ε, ε], the differential equation (1) for ε = ε∗ admits

a T -periodic solution starting at z = z∗ if, and only if,

∆(z∗, ε∗) = 0. (3)

1.2.2. Stability. If one has obtained a smooth branch z(ε) of zeros of (3), then the sta-

bility of the periodic solution ϕ(t, ε) = x(t, z(ε), ε) is characterized by the stability of the

fixed point z(ε) of the Poincaré map

z 7→ Π(z; ε) := x(T, z, ε) = z + ∆(z, ε).
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1.2.3. Operator Equation Approach. See [1, 7, 8, 9, 12].

Define the real Banach spaces:

X = {x ∈ C([0, T ],Rn) : x(0) = x(T )} and Y = {x ∈ C([0, T ],Rn) : x(0) = 0},

where C([0, T ],Rn) denotes the space of continuous functions x : [0, T ] → Rn endowed

with the sup-norm.

Given an open set V ⊂ Rn such that V ⊂ D, denote

Ω = {x ∈ X : x(t) ∈ V, ∀ t ∈ [0, T ]},

which is an open bounded subset of X.

Define the linear map L : X → Y by

Lx(t) = x(t)− x(0).

Furthermore, for each ε ∈ (0, ε0], consider the map Nε : Ω→ Y given by

Nε(x)(t) =

∫ t

0

ε F (s, x(s), ε)ds.

Theorem 4. A function x ∈ X can be continuously extended to a T−periodic solution of

the differential equation (1) in V if, and only if, it is a solution of the operator equation

Lx = Nε(x), x ∈ Ω.



4 D. D. Novaes

2. The Averaging Method

The Averaging Method is mainly concerned in providing asymptotic estimates for so-

lutions of non-autonomous differential equations given in the standard form (1). Such

asymptotic estimates are given in terms of solutions of an autonomous truncated aver-

aged equation

ξ′ =

k∑
i=1

εigi(ξ) (4)

as follows:

Theorem 5 (Stroboscopic Averaging Theorem, [14, Theorem 2.9.2]). Let ξ(t, z, ε) be the

solution of (4) satisfying ξ(0, z, ε) = z. Then, there exists ε̂ > 0 such that

|x(t, z, ε)− ξ(t, z, ε)| = O(εk),

for every t ∈ [0, L/ε] and ε ∈ (−ε̂, ε̂), for some fixed L > 0.

The functions gi : D → Rn, for i ∈ {1, . . . , k}, are obtained by the following result:

Theorem 6 ([14, Lemma 2.9.1]). There exists a smooth T -periodic near-identity transfor-

mation

x = U(t, ξ, ε) = ξ +

k∑
i=1

εi ui(t, ξ),

satisfying the stroboscopic condition U(0, ξ, ε) = ξ, such that the differential equation (1)

is transformed into

ξ′ =

k∑
i=1

εigi(ξ) + εk+1rk(t, ξ, ε). (5)

Remark 7. Let x(t, z, ε) and ξ(t, z, ε) be, respectively, the solutions of the differential

equations (1) and (5) satisfying x(0, z, ε) = ξ(0, z, ε) = z. By the conjugation provided

by Theorem 6, if follows that

x(t, z, ε) = U(t, ξ(t, z, ε), ε).

Thus, x(t, z, ε) is T -periodic if, and only if, the solution ξ(t, z, ε) is T -periodic.
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2.1. First-Order Averaged Function

We know that

x′ = εF1(t, x) + ε2R(t, x, ε)

is conjugate to a differential equation having the form

ξ′ = εg1(ξ) + ε2r1(t, ξ, ε)

through a near identity transformation

x = U(t, ξ, ε) = ξ + εu1(t, ξ).

Denoting x(t) = x(t, z, ε) and ξ(t) = ξ(t, z, ε), Remark 7 implies that

x(t) = ξ(t) + εu1(t, ξ(t)).

Computing the derivative of the last relationship, we get

x′(t) = ξ′(t) + ε

(
∂u1

∂t
(t, ξ(t)) +

∂u1

∂ξ
(t, ξ(t))ξ′(t)

)
= εg1(ξ(t))+ε2r1(t, ξ(t), ε) +ε

(
∂u1

∂t
(t, ξ(t)) +

∂u1

∂ξ
(t, ξ(t))(εg1(ξ(t)) + ε2r1(t, ξ(t), ε))

)
= ε

(
g1(ξ(t)) +

∂u1

∂t
(t, ξ(t))

)
+O(ε2).

(6)

On the other hand,

x′(t) = εF1(t, x(t)) + ε2R(t, x(t), ε)

= εF1(t, ξ(t) + εu1(t, ξ(t))) + ε2R(t, ξ(t) + εu1(t, ξ(t)), ε)

= εF1(t, ξ(t)) +O(ε2)

(7)

Comparing (6) and (7), we get that u1(t, ξ) satisfies the following Homological Equation

∂u1

∂t
(t, ξ) = F1(t, ξ)− g1(ξ). (8)

Thus,

u1(t, ξ) =

∫ t

0

(
F1(s, ξ)− g1(ξ)

)
ds+ h1(ξ).

Since u1(t, ξ) is T -periodic, in particular u1(T, ξ) = u1(0, ξ) = h1(ξ), we conclude that

∫ t

0

(
F1(s, ξ)− g1(ξ)

)
ds = 0⇒ g1(ξ) =

1

T

∫ T

0

F1(s, ξ)ds

In addition, by the stroboscopic condition, we get that h1(ξ) = 0. Therefore,

u1(t, ξ) =

∫ t

0

(
F1(s, ξ)− 1

T

∫ T

0

F1(τ, ξ)dτ

)
ds =

∫ t

0

F1(s, ξ)ds− t

T

∫ T

0

F1(s, ξ)ds
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2.1.1. Periodic Solutions Via Firs-Order Averaging. A solution ξ(t, z, ε) of the differen-

tial equation

ξ′ = εg1(ξ) + ε2r1(t, ξ, ε) (9)

satisfies the following integral relation:

ξ(t, z, ε) = z +

∫ t

0

(
εg1(ξ(s, z, ε)) + ε2r1(s, ξ(s, z, ε), ε)

)
ds.

Since g1(ξ(s, z, ε)) = g1(z) +O(ε), we conclude that

ξ(t, z, ε) = z + ε

∫ t

0

g1(z)ds+ ε2
∫ t

0

(
O(1) + r1(s, ξ(s, z, ε), ε)

)
ds

= z + ε tg1(z) + ε2
∫ t

0

(
O(1) + r1(s, ξ(s, z, ε), ε)

)
ds.

Therefore, the displacement function of differential equation (9) writes

∆(z, ε) = εTg1(z) +O(ε2).

Denote

∆̃(z, ε) :=
∆(z, ε)

ε
= Tg1(z) +O(ε).

Assuming that z∗ ∈ D is a simple zero of g1, we get that

∆̃(z∗, 0) = 0 and det

(
∂∆̃

∂z
(z∗, 0)

)
6= 0.

Hence, from the Implicit Function Theorem, we obtain the existence of a unique function

z(ε), defined in a neighbourhood I ⊂ R of ε = 0, satisfying z(0) = z∗ and ∆̃(z(ε), ε) = 0

for every ε ∈ I.

Therefore, Theorem 3 implies that t → ξ(t, z(ε), ε) is a T -periodic solution of the

differential equation (9). Thus, from the comments of Remark 7, we conclude that

ϕ(t, ε) := x(t, z(ε), ε)

is a T -periodic solution of the differential equation (1) satisfying

ϕ(·, ε)→ z∗ as ε→ 0.

Thus, the following result holds.

Theorem 8. Assume that z∗ ∈ D is a simple zero of g1. Then, for |ε| 6= 0 sufficiently

small, the differential equation (5) and, consequently, (1) admits a unique T -periodic

solution ϕ(t, ε) such that ϕ(·, ε)→ z∗ as ε→ 0.
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2.2. Higher-Order Averaged Functions

The functions gi and ui can be algorithmically computed by solving a recursive sequence

of homological equations like (8). Section 3.2 of [14] is devoted to discuss how is the

best way to work with such near-identity transformations based on Lie theory (see also

[3, 13]).

It is worth mentioning that the so-called stroboscopic condition U(ξ, 0, ε) = ξ does

not have to be assumed in order to get (5). However, in the case that it is not assumed,

the functions gi, for i ≥ 2, are not uniquely determined.

For the stroboscopic averaging, the uniqueness of each gi is guaranteed and so it is

natural to call it by averaged function of order i (or ith-order averaged function) of the

differential equation (1). Here, we refer these functions by stroboscopic averaged functions

to indicate that the stroboscopic condition is being assumed.

2.2.1. Periodic Solutions Via Higher Order Averaging.

Theorem 9. Denote g0 = 0. Let ` ∈ {1, . . . , k} satisfying g0 = · · · = g`−1 = 0 and

g` 6= 0. Assume that z∗ ∈ D is a simple zero of g`. Then, for |ε| 6= 0 sufficiently small,

the differential equation (5) and, consequently, (1) admits a unique T -periodic solution

ϕ(t, ε) such that ϕ(0, ε)→ z∗ as ε→ 0.

Proof. A solution ξ(t, z, ε) of the differential equation

ξ′ =

k∑
i=1

εigi(ξ) + εk+1rk(t, ξ, ε) (10)

satisfies the following integral relation:

ξ(t, z, ε) = z +

∫ t

0

[
k∑

i=1

εigi(ξ(s, z, ε)) + εk+1rk(s, ξ(s, z, ε), ε)

]
ds.

Assuming that g0 = · · · = g`−1 = 0, we have that

ξ(t, z, ε) = z + ε`tg`(z) + ε`+1

∫ t

0

( k∑
i=`+1

εi−`−1gi(ξ(s, z, ε)) + εk−`rk(s, ξ(s, z, ε), ε)
)
ds.

Therefore, the displacement function of the differential equation (10) writes

∆(z, ε) = ε`Tg`(z) +O(ε`+1).

Denote

∆̃(z, ε) =
∆(z, ε)

ε`
= Tg`(z) +O(ε).

Assuming that z∗ ∈ D is a simple zero of g`, we get, from the Implicit Function Theorem,

the existence of a unique function z(ε), defined in a neighbourhood I ⊂ R of ε = 0,

satisfying z(0) = z∗ and ∆̃(z(ε), ε) = 0 for every ε ∈ I.

Therefore, Theorem 3 implies that t → ξ(t, z(ε), ε) is a T -periodic solution of the

differential equation (10). Thus, from the comments of Remark 7, we conclude that

ϕ(t, ε) := x(t, z(ε), ε)

is a T -periodic solution of the differential equation (1) satisfying

ϕ(·, ε)→ z∗ as ε→ 0.

�
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3. Melnikov Method

The Melnikov Method consists in expanding the displacement function (2) around ε = 0

as follows

∆(z, ε) =

k∑
i=1

εifi(z) +O(εk+1).

A recursive formula for the functions fi : D → Rn, i ∈ {1, . . . , k}, was obtained in [6],

which was simplified in [10] by means of Bell functions. See also [4].

Just as performed in the previous section, the following result concerning bifurcation

of periodic solutions follows as a simple application of the Implicit Function Theorem:

Theorem 10 ([6]). Denote f0 = 0. Let ` ∈ {1, . . . , k} satisfying f0 = · · · f`−1 = 0 and

f` 6= 0. Assume that z∗ ∈ D is a simple zero of f`. Then, for |ε| 6= 0 sufficiently small, the

differential equation (1) admits a unique T -periodic solution ϕ(t, ε) such that ϕ(·, ε)→ z∗

as ε→ 0.

Remark 11. Under the assumption f0 = · · · f`−1 = 0, if f`(z) 6= 0 for some z ∈ D, then

the differential equation (1) does not admite periodic solutions converging to z.

The bifurcation functions fi, i ∈ {1, . . . , k}, are defined by

fi(z) =
yi(T, z)

i!
, (11)

where yi(t, z) are obtained by as follows:

Lemma 12 ([6, 10]). Let x(t, z, ε) be the solution (1) such that x(0, z, ε) = z. Then,

x(t, z, ε) = z +

k∑
i=1

εi
yi(t, z)

i!
+O(εk+1),

where

y1(t, z) =

∫ t

0

F1(s, z) ds and

yi(t, z) =

∫ t

0

(
i!Fi(s, z) +

i−1∑
j=1

j∑
m=1

i!

j!
∂mx Fi−j(s, z)Bj,m

(
y1, . . . , yj−m+1

)
(s, z)

)
ds,

(12)

for i ∈ {2, . . . , k}.

Here, for p and q positive integers, Bp,q denotes the partial Bell polynomials:

Bp,q(x1, . . . , xp−q+1) =
∑ p!

b1! b2! · · · bp−q+1!

p−q+1∏
j=1

(
xj
j!

)bj

.

The sum above is taken over all the (p−q+1)-tuple of nonnegative integers (b1, b2, · · · , bp−q+1)

satisfying b1 + 2b2 + · · ·+ (p− q + 1)bp−q+1 = p, and b1 + b2 + · · ·+ bp−q+1 = q.

It is worth mentioning that ∂mx Fi−j(s, z) denotes the Frechet’s derivative of Fi−j
with respect to the variable x evaluated at x = z, which is a symmetric m-multilinear

map that is applied to combinations of “products” of m vectors in Rn, in our case

Bj,m

(
y1, . . . , yj−m+1

)
.
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Remark 13. Notice that

f1(z) =

∫ T

0

F1(s, z)ds = Tg1(z).

Usually, fi is likewise called by averaged function of order i (or ith-order averaged func-

tion) of the differential equation (1). It is worth mentioning that the bifurcation functions

fi’s also receive the name of Poincaré-Pontryagin-Melnikov functions or just Melnikov

functions. Such functions can be formally easily computed, for instance

f2(z) =

∫ T

0

(
F2(t, z) + ∂xF1(t, z)y1(t, z)

)
dt

=

∫ T

0

(
F2(t, z) + ∂xF1(t, z)

∫ t

0

F1(s, z)ds

)
dt.

(13)

3.1. Idea of the Proof of Lemma 12

We recall the Faá di Bruno’s Formula about the lth derivative of a composite function.

Faá di Bruno’s Formula If g and f are functions with a sufficient number of derivatives,

then

dl

dαl
g(h(α)) =

l∑
m=1

g(m)(h(α))Bl,m

(
h′(α), h′′(α), . . . , h(l−m+1)(α)

)
,

where Sl is the set of all l–tuples of non–negative integers (b1, b2, · · · , bl) which are solu-

tions of the equation b1 + 2b2 + · · ·+ lbl = l and L = b1 + b2 + · · ·+ bl.

First of all, notice that

x(t, z, ε) = z +

k∑
i=0

εi
∫ t

0

Fi(s, x(s, z, ε))ds+O(εk+1). (14)

Result about differentiable dependence on parameters implies that the map ε 7→
x(t, z, ε) is smooth in all variables. So we can use the Faá di Bruno’s Formula a follows.

Since x(t, z, 0) = z, the Taylor expansion of Fi(t, x(t, z, ε)) around ε = 0, for i =

0, 1, . . . , k − 1, is given by

Fi(t, x(t, z, ε)) = Fi (t, z) +

k−i∑
j=1

εj

j!

(
∂j

∂εj
Fi(t, x(t, z, ε))

) ∣∣∣∣∣
ε=0

+O(εk−i+1). (15)

The Faá di Bruno’s formula allows to compute the j–derivatives of Fi(t, x(t, z, ε))

in ε, for i = 0, 1, . . . , k − 1:

∂j

∂εj
Fi(t, x(t, z, ε))

∣∣∣∣∣
ε=0

=

j∑
m=1

∂mx Fi(s, z)Bj,m

(
y1, . . . , yj−m+1

)
(s, z) (16)

where

yj(t, z) =

(
∂j

∂εj
x(t, z, ε)

) ∣∣∣∣∣
ε=0

. (17)
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Substituting (16) in (15) the Taylor expansion at ε = 0 of Fi(s, x(t, z, ε)) becomes

Fi(s, x(s, z, ε)) =Fi (s, z)

+

k−i∑
j=1

εj
j∑

m=1

1

j!
∂mx Fi(s, z)Bj,m

(
y1, . . . , yj−m+1

)
(s, z)

+O(εk−i+1),

(18)

for i = 0, 1, . . . , k − 1. Moreover, for i = k we have that

Fk(s, x(s, z, ε)) = Fk (s, z) +O(ε). (19)

Now, from (14), (18), and (19) the following equation holds

x(t, z, ε) = z +Q(t, z, ε) +

k∑
i=0

εi
∫ t

0

Fi(s, z)ds+O(εk+1), (20)

where

Q(t, z, ε) =

k−1∑
i=0

k−i∑
j=1

εj+i

j∑
m=1

∫ t

0

1

j!
∂mx Fi(s, z)Bj,m

(
y1, . . . , yj−m+1

)
(s, z)ds.

We may write

Q(t, z, ε) =

k∑
j=1

k∑
i=j

εi
j∑

m=1

∫ t

0

1

j!
∂mx Fi−j(s, z)Bj,m

(
y1, . . . , yj−m+1

)
(s, z)ds

=

k∑
i=1

εi
i∑

j=1

j∑
m=1

∫ t

0

1

j!
∂mx Fi−j(s, z)Bj,m

(
y1, . . . , yj−m+1

)
(s, z)ds.

(21)

Finally, from (20) and (21), we get

x(t, z, ε) =

=z +

k∑
i=1

εi

∫ t

0

Fi(s, z) +

i∑
j=1

j∑
m=1

∫ t

0

1

j!
∂mx Fi−j(s, z)Bj,m

(
y1, . . . , yj−m+1

)
(s, z) ds


+O(εk+1).

Now, using this last expression of x(t, z, ε) we conclude that functions yi(t, z) defined

in (17), for i = 1, 2, . . . , k − 1, can be computed recurrently from the following integral

equation

y1(t, z) =
∂x

∂ε
(t, z, ε)

∣∣∣
ε=0

=

∫ t

0

F1(s, z)ds and

yi(t, z) =
∂ix

∂εi
(t, z, ε)

∣∣∣
ε=0

= i!

∫ t

0

Fi(s, z) +

i∑
j=1

j∑
m=1

∫ t

0

1

j!
∂mx Fi−j(s, z)Bj,m

(
y1, . . . , yj−m+1

)
(s, z)

 ds

Finally,

x(t, z, ε) = z +

k∑
i=1

εi
yi(t, z)

i!
+O(εk+1)

which completes the proof of Lemma 12.
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4. General Relationship Between Stroboscopic Averaging Functions and

Melnikov Functions

A general relationship between the functions gi and fi defined above is provided by the

following result. See also [2, 5].

Theorem 14 ([11]). For i ∈ {1, . . . , k}, the following recursive relationship between gi and

fi holds:

g1(z) =
1

T
f1(z),

gi(z) =
1

T

fi(z)−
i−1∑
j=1

j∑
m=1

1

j!
dmgi−j(z)

∫ T

0

Bj,m

(
ỹ1, . . . , ỹj−m+1

)
(s, z)ds

 ,
(22)

where ỹi(t, z), for i ∈ {1, . . . , k}, are polynomial in the variable t recursively defined as

follows

ỹ1(t, z) =tg1(z)

ỹi(t, z) =i!tgi(z) +

i−1∑
j=1

j∑
m=1

i!

j!
dmgi−j(z)

∫ t

0

Bj,m

(
ỹ1, . . . , ỹj−m+1

)
(s, z)ds.

(23)

Remark 15. By applying the formula above for i = 2, we get

g2(z) =
1

T

(
f2(z)− 1

2
df1(z)f1(z)

)
,

where f2 is explicitly given by (13). Thus,

g2(z) =
1

T

∫ T

0

(
F2(t, z) + ∂xF1(t, z)

∫ t

0

(
F1(s, z)− 1

2
g1(z)

)
ds

)
dt,

which coincides with the expression provided by [14, Section 2.9.1].

4.1. Some consequences

Corollary 16. Denote f0 = g0 = 0 and let ` ∈ {1, . . . , k}. If either

f1 = · · · = f`−1 = 0 or g1 = · · · = g`−1 = 0,

then fi = T gi for i ∈ {1, . . . , `}.

Now, as a direct consequence of Corollary 16, the first non-vanishing stroboscopic

averaged function can be computed in relatively simple way. In particular, we get the

following result:

Corollary 17. Let ` ∈ {1, . . . , k} satisfying f1 = · · · f`−1 = 0. Then, there exists a T -

periodic near-identity transformation x = U(t, ξ, ε) satisfying U(ξ, 0, ε) = ξ, such that

the differential equation (1) is transformed into

ξ′ = ε`
1

T
f`(ξ) + ε`+1r`(t, ξ, ε).
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5. Algorithm

In what follows, Fi(t, x) is denoted by F[i,t,x], yi(t, x) is denoted by y0[i,t], ỹi(t, x) is

denoted by y1[i,t], fi(z) is denoted by f[i,z], and gi(z) is denoted by g[i,z]. The order of

perturbation k must be specified in order to run the code.

Listing 1. Mathematica’s algorithm for computing fi

y0[1, t_] = Integrate[F[1, s, z], {s, 0, t}];

Y0[1] = {y0[1, t]};

For[i = 2, i <= k, i++,

y0[i, t_] := Integrate[i! F[i, s, z] +

Sum[Sum[i!/j! D[F[i - j, t, z], {z, m}] BellY[j, m,

Y0[j - m + 1]], {m, 1, j}], {j, 1, i - 1}], {s, 0, t}];

Y0[i] = Join[Y0[i - 1], {y0[i, t]}];

f[i, z_] = y0[i, T]/i!];

Listing 2. Mathematica’s algorithm for computing gi

g[1, z_] = f[1, z]/T;

y1[1, t] = t g[1, z];

Y1[1, t_] = {y1[1, t]};

For[i = 2, i <= k, i++,

g[i, z_] = 1/T (f[i, z] -

Sum[Sum [1/j! D[g[i - j,z], {z, m}]

Integrate[BellY[j, m, Y1[j - m + 1, s]], {s, 0, T}],

{m, 1, j}], {j, 1, i - 1}]);

y1[i, t_] =i! t g[i,z] +

Sum[Sum[i!/j! D[g[i - j,z], {z, m}]

Integrate[BellY[j, m, Y1[j - m + 1, s]], {s, 0, T}],

{m, 1, j}], {j, 1, i - 1}];

Y1[i, t_] = Join[Y1[i - 1, t], {y1[i, t]}]];
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6. Some Formulae

y1(t, z) =

∫ t

0

F1(s, z)ds,

y2(t, z) =

∫ t

0

(
2F2(s, z) + 2∂zF1(s, z)y1(s, z)

)
ds,

y3(t, z) =

∫ t

0

(
6F3(s, z) + 6∂zF2(s, z)y1(s, z) + 3∂2zF1(s, z)y1(s, z)2 + 3∂zF1(s, z) y2(s, z)

)
ds,

y4(t, z) =

∫ t

0

(
24F4(s, z) + 24∂zF3(s, z)y1(s, z) + 12∂2zF2(s, z)y1(s, z)2 + 12∂zF2(s, z)y2(s, z)

+12∂2zF1(s, z)y1(s, z)y2(s, z) + 4∂3zF1(s, z)y1(s, z)3 + 4∂zF1(s, z)y3(s, z)
)
ds,

y5(t, z) =

∫ t

0

(
120F5(s, z) + 120∂zF4(s, z)y1(s, z)

+60∂2zF3(s, z)y1(s, z)2 + 60∂zF3(s, z)y2(s, z) + 60∂2zF2(s, z)y1(s, z)y2(s, z)

+20∂3zF2(s, z)y1(s, z)3 + 20∂zF2(s, z)y3(s, z) + 20∂2zF1(s, z)y1(s, z)y3(s, z)

+15∂2zF1(s, z)y2(s, z)2 + 30∂3zF1(s, z)y1(s, z)2y2(s, z)

+5∂4zF1(s, z)y1(s, z)4 + 5∂zF1(s, z)y4(s, z)
)
ds.

f1(z) =

∫ T

0

F1(t, z)dt,

f2(z) =

∫ T

0

(
F2(t, z)ds+ ∂zF1(t, z)y1(t, z)

)
dt,

f3(z) =

∫ T

0

(
F3(t, z) + ∂zF2(t, z)y1(t, z) +

1

2
∂2zF1(t, z)y1(t, z)2 +

1

2
∂zF1(t, z)y2(t, z)

)
dt,

f4(z) =

∫ T

0

(
F4(t, z) + ∂zF3(t, z)y1(t, z) +

1

2
∂2zF2(t, z)y1(t, z)2 +

1

2
∂zF2(t, z)y2(t, z)

+
1

2
∂2zF1(t, z)y1(t, z)y2(t, z)dt+

1

6
∂3zF1(t, z)y1(t, z)3 +

1

6
∂zF1(t, z)y3(t, z)

)
dt,

f5(z) =

∫ T

0

(
F5(t, z) + ∂zF4(t, z)y1(t, z)

+
1

2
∂2zF3(t, z)y1(t, z)2 +

1

2
∂zF3(t, z)y2(t, z) +

1

2
∂2zF2(t, z)y1(t, z)y2(t, z)

+
1

6
∂3zF2(t, z)y1(t, z)3 +

1

6
∂zF2(t, z)y3(t, z) +

1

6
∂2zF1(t, z)y1(t, z)y3(t, z)

+
1

8
∂2zF1(t, z)y2(t, z)2 +

1

4
∂3zF1(t, z)y1(t, z)2y2(t, z)

+
1

24
∂4zF1(t, z)y1(t, z)4 +

1

24
∂zF1(t, z)y4(t, z)

)
dt.
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[4] J. Giné, M. Grau, and J. Llibre. Averaging theory at any order for computing periodic

orbits. Physica D: Nonlinear Phenomena, 250:58–65, 2013.

[5] M. Han, V. G. Romanovski, and X. Zhang. Equivalence of the melnikov function method

and the averaging method. Qualitative Theory of Dynamical Systems, 15(2):471–479, Nov.

2015.

[6] J. Llibre, D. D. Novaes, and M. A. Teixeira. Higher order averaging theory for finding

periodic solutions via brouwer degree. Nonlinearity, 27:563–583, 2014.
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