ON HOMOTOPY NILPOTENCY OF MOORE SPACE

MAREK GOLASIŃSKI

Given a group-like space X, we write $\varphi_{X,1} = \iota_X$, $\varphi_{X,2} : X \times X \to X$ for the basic commutator map and $\varphi_{X,n+1} = \varphi_{X,2} \circ (\varphi_{X,n} \times \iota_X)$ for $n \ge 2$. The *nilpotency class* nil X of the space X is the least integer $n \ge 0$ for which the map $\varphi_{X,n+1} \simeq *$ is nullhomotopic. If no such integer, we put nil $X = \infty$.

With any based space X, we associate its loop space $\Omega(X)$, being a grouplike space, to state

Theorem. 1. Let $m \ge 1, n_1, \ldots, n_m \ge 2$ and $M(A_k, n_k)$ be Moore spaces of type (A_k, n_k) for $k = 1, \ldots, m$. Then:

(1) nil $\Omega((M(A_1, n_1) \times \cdots \times (M(A_m, n_m))) < \infty$ if and only if if A_k are torsion-free groups with rank

 $r(A_k) = 1 \text{ for } k = 1, ..., m;$

(2) nil $\Omega((M(A_1, n_1) \lor \cdots \lor M(A_m, n_m)) < \infty$ if and only if m = 1 and A_1 is a torsion-free group with rank $r(A_1) = 1$.

In particular, we derive

Corollary. 1. If M(A, n) is a Moore space with $n \ge 2$ then

 $\operatorname{nil}\Omega(M(A,n)) < \infty$

if and only if A is a torsion-free group with rank r(A) = 1 or equivalently, A is a subgroup of the rationals \mathbb{Q} .

Email address: marekg@matman.uwm.edu.pl

UNIVERSITY OF WARMIA AND MAZURY, OLSZTYN, POLAND