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Setup

We consider transcendental entire of meromorphic maps
f: C—C.
Basic notation

@ Julia set
J(f) ={z € C: {f"},>0 not normal in any nbhd of z}
e Fatou set
F(f) =C\ J(f)
@ Invariant Fatou component
U connected component of F(f) with f(U) C U.
e Bounded orbit set
K(f)={z e C: {f"(z)}52, bounded}
@ Escaping set
I(fy={zeC:f"(z) - o0 as n — o0}

@ 0 = boundary in C, dimy = Hausdorff dimension.



Part |: Parabolic and Baker domains

Let U be an invariant Fatou component. We assume that U is
simply connected (this always holds if f is entire).
Definition
e U is parabolic if there is p € QU with f(p) = p, f'(p) =1
and f"|y — p as n — 0.
e U is Baker if f"|y — 0o as n — oc.

In particular, parabolic domains are in K(f) and Baker domains are
in /(f). However, their boundary points can have different
dynamical behaviour.

Open question

Is 9U N I(f) non-empty for every invariant Baker domain?



Invariant parabolic basin Invariant Baker domain
for f(z) = 1e? for f(z)=z+1+4+e7

[Devaney 1984] [Fatou 1926]



Inner function associated to f on U

Let
p:D—U

be a Riemann map. Then
g:D=D,  g=¢lofoyp

is the inner function associated to f on U.

We have lim g(rf) € D for almost every 6 € 9D.
r—1-

Furthermore,
e if deg f|y < oo, then g is a finite Blaschke product and
extends to C,
e if deg f|y = oo, then g has at least one singular point in 9D
(where g does not extend through oD).

Since g has no fixed points in D, by the Denjoy—Wolff Theorem,
g" — ¢ as n — oo for a point ¢ € 9D (Denjoy—Wolff point of g).



Baker—Pommerenke—Cowen classification

Theorem

There exists a holomorphic map v : D — Q such that
Yog=To1, where T(w) = w + 1 and one of the three following
cases holds:

0 Q=5={zeC:|Im(z)|<c}, c>0 hyperbolic type
e Q=H, ={zeC:Re(z) >0} simply parabolic type
e O=C doubly parabolic type

Moreover, 1) is univalent on an absorbing domain V C D
(where g(V) C V and U287 "(V)=D).

S— H+ wHwt1

wrHw+l wrHw+1

hyperbolic simply parabolic doubly parabolic



Characterization of the three types
Let py be the hyperbolic metric in U. By the Schwarz—Pick
Lemma, the sequence py(f"*1(z), f"(z)) is decreasing for z € U,
so lim_ pu(F"(z2), f"(2)) = A(z) for some A(z) > 0.
Theorem
e f|y has hyperbolic type <— Z'QE A(z) > 0.

o f|y has simply parabolic type <= A(z) > 0 and iml‘j A(z) = 0.
ze

e f|y has doubly parabolic type <= A(z) = 0.

Furthermore, if the Denjoy—Wolff point ( is non-singular for g,
then:

e f|y has hyperbolic type <= ( is an attracting fixed point of g

e f|y has simply parabolic type <= ( is a simply parabolic
fixed point of g

e f|y has doubly parabolic type <= ( is a doubly parabolic
fixed point of g.



Definition
@ ( is a simple parabolic fixed point of g if
gz)=z+a(z—¢)*+---,a#0, znear (.
@ ( is a double parabolic fixed point of g if
g(z)=z+a(z—¢)*+---,a#0, z near (.

hyperbolic simply parabolic doubly parabolic

g S g

Remark

If U is a parabolic domain, then f|y has doubly parabolic type (even
if p is a simply parabolic fixed point for f). This follows from the
existence of Fatou coordinates and the characterization theorem.



Typical behaviour of points in QU
Let U be an invariant parabolic or Baker domain and let w be a
harmonic measure on QU (i.e. w = @, A, where X is the normed
Lebesgue measure on 9D).

Theorem (Fagella—Jarque—Karpinska—B 2019)

Assume that the Denjoy—Wolff point { is non-singular for g
(this holds e.g. when deg f|y < o0).

e If U is a Baker domain and f|y has hyperbolic or simply
parabolic type, then w-almost every point of QU is in I(f).

e If U is a parabolic domain, or U is a Baker domain and f|y
has doubly parabolic type, then w-almost every point of QU
has dense trajectory in OU.

Remark

The case of univalent Baker domains (then f|y has hyperbolic or
simply parabolic type) was proved in [Rippon-Stallard 2018].

The case of parabolic domains was proved in [Doering—Mafié 1991,
Aaronson—Denker—Urbanski 1993] in the context of rational maps.



Example

The map f(z) = z+ e~ %, studied in [Baker-Dominguez 1999] has
infinitely many invariant Baker domains of doubly parabolic type.

The set of escaping points in the boundaries of these domains has
harmonic measure zero.



Theorem (Fagella—Jarque—Karpinska—B 2019)

Let U be an invariant parabolic or Baker domain, such that

nr

pu(FHY(2), F7(2)) < % +0 <1> o1

for some z € U. Then w-almost every point of QU has dense
trajectory in OU.

Example (Aaronson 1981)
Let

FCoT  fR)=z-3 20 §e(1,2)

2 1)
zZc—n
n=0 ’

Then U = {z € C:Im(z) > 0} is an invariant Baker domain,
C1 n+1 n 2
- < pu(f™(2),f"(2)) < = forze U

and w-almost every point of QU is in I(f).



A family of examples

Proposition
Let f be a meromorphic map of the form

f(z)=z+a+ h(z),
where a € C\ {0} and

c z

h(z)| < ————— foRe(—>>c, > 1.

PO Ry rRelG) m e

Then f has an invariant Baker domain U containing a half-plane. If
U is simply connected (e.g. if f is entire), then f on U satisfies the
assumptions of the previous theorem and hence w-almost every
point of QU has dense trajectory in OU.

Fatou's example
The map f(z) = z+ 1 + e~ “ satisfies the above assumptions.



|dea of proof — hyperbolic and simply parabolic case
The map g is defined almost everywhere on 9D in the sense of
radial limits. Let ¢ € 9D be the Denjoy-Wolff point and let | C 0D
be an arc. Set I, = g"(/).
Let z, = g"(z) for a suitable zy € D. Then z, —
¢ and f"(¢p(z0)) = ¢(zn) — oo. We show that
¢ the set E of points w € I, such that f"(¢(w)) =
©(g"(w)) is far from ¢(z,) has small measure (this
gives f"(¢p(w)) — oo for almost every w € /).

In

To do so, we use the following Pfliiger-type estimate:

If for a Riemann map ®: D — ®(D), the image of every curve
joining 0 to a set E C JD has to pass through long ‘corridors’ in
V C U of small area, then the measure of E is small.



|dea of proof — doubly parabolic case

Fact
The map g on OD preserves the infinite measure

M(E)=/CM(W)

elw— (%

We use results of ergodic theory of inner functions established
in [Aaronson 1978-1981, Doering—Mafié 1991].
o If >°7° (1 —|g"(2z)|) = oo for some z € D, then g on ID is
conservative with respect to the Lebesgue measure.
@ The map g on 0D is exact with respect to the Lebesgue
measure <= g has doubly parabolic type.
@ If g on JD is non-singular, conservative and ergodic, then
for every E C 0D of positive Lebesgue measure, the trajectory
of almost every point of 9D visits E infinitely many times.



Part Il: Attracting basins for exponential maps
Let
Ex(z) = Aexp(2)
forze C, A e C\ {0}.

The point 0 is the unique singular (asymptotic) value of E).

Assumption

We assume that E) is hyperbolic. Then there exists an attracting
periodic point of (minimal) period p > 1, i.e. a point zy € C with

Ef(z0) =20, |(Ef)(20)| < 1.
Let
B={zeC:E}(2) — El () for some j € {0,...,p — 1}}

be the entire basin of attraction of this cycle. Then

JE)=C\B=0B, 0¢€B.



Case p=1

@ B consists of a unique simply connected component U.
e [McMullen 1987]

dimH((?U) = dimH((‘)U N I(EA)) = dimH(I(E,\)) =2.
o [Karpinska 1999, Urbanski—Zdunik 2003]

1 < dimp(AU N K(EY)) < dimp(dU\ 1(Ey)) < 2.

Corollary
In case p =1 a (dimensionally) typical point of QU is escaping.



Case p>1

@ B consists of infinitely many simply connected components.
e [McMullen 1987] dimy(0B) = dimp(0B N I(Ey)) = 2.

Theorem (Karpinska—Zdunik-B 2009)

If p > 1, then for every connected component U of B,
e 1 <dimy(oU) < 2.
o 1 < dimy(0U N K(Ey)) < dimp(U\ I(Ey)) < 2,
e dimy(QUNI(Ey)) =1.

Corollary

The set of buried points (i.e. points in J(E)) outside the boundary
of any Fatou component) has Hausdorff dimension 2, while the set
of non-buried points has dimension smaller than 2. Hence, in case
p > 1 a (dimensionally) typical point of J(E)) is buried.

Corollary
In case p > 1 a (dimensionally) typical point of OU is non-escaping.



Topological properties of the Julia set — case p =1

e J(E)) consists of disjoint hairs homeomorphic to [0, 00),
tending to oo, composed of points with given symbolic
itineraries [Devaney et al. 1984-1999].

@ All points of hairs except their endpoints are in /(Ey) and
form a set of Hausdorff dimension 1 [Karpiriska 1999].

@ The Julia set is homeomorphic to a straight brush
[Aarts—Oversteegen 1993].




Topological properties of the Julia set — case p > 1

e J(E)) consists of hairs with the same properties, but some
hairs have common endpoints.

@ The Julia set is homeomorphic to a modified straight brush
[Bhattacharjee, Devaney et al. 2001].




Combinatorial description (Bhattacharjee-Devaney)

Structure of the attracting basin
® 29,...,2, = Zg attracting cycle
e Up,...,U, = Uy components of B with z; € U;, 0 € U;.
@ B,11 C Ui Jordan domain with 0,z € Bpy1,
E,[\J(Berl) C Bpt1
° B, =E; " (Bpi1)
@ Bj component of E;l(Bj+1) with zz € B;, j=p—1,...,0



B]_ )Bz > Ex, p1—>B CBo—)Bl\{O}

1-1 1-1 1— 1 univ. cover



Symbolic coding

C\Bo=|JHs,  Hs=Hot2rmis disoint,  J(E) C | JHs
SEZ sEZ

p
L=C\ U B; simply connected, away from 0
j=1

gs: L — Hs branches of E;l, gs(L)C L

Corollary

o

J(Ex) = m U 8s, 0+ 0 8s(L)-

n=0 sp,...,spEZ

Each z € J(E\) has itinerary (s, s1,...) € Z~N, defined by
El(z) € Hs, for every n > 0.



Symbolic description of dU

Definition
© k= (ki,...,kp—1), where kj € Z such that z; € U; C Hy,
o Y ={(s0,k,s1,k,...) 1 50,51,... € L}

° Z/KZ {(s0,k,s1,k,...):50,%,...€Z
and s, & {ki,..., kp—1} for infinitely many n}

Expanding property
Forevery ze £, n >0, |(gg © - ©&s,) (2)| < cq", where g < 1.

Lemma

{z has itinerary in ¥} } C OUy C {z has itinerary in ¥}

Proof.
By the combinatorics of U; and expanding property. O



Plan of the proof
(1) dimy({z has itinerary in X4} N I(Ey)) = 1.

(
(2) dimy({z has itinerary in X} } N K(Ey)) > 1.
(3) dimy(J(Ex) \ I(Ex)) < 2 [Urbanski—Zdunik 2003].

Proof of (1).
Instead of X4, we can take
iK: {(5751,5,52,...) 151,8,... € Z}.

We have dimy > 1, since the set contains curves (hairs).
To get dimy < 1, it is sufficient to prove:

Proposition
Fix § > 0 and let

Am = {z has itinerary in ¥ and Re(EJ(z)) > M for every n > 0}.

Then dimy(Apm) < 14 0 for sufficiently large M.



Proof of Proposition

Inductive construction of covers of Ay

Ko = {comp. of LN H), N{r <Re(z) <r+1},reN;r> M}
Kni1 ={Gks(K): K€ Ky, s € Z and Gy s(K) N {Re(z) > M} # 0}

for Gk,s = gk, 0+ 0 gk,_, © &s-

Fact
IC, is a sequence of covers of Ay with diameters shrinking to 0.



Estimate of the (1 + §)-Hausdorff measure of Ay

Lemma
For z € | J K,
c c
G, < < .
6ks2 < Rez)le] = Wi
Corollary
Z (diam K) 145 Z Z (diam Gk, 5,0 - 'OGA,s;l(KO))lM
KeK, Ko€Ko s1,..-,SnEZ
1+6
o _
<
r=M si1,...,5n€7Z
Z c 1+5\ 7
00 < oo
1 s€z (m) c”
/
<c Z 146 M1+6 Z S V <L
r=M



Proof of (2)

ldea
Construct a finite conformal IFS with a compact Efp—invariant

repeller X, check that the topological pressure at 1 is positive and
use Bowen's formula.

Construction

R R
Q= {2,,‘?} X [2, R} R large
Qu,s = Gu,ﬁ © GS,K(Q)? s,ue Z

g= {(Uas) . Qu,s C Q}
X=(1 U (GuroGsi)o-0(GCuxo Geqy)Q)

n=1 s1,U1,...,5n,Un

where (u1,s1), ..., (Un,sn) €G.



INJBY

Q
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Qu,s
00000000 0000000000
00000000 000 0800 00 0

N[

R



Estimate of the topological pressure

const

R(In R)P—1

o IfU ={u:2rue[R/2+c,R—c]}, then #U < R
e For every u € U, Z |Gy, x| > const R

° ‘G;,ﬂ >

s:(u,s)€gG
Corollary
R2
!/
(z):eg\(cu,ko G| > const g ey o0

Conclusion

(u,5)€G

n
1
> i — i Gu Gs ! .
P(1) > fim Tin (;gg (Guo ,k)(z)> >0



Work in progress

(Karpinska—Marti-Pete—Pardo Simén—Zdunik-B)

Prove dimy(0U) > 1 for simply connected invariant attracting
basins U for more general classes of transcendental maps f.

Motivation:

Theorem (Przytycki—Urbanski—Zdunik~1990)

For a simply connected invariant attracting basin U of a rational
map, either dimy(9U) > 1 or QU is an analytic curve.



Thank you for attention!



