Typical behaviour of boundary points of Fatou components of transcendental maps

Krzysztof Barański

University of Warsaw

22 April 2021

This is a joint work with Núria Fagella, Xavier Jarque, Bogusława Karpińska and Anna Zdunik.

Setup

We consider transcendental entire of meromorphic maps

 $f: \mathbb{C} \to \overline{\mathbb{C}}.$

Basic notation

• Julia set

 $J(f) = \{z \in \overline{\mathbb{C}} : \{f^n\}_{n \ge 0} \text{ not normal in any nbhd of } z\}$

• Fatou set

 $\mathcal{F}(f) = \overline{\mathbb{C}} \setminus J(f)$

• Invariant Fatou component

U connected component of $\mathcal{F}(f)$ with $f(U) \subset U$.

Bounded orbit set

 $\mathcal{K}(f) = \{z \in \mathbb{C} : \{f^n(z)\}_{n=0}^{\infty} \text{ bounded}\}$

• Escaping set

$$I(f) = \{z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to \infty\}$$

• ∂ = boundary in \mathbb{C} , dim_H = Hausdorff dimension.

Part I: Parabolic and Baker domains

Let U be an invariant Fatou component. We assume that U is simply connected (this always holds if f is entire).

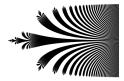
Definition

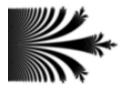
- U is parabolic if there is p ∈ ∂U with f(p) = p, f'(p) = 1 and fⁿ|_U → p as n → ∞.
- U is Baker if $f^n|_U \to \infty$ as $n \to \infty$.

In particular, parabolic domains are in K(f) and Baker domains are in I(f). However, their boundary points can have different dynamical behaviour.

Open question

Is $\partial U \cap I(f)$ non-empty for every invariant Baker domain?





Invariant parabolic basin for $f(z) = \frac{1}{e}e^{z}$ [Devaney 1984] Invariant Baker domain for $f(z) = z + 1 + e^{-z}$ [Fatou 1926]

Inner function associated to f on U

Let

$$\varphi \colon \mathbb{D} \to U$$

be a Riemann map. Then

$$g \colon \mathbb{D} o \mathbb{D}, \qquad g = \varphi^{-1} \circ f \circ \varphi$$

is the inner function associated to f on U.

We have $\lim_{r\to 1^-} g(r\theta) \in \partial \mathbb{D}$ for almost every $\theta \in \partial \mathbb{D}$.

Furthermore,

- if deg $f|_U < \infty$, then g is a finite Blaschke product and extends to $\overline{\mathbb{C}}$,
- if deg $f|_U = \infty$, then g has at least one singular point in $\partial \mathbb{D}$ (where g does not extend through $\partial \mathbb{D}$).

Since g has no fixed points in \mathbb{D} , by the Denjoy–Wolff Theorem, $g^n \to \zeta$ as $n \to \infty$ for a point $\zeta \in \partial \mathbb{D}$ (Denjoy–Wolff point of g).

Baker-Pommerenke-Cowen classification

Theorem

There exists a holomorphic map $\psi \colon \mathbb{D} \to \Omega$ such that $\psi \circ g = T \circ \psi$, where $T(\omega) = \omega + 1$ and one of the three following cases holds:

• $\Omega = S = \{z \in \mathbb{C} : |\text{Im}(z)| < c\}, c > 0$ hyperbolic type • $\Omega = \mathbb{H}_+ = \{z \in \mathbb{C} : \text{Re}(z) > 0\}$ simply parabolic type • $\Omega = \mathbb{C}$ doubly parabolic type

Moreover, ψ is univalent on an absorbing domain $V \subset \mathbb{D}$ (where $g(V) \subset V$ and $\bigcup_{n=1}^{\infty} g^{-n}(V) = \mathbb{D}$).

Characterization of the three types

Let ρ_U be the hyperbolic metric in U. By the Schwarz–Pick Lemma, the sequence $\rho_U(f^{n+1}(z), f^n(z))$ is decreasing for $z \in U$, so $\lim_{n\to\infty} \rho_U(f^{n+1}(z), f^n(z)) = A(z)$ for some $A(z) \ge 0$.

Theorem

- $f|_U$ has hyperbolic type $\iff \inf_{z \in U} A(z) > 0.$
- $f|_U$ has simply parabolic type $\iff A(z) > 0$ and $\inf_{z \in U} A(z) = 0$.

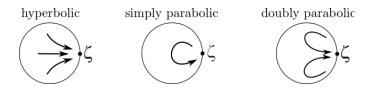
• $f|_U$ has doubly parabolic type $\iff A(z) = 0$.

Furthermore, if the Denjoy–Wolff point ζ is non-singular for g, then:

- $f|_U$ has hyperbolic type $\iff \zeta$ is an attracting fixed point of g
- $f|_U$ has simply parabolic type $\iff \zeta$ is a simply parabolic fixed point of g
- $f|_U$ has doubly parabolic type $\iff \zeta$ is a doubly parabolic fixed point of g.

Definition

- ζ is a simple parabolic fixed point of g if $g(z) = z + a(z \zeta)^2 + \cdots$, $a \neq 0$, z near ζ .
- ζ is a double parabolic fixed point of g if $g(z) = z + a(z \zeta)^3 + \cdots$, $a \neq 0$, z near ζ .



Remark

If U is a parabolic domain, then $f|_U$ has doubly parabolic type (even if p is a simply parabolic fixed point for f). This follows from the existence of Fatou coordinates and the characterization theorem.

Typical behaviour of points in ∂U

Let U be an invariant parabolic or Baker domain and let ω be a harmonic measure on ∂U (i.e. $\omega = \varphi_* \lambda$, where λ is the normed Lebesgue measure on $\partial \mathbb{D}$).

Theorem (Fagella–Jarque–Karpińska–B 2019)

Assume that the Denjoy–Wolff point ζ is non-singular for g (this holds e.g. when deg $f|_U < \infty$).

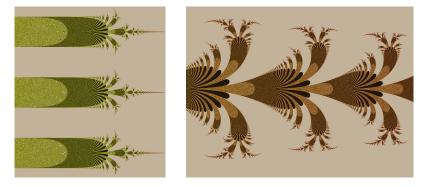
- If U is a Baker domain and f|_U has hyperbolic or simply parabolic type, then ω-almost every point of ∂U is in I(f).
- If U is a parabolic domain, or U is a Baker domain and f|_U has doubly parabolic type, then ω-almost every point of ∂U has dense trajectory in ∂U.

Remark

The case of univalent Baker domains (then $f|_U$ has hyperbolic or simply parabolic type) was proved in [Rippon–Stallard 2018]. The case of parabolic domains was proved in [Doering–Mañé 1991, Aaronson–Denker–Urbański 1993] in the context of rational maps.

Example

The map $f(z) = z + e^{-z}$, studied in [Baker–Domínguez 1999] has infinitely many invariant Baker domains of doubly parabolic type.



The set of escaping points in the boundaries of these domains has harmonic measure zero.

Theorem (Fagella–Jarque–Karpińska–B 2019)

Let U be an invariant parabolic or Baker domain, such that

$$\rho_U(f^{n+1}(z), f^n(z)) \leq \frac{1}{n} + O\left(\frac{1}{n^r}\right), \quad r > 1$$

for some $z \in U$. Then ω -almost every point of ∂U has dense trajectory in ∂U .

Example (Aaronson 1981)

Let

$$f: \mathbb{C} \to \overline{\mathbb{C}}, \qquad f(z) = z - \sum_{n=0}^{\infty} \frac{2z}{z^2 - n^{\delta}}, \qquad \delta \in (1, 2)$$

Then $U = \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ is an invariant Baker domain,

$$rac{c_1}{n} \leq
ho_U(f^{n+1}(z), f^n(z)) \leq rac{c_2}{n} \quad ext{for } z \in U$$

and ω -almost every point of ∂U is in I(f).

A family of examples

Proposition

Let f be a meromorphic map of the form

$$f(z)=z+a+h(z),$$

where $a \in \mathbb{C} \setminus \{0\}$ and

$$|h(z)| < rac{c}{(\operatorname{Re}(z/a))^r}$$
 for $\operatorname{Re}\left(rac{z}{a}
ight) > c_1, \quad r > 1.$

Then f has an invariant Baker domain U containing a half-plane. If U is simply connected (e.g. if f is entire), then f on U satisfies the assumptions of the previous theorem and hence ω -almost every point of ∂U has dense trajectory in ∂U .

Fatou's example

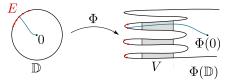
The map $f(z) = z + 1 + e^{-z}$ satisfies the above assumptions.

Idea of proof — hyperbolic and simply parabolic case The map g is defined almost everywhere on $\partial \mathbb{D}$ in the sense of radial limits. Let $\zeta \in \partial \mathbb{D}$ be the Denjoy-Wolff point and let $I \subset \partial \mathbb{D}$ be an arc. Set $I_n = g^n(I)$.

Let $z_n = g^n(z_0)$ for a suitable $z_0 \in \mathbb{D}$. Then $z_n \rightarrow \zeta$ and $f^n(\varphi(z_0)) = \varphi(z_n) \rightarrow \infty$. We show that ζ the set E of points $w \in I_n$ such that $f^n(\varphi(w)) = \varphi(g^n(w))$ is far from $\varphi(z_n)$ has small measure (this gives $f^n(\varphi(w)) \rightarrow \infty$ for almost every $w \in I$).

To do so, we use the following Pflüger-type estimate:

If for a Riemann map $\Phi \colon \mathbb{D} \to \Phi(\mathbb{D})$, the image of every curve joining 0 to a set $E \subset \partial \mathbb{D}$ has to pass through long 'corridors' in $V \subset U$ of small area, then the measure of E is small.



Idea of proof — doubly parabolic case

Fact

The map g on $\partial \mathbb{D}$ preserves the infinite measure

$$\mu(E) = \int_E \frac{d\lambda(w)}{|w-\zeta|^2}.$$

We use results of ergodic theory of inner functions established in [Aaronson 1978–1981, Doering–Mañé 1991].

- If $\sum_{n=1}^{\infty} (1 |g^n(z)|) = \infty$ for some $z \in \mathbb{D}$, then g on $\partial \mathbb{D}$ is conservative with respect to the Lebesgue measure.
- The map g on ∂D is exact with respect to the Lebesgue measure ⇒ g has doubly parabolic type.
- If g on ∂D is non-singular, conservative and ergodic, then for every E ⊂ ∂D of positive Lebesgue measure, the trajectory of almost every point of ∂D visits E infinitely many times.

Part II: Attracting basins for exponential maps Let

$$E_{\lambda}(z) = \lambda \exp(z)$$

for $z \in \mathbb{C}$, $\lambda \in \mathbb{C} \setminus \{0\}$.

The point 0 is the unique singular (asymptotic) value of E_{λ} .

Assumption

We assume that E_{λ} is hyperbolic. Then there exists an attracting periodic point of (minimal) period $p \ge 1$, i.e. a point $z_0 \in \mathbb{C}$ with

$$E_{\lambda}^{p}(z_{0}) = z_{0}, \quad |(E_{\lambda}^{p})'(z_{0})| < 1.$$

Let

$$B = \{z \in \mathbb{C} : E_{\lambda}^{pn}(z) \xrightarrow[n \to \infty]{} E_{\lambda}^{j}(z_{0}) \text{ for some } j \in \{0, \dots, p-1\}\}$$

be the entire basin of attraction of this cycle. Then

$$J(E_{\lambda}) = \mathbb{C} \setminus B = \partial B, \qquad 0 \in B.$$

Case
$$p = 1$$

- B consists of a unique simply connected component U.
- [McMullen 1987]

 $\dim_{H}(\partial U) = \dim_{H}(\partial U \cap I(E_{\lambda})) = \dim_{H}(I(E_{\lambda})) = 2.$

• [Karpińska 1999, Urbański–Zdunik 2003]

 $1 < \dim_H(\partial U \cap K(E_{\lambda})) \leq \dim_H(\partial U \setminus I(E_{\lambda})) < 2.$

Corollary

In case p = 1 a (dimensionally) typical point of ∂U is escaping.

Case p > 1

- *B* consists of infinitely many simply connected components.
- [McMullen 1987] $\dim_H(\partial B) = \dim_H(\partial B \cap I(E_{\lambda})) = 2.$
- Theorem (Karpińska–Zdunik–B 2009)
- If p > 1, then for every connected component U of B,
 - $1 < \dim_H(\partial U) < 2.$
 - $1 < \dim_H(\partial U \cap K(E_{\lambda})) \le \dim_H(\partial U \setminus I(E_{\lambda})) < 2$,
 - dim_H $(\partial U \cap I(E_{\lambda})) = 1.$

Corollary

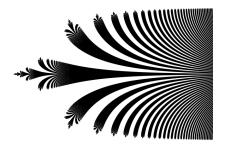
The set of **buried points** (i.e. points in $J(E_{\lambda})$ outside the boundary of any Fatou component) has Hausdorff dimension 2, while the set of non-buried points has dimension smaller than 2. Hence, in case p > 1 a (dimensionally) typical point of $J(E_{\lambda})$ is buried.

Corollary

In case p > 1 a (dimensionally) typical point of ∂U is non-escaping.

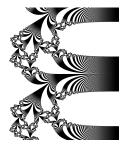
Topological properties of the Julia set — case p = 1

- J(E_λ) consists of disjoint hairs homeomorphic to [0,∞), tending to ∞, composed of points with given symbolic itineraries [Devaney et al. 1984–1999].
- All points of hairs except their endpoints are in $I(E_{\lambda})$ and form a set of Hausdorff dimension 1 [Karpińska 1999].
- The Julia set is homeomorphic to a straight brush [Aarts-Oversteegen 1993].



Topological properties of the Julia set — case p > 1

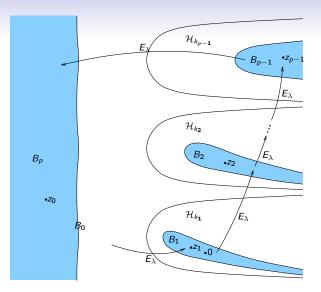
- J(E_λ) consists of hairs with the same properties, but some hairs have common endpoints.
- The Julia set is homeomorphic to a modified straight brush [Bhattacharjee, Devaney et al. 2001].



Combinatorial description (Bhattacharjee–Devaney)

Structure of the attracting basin

- $z_0, \ldots, z_p = z_0$ attracting cycle
- $U_0, \ldots, U_p = U_0$ components of B with $z_j \in U_j$, $0 \in U_1$.
- $\frac{B_{p+1} \subset U_1}{\overline{E_{\lambda}^p(B_{p+1})} \subset B_{p+1}}$ domain with $0, z_1 \in B_{p+1}$,
- $B_p = E_\lambda^{-1}(B_{p+1})$
- B_j component of $E_\lambda^{-1}(B_{j+1})$ with $z_j \in B_j, j = p-1, \dots, 0$



 $B_1 \xrightarrow[1-1]{E_{\lambda}} B_2 \xrightarrow[1-1]{E_{\lambda}} \cdots \xrightarrow[1-1]{E_{\lambda}} B_{p-1} \xrightarrow[1-1]{E_{\lambda}} B_{p} \Subset B_0 \xrightarrow[univ. cover]{E_{\lambda}} B_1 \setminus \{0\}$

Symbolic coding

$$\mathbb{C} \setminus B_0 = \bigcup_{s \in \mathbb{Z}} \mathcal{H}_s, \qquad \mathcal{H}_s = \mathcal{H}_0 + 2\pi i s \quad \text{disjoint}, \qquad J(E_\lambda) \subset \bigcup_{s \in \mathbb{Z}} \mathcal{H}_s$$

$$\mathcal{L} = \mathbb{C} \setminus igcup_{j=1}^{p} B_{j}$$
 simply connected, away from 0

$$g_s \colon \mathcal{L} o \mathcal{H}_s$$
 branches of $E_\lambda^{-1}, \qquad g_s(\mathcal{L}) \subset \mathcal{L}$

Corollary

$$J(E_{\lambda}) = \bigcap_{n=0}^{\infty} \bigcup_{s_0,\ldots,s_n \in \mathbb{Z}} g_{s_n} \circ \cdots \circ g_{s_0}(\mathcal{L}).$$

Each $z \in J(E_{\lambda})$ has itinerary $(s_0, s_1, \ldots) \in \mathbb{Z}^{\mathbb{N}}$, defined by $E_{\lambda}^n(z) \in \mathcal{H}_{s_n}$ for every $n \ge 0$.

Symbolic description of ∂U_0

Definition

•
$$\underline{k} = (k_1, \dots, k_{p-1})$$
, where $k_j \in \mathbb{Z}$ such that $z_j \in U_j \subset \mathcal{H}_{k_j}$
• $\Sigma_{\underline{k}} = \{(s_0, \underline{k}, s_1, \underline{k}, \dots) : s_0, s_1, \dots \in \mathbb{Z}\}$
• $\Sigma'_{\underline{k}} = \{(s_0, \underline{k}, s_1, \underline{k}, \dots) : s_0, s_1, \dots \in \mathbb{Z}$
and $s_n \notin \{k_1, \dots, k_{p-1}\}$ for infinitely many $n\}$

Expanding property

For every $z \in \mathcal{L}$, $n \ge 0$, $|(g_{s_0} \circ \cdots \circ g_{s_n})'(z)| < cq^n$, where q < 1. Lemma

 $\{z \text{ has itinerary in } \Sigma'_k\} \subset \partial U_0 \subset \{z \text{ has itinerary in } \Sigma_{\underline{k}}\}.$

Proof.

By the combinatorics of U_j and expanding property.

Plan of the proof

(1) dim_{*H*}({*z* has itinerary in $\Sigma_{\underline{k}}$ } $\cap I(E_{\lambda})$) = 1.

- (2) dim_{*H*}({*z* has itinerary in Σ'_k } $\cap K(E_{\lambda})$) > 1.
- (3) $\dim_H(J(E_{\lambda}) \setminus I(E_{\lambda})) < 2$ [Urbański–Zdunik 2003].

Proof of (1). Instead of Σ_k , we can take

$$\tilde{\boldsymbol{\Sigma}}_{\underline{k}} = \{(\underline{k}, \boldsymbol{s}_1, \underline{k}, \boldsymbol{s}_2, \ldots) : \boldsymbol{s}_1, \boldsymbol{s}_2, \ldots \in \mathbb{Z}\}.$$

We have dim_H \geq 1, since the set contains curves (hairs). To get dim_H \leq 1, it is sufficient to prove:

Proposition

Fix $\delta > 0$ and let

 $A_M = \{z \text{ has itinerary in } \tilde{\Sigma}_{\underline{k}} \text{ and } \operatorname{Re}(E_{\lambda}^n(z)) > M \text{ for every } n \ge 0\}.$

Then dim_H(A_M) < 1 + δ for sufficiently large M.

Proof of Proposition

Inductive construction of covers of A_M

$$\mathcal{K}_0 = \{ \text{comp. of } \mathcal{L} \cap \mathcal{H}_{k_1} \cap \{ r \leq \text{Re}(z) < r+1 \}, r \in \mathbb{N}, r \geq M \}$$
$$\mathcal{K}_{n+1} = \{ G_{\underline{k},s}(\mathcal{K}) : \mathcal{K} \in \mathcal{K}_n, s \in \mathbb{Z} \text{ and } G_{\underline{k},s}(\mathcal{K}) \cap \{ \text{Re}(z) \geq M \} \neq \emptyset \}$$
for $G_{\underline{k},s} = g_{k_1} \circ \cdots \circ g_{k_{p-1}} \circ g_s.$

Fact

 \mathcal{K}_n is a sequence of covers of A_M with diameters shrinking to 0.

Estimate of the $(1 + \delta)$ -Hausdorff measure of A_M Lemma For $z \in \bigcup \mathcal{K}_n$,

$$|G'_{\underline{k},s}(z)| < rac{c}{\operatorname{\mathsf{Re}}(z)|s|} \leq rac{c}{M|s|}.$$

Corollary

$$\sum_{K \in \mathcal{K}_n} (\operatorname{diam} K)^{1+\delta} = \sum_{K_0 \in \mathcal{K}_0} \sum_{s_1, \dots, s_n \in \mathbb{Z}} (\operatorname{diam} G_{\underline{k}, s_n} \circ \dots \circ G_{\underline{k}, s_1}(K_0))^{1+\delta}$$
$$\leq c' \sum_{r=M}^{\infty} \sum_{s_1, \dots, s_n \in \mathbb{Z}} \left(\frac{c}{r|s_n|} \prod_{j=1}^{n-1} \frac{c}{M|s_j|} \right)^{1+\delta}$$
$$\leq c' \sum_{r=M}^{\infty} \frac{1}{r^{1+\delta}} \left(\frac{\sum_{s \in \mathbb{Z}} \left(\frac{c}{|s|} \right)^{1+\delta}}{M^{1+\delta}} \right)^n \leq c' \sum_{r=M}^{\infty} \frac{1}{r^{1+\delta}} \leq \frac{c''}{M^{\delta}} < 1.$$

Proof of (2)

Idea

Construct a finite conformal IFS with a compact E_{λ}^{2p} -invariant repeller X, check that the topological pressure at 1 is positive and use Bowen's formula.

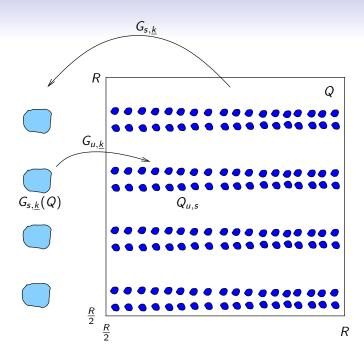
Construction

$$Q = \begin{bmatrix} \frac{R}{2}, R \end{bmatrix} \times \begin{bmatrix} \frac{R}{2}, R \end{bmatrix} \qquad R \text{ large}$$

$$Q_{u,s} = G_{u,\underline{k}} \circ G_{s,\underline{k}}(Q), \qquad s, u \in \mathbb{Z}$$

$$\mathcal{G} = \{(u,s) : Q_{u,s} \subset Q\}$$

$$X = \bigcap_{n=1}^{\infty} \bigcup_{s_1, u_1, \dots, s_n, u_n} (G_{u_n,\underline{k}} \circ G_{s_n,\underline{k}}) \circ \dots \circ (G_{u_1,\underline{k}} \circ G_{s_1,\underline{k}})(Q),$$
where $(u_1, s_1), \dots, (u_n, s_n) \in \mathcal{G}$.



Estimate of the topological pressure

•
$$|G'_{s,\underline{k}}| > \frac{\operatorname{const}}{R(\ln R)^{p-1}}$$

• If $\mathcal{U} = \{u : 2\pi u \in [R/2 + c, R - c]\}$, then $\#\mathcal{U} \asymp R$
• For every $u \in \mathcal{U}$, $\sum_{s:(u,s)\in\mathcal{G}} |G'_{u,\underline{k}}| > \operatorname{const} R$

Corollary

$$\sum_{(u,s)\in\mathcal{G}} |(G_{u,\underline{k}} \circ G_{s,\underline{k}})'| > const \ \frac{R^2}{R(\ln R)^{p-1}} \xrightarrow[R \to \infty]{} \infty$$

Conclusion

$$P(1) \geq \lim_{n \to \infty} \frac{1}{n} \ln \left(\inf_{z \in Q} \sum_{(u,s) \in \mathcal{G}} |(G_{u,\underline{k}} \circ G_{s,\underline{k}})'(z)| \right)^n > 0.$$

```
Work in progress
(Karpińska–Martí-Pete–Pardo Simón–Zdunik–B)
Prove dim<sub>H</sub>(\partial U) > 1 for simply connected invariant attracting
```

basins U for more general classes of transcendental maps f.

Motivation:

Theorem (Przytycki–Urbański–Zdunik~1990)

For a simply connected invariant attracting basin U of a rational map, either dim_H(∂U) > 1 or ∂U is an analytic curve.

Thank you for attention!