



Centro de Investigación en Matemáticas A.C. **Guanajuato, México** 

### Connectivity & unboundedness of Fatou components for elliptic functions TCD 2021

Mónica Moreno Rocha

April 22, 2021

# Dynamics of elliptic functions

### A few references

Seminal works by Jane Hawkins (UNC) & Lorelei Koss (Dickinson C.)

- Ergodic properties of Julia sets of Weierstrass elliptic functions, Mons. Math., 2002.
- Parametrized dynamics of the Weierstrass elliptic function, Conf. Geom. Dyn., 2004
- Connectivity properties of Julia sets of Weierstrass elliptic functions, Top. Appl. 2005

Several works by Janina Kotus (IMPAN) & Mariusz Urbański (UNT)

Ergodic theorey, geometric measure theory, conformal measures and the dynamics of elliptic functions. arXiv:2007.13235 (math.DS).

# **Elliptic functions**

Fix a lattice  $\Lambda = \{ n\lambda_1 + m\lambda_2 : n, m \in \mathbb{Z}, \text{Im}(\lambda_2/\lambda_1) > 0 \}.$ 

#### Elliptic function

An elliptic function is a function of a complex value, meromophic in  $\mathbb C$  and doubly periodic w/r to  $\Lambda,$ 

$$f_{\Lambda}:\mathbb{C}\to\widehat{\mathbb{C}},\qquad f_{\Lambda}(z+\lambda_1)=f_{\Lambda}(z)=f_{\Lambda}(z+\lambda_2)$$

- $\blacksquare [z] := \{z + \lambda : \lambda \in \Lambda\} \text{ is the } \Lambda \text{-orbit or residue class of } z.$
- Natural projection Proj :  $\mathbb{C} \to \mathbb{C}/\Lambda$ , with  $z \mapsto [z]$ .

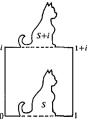
Double periodicity gives rise to interesting dynamical examples (but also to some headaches).

# **Fundamental domains**

A closed and connected subset  $\mathcal{Q} \subset \mathbb{C}$  is a fundamental domain if

- for each  $z \in \mathbb{C}$ , Q contains at least one point in its residue class,  $[z] := \{z + \lambda : \lambda \in \Lambda\}$ , and
- no two points in the interior of Q belong to the same residue class.

A fundamental parallelogram may have several shapes (square, rectangular, triangular) but the boundary of a fundamental domain may be more general (image from Jones & Singerman book).



### **Poles and zeros**

#### Theorem

Any  $f_{\Lambda}$  is uniquely determined (up to a mult. constant) by its set of poles  $\{\zeta_i\}$ , its set of zeros  $\{z_k\}$  and their multiplicities, satisfying

 $\sum_{j} \mu_{j} \zeta_{j} \equiv \sum \nu_{k} z_{k} \mod \Lambda.$ 

• The field of elliptic functions over  $\Lambda$  is given by

$$\mathcal{E}(\Lambda) = \{ R \circ \wp_{\Lambda} + \wp'_{\Lambda}(S \circ \wp_{\Lambda}) : R, S \in \mathsf{Rat} \}.$$

# Order and singular values

Fix  $\Lambda$  and let  $f_{\Lambda}$  be an elliptic function w/r to  $\Lambda$ .

- $f_{\Lambda}$  has order  $o_f \ge 2$ , if for any given fundamental domain Q with no poles in its boundary, there are  $o_f$  poles (counting multiplicity) in the interior of Q.
- Analogously, o<sub>f</sub> is the number of solutions of f<sub>A</sub>(z) = a in Q for any a ∈ C.

On each fundamental domain:

- $f_{\Lambda}$  has  $2o_f$  ramification points from which  $o_f + r_f$  are critical points  $(r_f = \text{number of poles in the domain counted without multiplicity}).$
- $f_{\Lambda}$  has no omitted values nor asymptotic values in  $\mathbb{C}$ .

Thus, #**SV** $(f_{\Lambda}) \leq o_f + r_f < \infty$ .

# **Dynamics of elliptic functions**

Theorem (Hawkins & Koss, 2002)

A periodic Fatou component of  $f_{\Lambda}$  is either a (super-)attracting/parabolic domain or a rotation domain. Every Fatou component is periodic or pre-periodic. Furthermore

 $\mathcal{J}(f_{\Lambda}) = \mathcal{J}(f_{\Lambda}) + \Lambda, \qquad \mathcal{F}(f_{\Lambda}) = \mathcal{F}(f_{\Lambda}) + \Lambda.$ 

 Λ-invariance rules out existence of two completely invariant Fatou components.

# **Standing hypothesis**

#### Throughout this talk

A will be fixed and we will consider the dynamics of a nonconstant elliptic function  $f_{\Lambda}$ .

#### Remark (Parametrized dynamics)

- $f_{\Lambda} + b$  for  $b \in \mathbb{C}$ .
- $f_{k\Lambda}$  with  $k \in \mathbb{C} \setminus \{0\}$  (homogeneity properties of  $\wp_{\Lambda}, \wp'_{\Lambda}$ ).
- The invariants of  $\Lambda = \Lambda(g_2, g_3)$  satisfy  $\triangle := g_2^3 27g_3^2 \neq 0$ , then  $f_{\Lambda(g_2, g_3)}$  as  $(g_2, g_3)$  varies in  $\mathbb{C}^2 \setminus \{ \triangle = 0 \}$ .

# Fatou components :: Connectivity

# **Existence of Herman rings**

• A periodic Fatou component of  $f_{\Lambda}$  has connectivity 1, 2 or  $\infty$ .

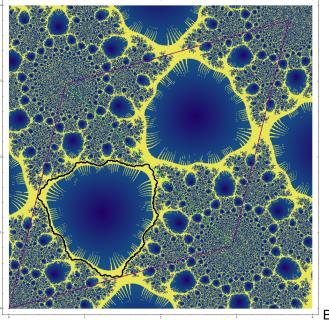
#### Theorem (MR 2020)

There exists an elliptic function of order at least 3 with a forward invariant Herman ring.

- Existence shown using Shishikura's quasiconformal surgery techniques.
- Same procedure can be extended to show existence of elliptic functions with cycles of Herman rings.

#### Still missing...

An explicit example of an elliptic function with a Herman ring.



#### 🚽 By J. Hawkins

#### Mónica Moreno Rocha

## **Overview of the construction**

- Elliptic function f<sub>A</sub> of order o<sub>f</sub> ≥ 2 and a rational function W of degree d ≥ 2, both with invariant Siegel disks.
- Obtain quasiregular function  $g: \mathbb{C} \to \widehat{\mathbb{C}}$ ,
  - doubly periodic w/r Λ,
  - $o_f + d 1$  poles on each fundamental domain.
  - *g*-invariant annular domain *A*.

## **Overview of the construction**

- Elliptic function f<sub>A</sub> of order o<sub>f</sub> ≥ 2 and a rational function W of degree d ≥ 2, both with invariant Siegel disks.
- Obtain quasiregular function  $g: \mathbb{C} \to \widehat{\mathbb{C}}$ ,
  - doubly periodic w/r Λ,
  - $o_f + d 1$  poles on each fundamental domain.
  - *g*-invariant annular domain *A*.
- A Beltrami differential  $\mu$  defined a.e. over  $\mathbb{C}$ , of bounded dilation, *g*-invariant and satisfying  $\mu(z + \lambda) = \mu(z)$  for all  $\lambda \in \Lambda$ .

#### Theorem

There exists a qc-map  $\psi:\mathbb{C}\to\widehat{\mathbb{C}}$  that integrates  $\mu$  and

$$G = \psi \circ g \circ \psi^{-1} : \mathbb{C} \to \widehat{\mathbb{C}}$$

is doubly periodic w/r  $\psi(\Lambda)$ , of order  $o_f + d - 1 \ge 3$  and has an invariant Herman ring  $\psi(A)$ .

# Herman rings

• Over any lattice  $\Lambda$ , the Weierstrass  $\wp$  function has no cycles of Herman rings (Hawkins & Koss, 2002)

In analogy to Shishikura's result for quadratic rational functions, one has

#### Theorem (MR 2020)

An elliptic function of order 2 cannot have Herman rings.

- If  $f_{\Lambda}$  has a double pole, then same ideas as for  $\wp_{\Lambda}$ .
- If  $f_{\Lambda}$  has two simple poles (a Jacobi elliptic function) then a new approach is necessary.

# Herman rings

Two other consequences from quasiconformal surgery are.

#### Theorem

Any elliptic function has at most  $o_f - 2$  forward invariant Herman rings.

• If  $f : \mathbb{C} \to \widehat{\mathbb{C}}$  is meromorphic with  $N < \infty$  poles, then f has at most N - 1 invariant Herman rings (Domínguez & Fagella; Fagella & Peters).

#### Corollary

An elliptic function with a unique pole of multiplicity o<sub>f</sub> cannot have Herman rings.

# **Connectivity and critical values**

- If every Fatou component has at most one critical value, then J is connected and every Fatou component is simply connected.
- If  $f_{\Lambda}$  is hyperbolic<sup>1</sup> and there exists a Fatou component *U* that contains all critical values, then  $\mathcal{J}(f_{\Lambda})$  is a Cantor set and *U* has ∞-connectivity (H&K 2005).

#### Remark

A Fatou component *U* containing more than one critical value, may give rise to unbounded Fatou components.

<sup>1</sup>Rippon & Stallard: for each  $n \in \mathbb{N}$  and  $z \in \mathcal{J}(f_{\Lambda})$  which is not a prepole, there exist C > 0 and K > 1 so that  $|(f_{\Lambda}^n)'(z)| \ge CK^n$ .

Mónica Moreno Rocha

# Fatou components :: Unboundedness

### Bounded vs. unbounded components

#### Unbounded Fatou components

Any Fatou component not contained in a fundamental domain is unbounded.

There are examples of unbounded Fatou components coming from

- forward invariant basins (or their preimages) of attracting, superattracting or parabolic cycles (Hawkins & Koss; MR & Pérez Lucas; Hawkins & MR).
- A preimage of a fixed Siegel disk (recently announced by Hawkins & Koss).

### Bounded vs. unbounded components

#### **Bounded components**

Every periodic rotation domain is always bounded.

#### Proposition (Hawkins & Koss, 2002)

If  $U_1, \ldots, U_n$  is an n-cycle of Siegel disks for an elliptic function  $f_{\Lambda}$ , then each  $U_j$  lies in the interior of a fundamental domain.

- This is a consequence of  $f_{\Lambda}^n$  acting injectively on each  $U_i$ .
- Same result holds for cycles of Herman rings.

#### Definition (Toral band Fatou components)

- A component  $U \subset \mathcal{F}(f_{\Lambda})$  is called a
  - **Single toral band** if Proj(U) is a topological band in  $\mathbb{C}/\Lambda$  that contains a homotopically non-trivial curve.

#### Definition (Toral band Fatou components)

#### A component $U \subset \mathcal{F}(f_{\Lambda})$ is called a

- Single toral band if Proj(U) is a topological band in  $\mathbb{C}/\Lambda$  that contains a homotopically non-trivial curve.
- **2** Double toral band if U contains the boundary of a fundamental domain of  $\Lambda$ .

#### Definition (Toral band Fatou components)

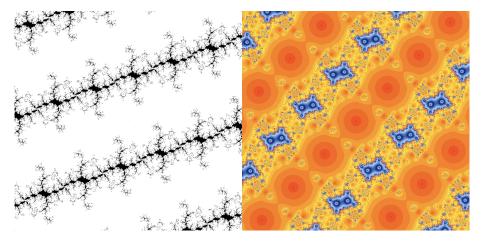
A component  $U \subset \mathcal{F}(f_{\Lambda})$  is called a

- **Single toral band** if Proj(U) is a topological band in  $\mathbb{C}/\Lambda$  that contains a homotopically non-trivial curve.
- **2** Double toral band if U contains the boundary of a fundamental domain of  $\Lambda$ .
- If  $\mathcal{F}(f_{\Lambda})$  has a double toral band component, then  $\mathcal{J}(f_{\Lambda})$  is disconnected.

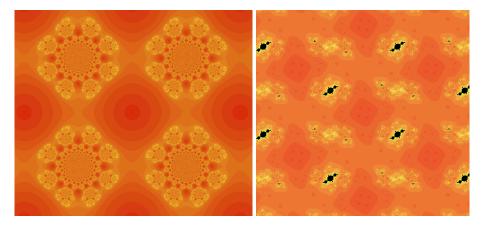
#### Definition (Toral band Fatou components)

- A component  $U \subset \mathcal{F}(f_{\Lambda})$  is called a
  - **Single toral band** if Proj(U) is a topological band in  $\mathbb{C}/\Lambda$  that contains a homotopically non-trivial curve.
  - **2 Double toral band** if *U* contains the boundary of a fundamental domain of  $\Lambda$ .
- If  $\mathcal{F}(f_{\Lambda})$  has a double toral band component, then  $\mathcal{J}(f_{\Lambda})$  is disconnected.
- Koss (2015) gave first example of double toral band with disconnected (but not Cantor) Julia set.

# Single toral bands



### **Double toral bands**



# **Unboundedness and critical values**

#### Theorem

Let  $f_{\Lambda}$  be an elliptic function of order 2 over a lattice  $\Lambda$ . If U is a Fatou component that contains n critical values. Then

- **1** *if*  $n \ge 2$ ,  $\mathcal{F}(f_{\Lambda})$  *contains a toral band. Furthermore*
- **2** if  $n \ge 3$ ,  $\mathcal{F}(f_{\Lambda})$  contains a double toral band.

Since  $o_f = 2$  we have

- $f_{\Lambda} = M \circ \wp_{\Lambda}$ , with *M* a Möbius transformation.
- $\#SV(f_{\Lambda})$  is either 3 (if  $f_{\Lambda}$  has double pole) or 4 (two simple poles)
- Critical symmetry: if  $c \in \operatorname{Crit}(f_{\Lambda})$  and  $c \in U \subset \mathcal{F}(f_{\Lambda})$ ,

$$c+z \in U$$
 iff  $c-z \in U$ .

• H&K have shown (1) using critical symmetry for  $\wp_{\Lambda}$ .

# Sketch of the proof

An order 2 elliptic function takes the form  $f_{\Lambda} = M \circ \wp_{\Lambda}$  where either

■  $M(z) = A\left(\frac{z-k}{z-h}\right)$ , for  $A, h, k \in \mathbb{C}$ , with  $A \neq 0$ . In this case,  $f_{\Lambda}$  has two simple poles and four critical points,

$$\operatorname{Crit}(f_{\Lambda}) = \left\{\frac{\lambda_1}{2}, \frac{\lambda_2}{2}, \frac{\lambda_3}{2}, 0\right\} + \Lambda, \qquad \operatorname{Poles}(f_{\Lambda}) = \{\zeta_0, \zeta_1\} + \Lambda$$

where 
$$\wp_{\Lambda}(\zeta_i) = h$$
.

2 M(z) = A(z - k), for  $A, k \in \mathbb{C}, A \neq 0$ . In this case,  $f_{\Lambda}$  has one double pole and three critical points,

 $\operatorname{Crit}(f_{\Lambda}) = \operatorname{Crit}(\wp_{\Lambda}), \quad \operatorname{Poles}(f_{\Lambda}) = \operatorname{Poles}(\wp_{\Lambda}) = \Lambda.$ 

# Sketch of the proof

- Assume  $f_{\Lambda}$  has double pole and  $U \subset \mathcal{F}(f_{\Lambda})$  contains two critical values,  $v_1, v_2 \in U \cap SV(f_{\Lambda})$ , where  $f_{\Lambda}(\lambda_i/2) = v_i$ .
- W.I.o.g. let  $V \subset f_{\Lambda}^{-1}(U)$  with  $\frac{\lambda_1}{2}, \frac{\lambda_2}{2} \in V$ .

# Questions

## **Unboundedness and critical values**

#### Claim

If  $f_{\Lambda}$  has order 2 and *U* contains exactly two critical values, then  $\mathcal{F}(f_{\Lambda})$  contains a single toral band.

#### Question

For any  $f_{\Lambda}$  of order  $o_f \ge 3$ , what is the minimal number of critical values necessary inside a Fatou component so its preimage is a single toral band?

## **Connectivity of unbounded components**

- Double toral bands are by definition  $\infty$ -connected.
- Example of high order elliptic function with single toral bands of ∞-connectivity.

#### Question

Are single toral bands of  $\infty$ -connectivity possible for lower orders?

# Força Barça!