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Alan M. Turing (1912 - 1954)

Roughly speaking, the theory of
computability studies the existence of
an algorithm which solves a problem in
an effective manner.

A Turing Machine is a mathematical
model of computation. It was introduced
by Alan Turing in 1936 while studying
the so-called Entscheidungsproblem
(decision problem) posed in 1928 by
Hilbert and Ackermann: is there an
algorithm that considers, as input, a
statement and answers "Yes" or "No"
according to whether the statement is
universally valid?

In this talk we use the terms
Turing Machine «~ algorithm

interchangeably.



Computable numbers

Definition
A number a € R is called computable if there is a Turing Machine which given n € N
produces a number ¢(n) such that

o ()] < 27",

A complex number z € C is computable if and only if Rez and Im z are computable.

Examples:
> algebraic numbers are computable;
» many famous transcendental numbers like e and 7 are computable;

» examples of non-computable numbers are usually obtained using undecidable
problems such as the halting problem.

Note that there are only countably many Turing Machines, so the set of all computable
numbers is countable.



Consider the set of dyadic numbers

D:={ze€C:z=k/2"4ij/2" for some k,j € Z and n € N}.
A dyadic approximation of a set S C C can be described using a function
1, if d(z,S) <27 "1,
hs(n,z) =< 0, if d(z,S)>2-2"""1
Oorl, otherwise,

where n € N and z = k/2"2 +jj/2M2, for k,j € Z.



Example




Computable sets

Definition
A set S C C is computable in time t(n) if there is a Turing Machine which computes

the function h(n, z) for z € D in time t(n).
In other words, given n € N and any dyadic point of the form

z = (k/2"2,j/2"2)  for k,j € Z,

this algorithm returns the value of h(n, z) spending at most t(n) time units.

Examples:
» a polygon (with or without interior) is computable if and only if all of its vertexes
have computable coordinates;
» a disk is computable if and only if its center and its radius are computable.
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Computability of Julia sets

In order to compute the Julia set of a rational or entire function f, we need to assume
that a Turing Machine can obtain approximations of the values of f(z).

Definition
A function ¢ : N — D is called an oracle for an element z € C, if |¢p(n) — z| < 27" for
all n € N.

An oracle works as a black box that is able to provide approximations of a number
independently of whether it is computable or not.

Definition

Let £ be an entire function. The Julia set J(f) is called computable in time t(n),
if there is a Turing Machine with an oracle for the values of f, which computes the
values of hs(n,z) for S = J(f) in time t(n). We say that J(f) is computable in
polynomial time if furthermore t(n) can be bounded by a polynomial.



Example 1. Hyperbolic rational maps

A periodic point zg of period p € N is attracting if |(fP)’(z0)| < 1. Every attracting
cycle has a basin of attraction given by

A(z0) ={z€C:30<j < p, fPH(z) = 29 as n — co}.

A rational function f is hyperbolic if all the components of F(f) are basins of attraction.

Theorem (Braverman '05, Rettinger '05)

For each d > 2 there exists a Turing Machine M with an oracle for the coefficients of
a polynomial f of degree d such that if f is hyperbolic, then J(f) is computable by M
in polynomial time.




Lemma (Koebe distortion theorem)

Let £ : D(a,r) — C be a univalent function for a € C and r > 0. Then, for any
z € D(a,r),
|z — al|f"(a)]

|z — allf'(a)l
> S1f(2) = f(a)l < my

L+ 1z al/r)

and

(L—lz—al/nlf'(a)] _ IF(2)] < (L+|z—al/n)f'(a)]
(1+|z—al/r)? S (A-lz—al/r?

In particular, if we put

_alf'(a)lr _alf'(a)lr
YT ey 2T -

then, for0 < a < 1,

D(f(a),rn) C f(D(a,ar)) C D(f(a), r2).



Sketch of the algorithm: There is a neighbourhood U of J(f) and C > 0 such that

» given a point z € D and n € N compute approximate values of z, = fk(z), for
1< k<Cn

> if zx € Uforall 1<
1

> if zx ¢ U for some

k < Cn then dist(z, J(f)) <27
< k < Cn then up to a constant factor
dist(zx, J(f)) N 1

itz O~ Ty @ S




Example 2: Parabolic fixed points
A periodic point zg of period p € N is parabolic if (fP)'(z0) = €27 with 6 € Q. Every
parabolic cycle has a parabolic basin of attraction given by

A(z):={z€C:30<j < p, fPH(z) = 29 as n = oc}.

Theorem (Braverman '06)

For any d > 2 there exists a Turing Machine M with an oracle for the coefficients of a
rational map f of degree d such that if every critical orbit of f converges either to an
attracting or to a parabolic orbit, M computes J(f) in polynomial time.

Problem: orbits escape exponentially slowly from a parabolic fixed point.
» Braverman showed directly that exponential iterates of f near the fixed point can
be computed in polynomial time.
» Dudko-Sauzin '14 obtained efficient approximations of the Fatou coordinates
which conjugate f to the translation z — z 4 1 near the fixed point.



Example 3. Filled Julia sets with no interior

Theorem (Binder, Braverman & Yampolsky '07)

For each d > 2 there exists a Turing Machine M with an oracle for the coefficients of
a polynomial f of degree d such that if the filled-in Julia set K(f) has no interior, then
J(f) is computable by M.

Sketch of the algorithm: Using that repelling periodic points are dense in J(f), we can
compute enough approximations of the periodic points of f so that a given neighborhood
of K(f) is well approximated by balls centred at these points. On the other hand,
we can compute the preimages of a large disc. The algorithm stops when the second
approximation is contained in the first.



Example 4. Quadratic Siegel discs

A periodic point zg of period p € N is of Siegel type if (fP)/(z0) = €>™¢ with 0 € R\Q
and f is linearizable in a neighbourhood of zy. Every Siegel periodic point belongs to a
Fatou component known as a Siegel disc where f is conjugated to an irrational rotation.

Theorem (Braverman & Yampolsky '06, '09)

There exists a quadratic polynomial fy with a Siegel fixed point at the origin of
rotation number § € R\ Q such that J(fp) is not computable. Moreover, 6 can be
chosen computable and such that J(fp) is locally connected.



Theorem (Binder, Braverman & Yampolsky '06)

There exist quadratic polynomials fy with a Siegel disc such that J(fy) has arbitrarily
large computational complexity.

Theorem (Binder, Braverman & Yampolsky '06)

Let A(0) be the Siegel disc of the quadratic polynomial fy. TFAE:
> the Julia set J(fy) is computable;
> the inner radius p(0) := inf,con(9) 2| is computable;
» the conformal radius r(6) of A(6) is computable.



Let Ex(z) = Xe? with A € (0,1/e). There exists a Turing Machine M with an oracle
for the value of X such that J(Ey) is computable by M in polynomial time.

For such parameters, the map Ey has two real fixed points ay < ry.

EA(.’L‘)
A=1/e

A< 1/e




Cantor bouquets

For such maps, the basin of attraction of ay is connected, and its complement J(E))
is an uncountable collection of disjoint curves each joining a finite point to oo which is
known as a Cantor bouquet.

Picture by Arnaud Chéritat.

J(Ey) has many interesting properties! For example, if End) denotes the set of the
endpoints of the curves in J(Ey), the set End) U {co} is connected, but End) is totally
disconnected. Moreover, dimy(J(Ex)) = 2 but dimy(J(Ey) \ Endy) = 1.



A first approximation

For R > 0 define
Br:={z€C:Rez >R, |Imz — 2kn| < 5 for some k € Z}.

Lemma

Let A € (0,1/e). There exists a linear function R = R(n) > 0 (which depends on \)
such that for n € N,

d(z,J(Ex)) <27", forall z € Bpg.




Let X € (0,1/e) and suppose that M € (ayx, ry). There exist 0 < C; < G, such that
the following is true. Assume that z € C and k € N are such that Re (EX(z)) < M and

Re(E{\(z)) > M for all 0 < j < k. Then

I(EX)(2)]

Let X € (0,1/e). If z € C satisfies Re (EX(z)) > 2 + ry for some k € N, then

God(EX(2), J(Er))

< d(z,J(Ex)) < I(EXY (2]

(1)

d(E{(2), J(Ex))
4|(EY) (2)|

4d(EX(2), J(Ex))

< d(z,J(Ey)) < I(EX) (2)]

(2



Proposition

Let A € (0,1/e) and My € (1, ry). There exists a linear function N : N — R such that
for every n € N, if

M; < Re (E{\(z)), for all 0 < j < N(n),

then d(z, J(Ex)) < 27".

R(EY(2)




The algorithm

Input: integer n (precision), real A (parameter), complex z € D(n + 2) (dyadic

=2 e e
TR T O e e - I IR I SO CRYeH

point)
1< My <My<ry dyadic constants for using Propositions 3.3 and 3.6
: € + dyadic constant from the proof of Proposition 3.3} auxiliary constant
. C « Up(VA2 +72); auxiliary constant
: C} + dyadic constant from Proposition 3.3} auxiliary constant
: K < dyadic distortion constant from Proposition 3.6 Koebe constant
: R+ Up((n+ 10)In2 + In(C) — In(X)); upper bound for Rez

: N« Up(((n+1)In2+In(KC))/In My); maximum number of iterations

7 < 27710 _ approximation of 7;

: k« 0
: while k < N do

compute dyadic approximations
2, & E¥(2) (mod 2mi) = Aexp(Ef7(2)) (mod 2mi);
d ~ |DE}(2)| (mod 2mi) = |E¥(2) - DEF™(2)| (mod 27i);
with precision min(27"710, ¢/10);
if Rez, < (M; + M;)/2 then
Compute a dyadic approximation T'
of min{d(z, [0, a,]), d(z, B, )}
with precision €/10 Proposition E
if T'< 3-27"dj, then
return 1
else
return 0
end if
else



17: of min{d(z, [0, a]), d(zk, Br,)}
18: with precision €/10

19: if T < 3-27"dy then

20: return 1

21: else

22: return 0

23: end if

24: else

25: if Rez; > R+ 1 then

26: if |Imz;| < /2 +27% then
27: return 1;

28: else

29: if Im=72 < 9-n then
30: return 1;

31 else

32: return 0;

33: end if

34: end if

35 end if

36: end if

37 k+k+1;

38: end while

39: if k= N then

40 return 1;

41: end if

Proposition 3.3|

Proposition 4

Proposition 3

Proposition 2

Output: the program returns 1 if the point z € D, is at a distance smaller than

27" to J(E)) and 0 otherwise




Let A € C* be such that Ex(z) = Ae? has an attracting periodic cycle of period p € N.
» p=1: F(E\) is connected and J(E)) is a Cantor bouquet;
» p > 1: F(E)) has oo components and J(E)) is a pinched Cantor bouquet.

Let X € C* be such that E) has an attracting periodic cycle. There exists a Turing
Machine M with an oracle for the value of X such that J(E)) is computable by M in
polynomial time.



Case p>1

¥ ST

Sketch by Krzysztof Baranski, Bogustawa
Karpinska and Anna Zdunik.

Combinatorics of hyperbolic exponential
maps with a cycle of period p > 1 were
studied by Bhattacharjee and Devaney.



Moltes gracies per la vostra atencié!

Thank you for your attention!
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