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Connectivity of Fatou components

Definition

The connectivity of a domain D ⊂ Ĉ is the number of connected
components of its boundary.

Periodic Fatou components can have connectivity 1, 2 or ∞.
Strictly preperiodic Fatou components can have finite connectivity
greater than 2. For any given n ∈ N∗, there are examples of
rational maps with Fatou components of connectivity n. However,
the degree of n increases rapidly with n in these examples.

Theorem (Canela)

There exist rational maps whose dynamical plane contains Fatou
components of arbitrarily large connectivity.
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Examples of perturbation maps

Theorem (McMullen)

Let Fλ = zn + λ
zd

, n, d ∈ N are such that 1
n + 1

d < 1. For |λ| small
enough, the Julia set is a Cantor set of quasicircles.

Theorem (Devaney, Look, Uminsky)

Let Fλ = zn + λ
zd
. Suppose that the orbits of the free critical

points of Fλ tend to ∞. Then, depending on the location of
critical values, the Julia set is a Cantor set, a Cantor set of
quasicircles, or a Sierpinski curve.

Theorem (Canela)

Let Ba,λ = z3 z−a
1−az + λ

zd
, n, d ∈ N are such that 1

n + 1
d < 1. There

exists λ such that the Julia set is a countable union of Cantor sets
of quasicircles and uncountably many point components.
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Dynamical plane of Fλ for λ1 = 10−4 and λ2 = 5 · 10−3
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Dynamical plane of B0.5,10−7
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The unperturbed family

Let Sn,a,Q be the rational map of degree n + 1

Sn,a,Q(z) =
zn(z − a)

Q(z)
,

where n ∈ N, n > 1, a ∈ C∗, and Q is a polynomial, satisfying the
following conditions:

(a) The polynomial Q has degree at most n, such that Q(0) 6= 0.
Hence, z = 0 is a superattracting fixed point of degree n and
∞ is a fixed point.

(b) The fixed point z =∞ is attracting.

(c) There are exactly two Fatou components, the immediate
basins of attraction of z = 0 and ∞, each containing exactly
n critical points, counting multiplicity.
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The perturbed family

We now consider the perturbed map

Sn,d ,λ(z) =
zn(z − a)

Q(z)
+

λ

zd
,

where λ ∈ C∗.
We say that Sn,d ,λ satisfies (a), (b), and (c) if Sn,a,Q satisfies (a),
(b), and (c). We also assume that Sn,d ,λ satisfies

(d) The numbers n, d ∈ N are such that 1
n + 1

d < 1.
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Dynamical planes of Sn,a,Q and Sn,d ,λ, where
Sn,d ,λ = z2(z − a) + λ

z3 , for a = (0.9 + 0.6i) and λ = 10−7
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Skeleton of the dynamical plane

Proposition

Let |λ| small enough. Then the following happen:

(i) The Fatou component A∗
λ(∞) is mapped onto itself with

degree n + 1. The boundary of A∗
λ(∞) is a quasicircle that

moves continously with respect to λ. The set A∗
λ(∞) contains

exactly n critical points counting multiplicity.

(ii) The Fatou component Tλ, which contains z = 0, is simply
connected, and it is mapped with degree d onto A∗

λ(∞).
There are no other preimages of A∗

λ(∞).

(iii) There exists a Fatou component Aλ which is doubly
connected and contains exactly n + d simple critical points,
given by cλ,ξ, and n + d zeros, given by zλ,ξ. Moreover, Aλ is
mapped with degree n + d onto Tλ and surrounds the origin.
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Skeleton of the dynamical plane

Proposition

Let Sn,d ,λ satisfying conditions (a), (b), (c), and (d). Then, there
exists a constant C = C(a,Q, n, d) such that if λ 6= 0 and |λ| < C
the following statements are satisfied:

(i) Let Aout be the annulus bounded by Aλ and ∂A∗
λ(∞). There

exists a Fatou component Dλ ⊂ Aout which is simply
connected, is mapped with degree 1 onto Tλ, and contains
wλ.

(ii) The critical point νλ lies in Aout \ Dλ.

(iii) There are no preimages of Tλ other than Dλ and Aλ.
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The free critical point

Theorem

(Riemann-Hurwitz formula) Let U,V ⊂ Ĉ be two connected
domains of connectivity mU ,mV ∈ N∗ and let f : U → V be a
degree d proper map branched over r critical points, counted with
multiplicity. Then,

mU − 2 = d(mV − 2) + r .

Proposition

Assume that νλ ∈ Uν , where Uν is a Fatou component which is
eventually mapped onto Aλ and surrounds z = 0. Then, Uν is
triply connected and Uν ⊂ Aout .
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Conjugacy to Blaschke product

Proposition

Let Sn,d ,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C.
Then, there exist an analytic Jordan curve Γ ⊂ Aλ which surrounds
z = 0, b ∈ D∗, θ ∈ [0, 1), and a quasiconformal map ϕ : Ĉ→ Ĉ
such that ϕ ◦ Rb,θ = ϕ ◦ Sn,d ,λ on A(Γ, ∂A∗

λ(∞)), where

Rb,θ = e2πiθzn
z − b

1− bz

is a Blaschke product.
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Theorem A

Theorem A

Let Sn,d ,λ satisfying (a), (b), (c), and (d) and let λ 6= 0, |λ| < C.
Assume also that νλ ∈ Uν , where Uν is an iterated preimage of Aλ
which surrounds z = 0. Let k be the minimal number of iterations
needed by the free critical point νλ to be mapped into Bdd(Aλ).
Let U be a Fatou component of connectivity κ > 2. Then, there
exist i , j , ` ∈ N such that κ = (n + 1)id jn` + 2 and ` ≤ jk.
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Sketch of the proof of Theorem A

Proof.

(i) Iterated preimages of Dλ have connectivity 1. Iterated
preimages of Aλ, except for eventual preimages of Uν have
connectivity 2.

(ii) Preimages, of a Fatou component U which does not surround
z = 0, map with degree 1 onto U and do not surround z = 0.

(iii) An eventual preimage of Uν which surrounds z = 0 may map
forward with degree d , n, or n + 1.

(iv) A Fatou component can only iterate backwards at most k
times with degree n before having to iterate with degree d .

(v) We can iterate backwards with degree d and n + 1 as many
times as needed.

(vi) Apply Riemann-Hurwitz to obtain the possible connectivities.
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Theorem B

Theorem B

Let Sn,d ,λ satisfying (a), (b), (c), and (d) and let λ 6= 0, |λ| < C.
Assume also that νλ ∈ Uν , where Uν is an iterated preimage of Aλ
which surrounds z = 0. Let k ≥ 1 be the minimal number of
iterations needed by the free critical point νλ to be mapped into
Bdd(Aλ). For any given i , j , ` ∈ N such that ` ≤ j(k − 1), there
exists a Fatou component U of connectivity κ = (n + 1)id jn` + 2.
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Theorem C

Theorem C

Let Sn,d ,λ satisfying (a), (b), (c), and (d) and let λ 6= 0, |λ| < C.
For any given i , l ≥ 0 and j > 0, there exists a parameter λ such
that Sn,d ,λ(z) has a Fatou component of connectivity
κ = (n + 1)id jn` + 2, and a Fatou component of connectivity
κ = (n + 1)i + 2.

Idea of the proof:
As λ approaches z = 0, the number of iterations k required by νλ
to reach Bdd(Aλ) increases. We prove that for all large enough k
there exists λ such that Uν is properly defined,
Skn,d ,λ(Uν) ⊂ Bdd(Aλ) and Sqn,d ,λ(Uν) 6⊂ Bdd(Aλ), for q < k. The
conclusion follows from Theorem B.
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Thank you for your attention!

Dan Paraschiv TCM 2021


	Introduction
	Dynamical plane
	Main results

