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Basic definitions

@ f: C — Cis transcendental entire

Definition (The Fatou set)

F(f) = {z : (f") is equicontinuous in some neighbourhood of z}

Definition (The Julia set)

J(f) = C\ F(f)

Definition (The escaping set)

I(fy={z: f"(z) - coas n — oo}

Eremenko’s conjecture (1989):
All the components of /(f) are unbounded.
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The fast escaping set

The maximum modulus function is defined by
M(r) = maxz—,|f(z)|, forr>0.

If R is sufficiently large, then M"(R) — oo
and we consider the following set of fast escaping points.

Definition (Bergweiler and Hinkkanen, 1999)
Ag(f)={zeC:|f"(z)] > M"(R)VY ne N}

The fast escaping set A(f) consists of this set and all its
pre-images and has nice properties (R+S, 2005)

@ J(f) = 0A(f)
@ All the components of A(f) are unbounded.
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Useful properties of the maximum modulus

Bergweiler + R + S, 2013

The first is a strong version of Hadamard convexity

Lemma (Convexity)
log M(r¢, ") > clog M(r, f™)
forallc >1,neN, r > R = R(f).

The second follows from a refinement of Eremenko’s proof that
I(f) # 0, based on Wiman-Valiron theory.

Lemma (Eremenko points)

Givene > 0,
AN N{z:r<|zl <r(1+e)}£0,

forallr > R = R(f,e¢).
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Useful properties of the minimum modulus

Bergweiler + R + S, 2013

The minimum modulus function is defined by
m(r) = min |f(z)|, forr > 0.
Z|=r

Lemma (min mod)

Suppose
m(p,f) > 1 forp e A(rd, r’) = {z: rd < p < r?}.
and 1 —a

) b
0= |0gl’ < mm{L?}.

Then
(a)
m(p,f) = M(p,f)!=°, for p € A(r3+2m, rb=210),

(b) f behaves like a monomial in A(rat27%, rb=2m%),
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@ Apply Harnack’s Inequality on a disc in S centered at

ty e 8 ={t:(a+2n8)logr < Rt < (b—2md)logr}

of radius 270 log r = 27 /6.
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we have
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Proof of m(p, f) > M(p, )=, for p € A(r&+2m, rb-2m9)

@ u(z) = log|f(2)| is positive harmonic in A(r2, r?)
@ U(t) = u(e) is positive harmonic in

S={t:alogr <Rt < blogr}
@ Apply Harnack’s Inequality on a disc in S centered at

ty e 8 ={t:(a+2n8)logr < Rt < (b—2md)logr}

of radius 270 log r = 27 /6.

@ For t, ¢ S with Am Sty =[S

and [St — Sty| <,
we have e&
U(t) >27r/(5—7r>1_5. =

ulty) —2n/d+7m —
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Definition

A component U of F(f) is a wandering domain if

U, # Unm, whenever n # m.

17
il

f(z)=z+sinz+2r

e



Multiply connected wandering domains

Theorem (Baker, 1984)

If U is a multiply connected Fatou
component then

@ U is a wandering domain

e)



Multiply connected wandering domains

Theorem (Baker, 1984)

If U is a multiply connected Fatou
component then
@ U is a wandering domain
@ U1 surrounds Uy, for large n
@ U, — oc0asn— oc.

e)



Multiply connected wandering domains

Theorem (Baker, 1984)

If U is a multiply connected Fatou
component then

@ U is a wandering domain

@ U1 surrounds Uy, for large n
@ U, — oc0asn— oc.

e)



Multiply connected wandering domains

Theorem (Baker, 1984)

If U is a multiply connected Fatou
component then

@ U is a wandering domain
@ U1 surrounds Uy, for large n
@ Uy, — oc0asn— oo.

Theorem (Zheng, 2006)

If U is a multiply connected wandering domain then there exist
sequences (r,) and (Rn) such that, for large n,

UpD>{z:m<|z| <Ry}, where Ry/rp — o0 asn— oo. -
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Dynamical behaviour in multiply connected wandering

domains
Bergweiler + R + S, 2013

If U is a multiply connected wandering domain then

for large n € N, there is an absorbing
annulus

B, = A(rd, rby c U,

with liminf,_,oc bn/an > 1 such that, for
every compact set C c U,

f’(C) c B, for n > N(C).

f behaves like a large degree monomial inside B,.

9



Proof of Bergweiler + R + S result
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Proof of Bergweiler + R + S result

Let U be a multiply connected wandering domain, and z; € U.

@ The functions 08 |7(2)

og z

h = =1
") = og |(z0)]

are positive harmonic in U, with hp(25) = 1.

@ Harnack’s Theorem implies hp, (z) — h(z) in U,
where h is constant or positive harmonic in U.

@ his non-constant: using Zheng’s Theorem, Eremenko
points Lemma and convexity Lemma, 3z; € U with

og |1"(2))] | log M"(2120))
h(z1)>|lmmflog\f”( 20) = Imm

@ Show h, — hin U.

> 1.
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Boundaries of simply connected wandering domains

Question If U is an escaping wandering domain (i.e. U C I(f)),
isoU c I(f)? B
If U is multiply connected then U C A(f).

Theorem (R+S, 2011)

If U is an escaping simply connected wandering domain, then
oU N I(f)¢ has zero harmonic measure in U.

Corollary

I(f) U {oo} is connected.

Theorem (R+S, 2011)

If U is a component of F(f) and oU N I(f) has positive harmonic
measure in U, then U C I(f).

(O
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Proof that U N I(f)¢ has zero harmonic measure if U

is an escaping wandering domain

Pick R > 0andlet A, = {z € U : |f"(z)| < R}.
We will show that

{z € 0U:|f"(z)| < R for infinitely many n} = M7_y UpsmAn
has zero harmonic measure in U.
Claim Forlarge N e Nand z; € U,

Z w(Zg, An, U) < o0.

n>N
Claim implies

w(2o, U Ap, U) < Z w(zp,An,U) - 0as m— oo

n>m n>m

e

and hence w(2o, Nm=1 Upsm An, U) = 0.



Proof of claim that } .y w(20, An, U) < 0
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Proof of claim that -y w(20, An, U) < 00

Step 1 By Léwner's Lemma,

W(ZO,An, U) S W(Zn — fn(Zo), En — fn(An), Un)
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Proof of claim that -y w(20, An, U) < 00

Step 1 By Léwner's Lemma,

W(ZO,An, U) S W(Zn — fn(Zo), En — fn(An), Un)

Step 2 Consider the sets
@ A={z:|z] > R} U{o0o} O
@ Ep,=0Uyn{z:|z| <R}
@ V), is component of

Un N A a ‘ \rz\:Q
containing z, v

@ Fp=0Vhn{z:|z| =R} Ue
By the extended maximum principle

w(z, Ep, Up) <w(z, Fp,A), for z € V.

e



Proof that ) | - w(2n, Fn, A) < o0

o

Y

Ue
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Proof that » °_y w(2n, Fn, A) < o0

Step 3 Choose N so that |z,| = |f"(Z)| > 2R for n > N.
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Step 3 Choose N so that |z,| = |f"(Z)| > 2R for n > N.
Step 4 By Harnack’s Inequality, w(zp, Fn, A) < 3w(oo, Fp, A).
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21 =& -

9



Proof that » °_y w(2n, Fn, A) < o0

Step 3 Choose N so that |z,| = |f"(Z)| > 2R for n > N.
Step 4 By Harnack’s Inequality, w(zp, Fn, A) < 3w(oo, Fp, A).

[=o}

]z\:Q@ . ZV—VE_ V1 \
2z =& =

Step 5 Since F, C Uy, the sets F, are distinct and so
> w(zn, Fa, A) <3 " w(oo, Fp, A) < 3.

n>N n>N
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