# Applications of harmonic functions in transcendental dynamics

Gwyneth Stallard

The Open University

TCD2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## • $f: \mathbb{C} \to \mathbb{C}$ is transcendental entire



•  $f: \mathbb{C} \to \mathbb{C}$  is transcendental entire

### Definition (The Fatou set)

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}$ 



•  $f: \mathbb{C} \to \mathbb{C}$  is transcendental entire

## Definition (The Fatou set)

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}$ 

### Definition (The Julia set)

$$J(f) = \mathbb{C} \setminus F(f)$$



•  $f : \mathbb{C} \to \mathbb{C}$  is transcendental entire

### Definition (The Fatou set)

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}$ 

### Definition (The Julia set)

$$J(f) = \mathbb{C} \setminus F(f)$$

### Definition (The escaping set)

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}$$



•  $f: \mathbb{C} \to \mathbb{C}$  is transcendental entire

## Definition (The Fatou set)

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}$ 

### Definition (The Julia set)

$$J(f) = \mathbb{C} \setminus F(f)$$

## Definition (The escaping set)

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}$$

## Eremenko's conjecture (1989):

All the components of I(f) are unbounded.



 $M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$ 



 $M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$ 

If *R* is sufficiently large, then  $M^n(R) \to \infty$ 



$$M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$$

If *R* is sufficiently large, then  $M^n(R) \to \infty$ and we consider the following set of fast escaping points.

Definition (Bergweiler and Hinkkanen, 1999)

 $A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \ \forall \ n \in \mathbb{N}\}$ 



$$M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$$

If *R* is sufficiently large, then  $M^n(R) \to \infty$ and we consider the following set of fast escaping points.

Definition (Bergweiler and Hinkkanen, 1999)

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \ \forall \ n \in \mathbb{N}\}$$

The fast escaping set A(f) consists of this set and all its pre-images

$$M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$$

If *R* is sufficiently large, then  $M^n(R) \to \infty$ and we consider the following set of fast escaping points.

Definition (Bergweiler and Hinkkanen, 1999)

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \ \forall \ n \in \mathbb{N}\}$$

The fast escaping set A(f) consists of this set and all its pre-images and has nice properties (R+S, 2005)

$$M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$$

If *R* is sufficiently large, then  $M^n(R) \to \infty$ and we consider the following set of fast escaping points.

Definition (Bergweiler and Hinkkanen, 1999)

$$A_{R}(f) = \{z \in \mathbb{C} : |f^{n}(z)| \ge M^{n}(R) \forall n \in \mathbb{N}\}$$

The fast escaping set A(f) consists of this set and all its pre-images and has nice properties (R+S, 2005)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

• 
$$J(f) = \partial A(f)$$

• All the components of *A*(*f*) are unbounded.



The first is a strong version of Hadamard convexity

Lemma (Convexity)

 $\log M(r^c, f^n) \ge c \log M(r, f^n)$ 

ヘロト ヘ週 ト イヨト イヨト 三日

for all c > 1,  $n \in \mathbb{N}$ ,  $r \ge R = R(f)$ .

The first is a strong version of Hadamard convexity

Lemma (Convexity)

 $\log M(r^c, f^n) \geq c \log M(r, f^n)$ 

for all c > 1,  $n \in \mathbb{N}$ ,  $r \ge R = R(f)$ .

The second follows from a refinement of Eremenko's proof that  $I(f) \neq \emptyset$ , based on Wiman-Valiron theory.

#### Lemma (Eremenko points)

Given  $\epsilon > 0$ ,

$$A_r(f) \cap \{z : r \leq |z| \leq r(1+\epsilon)\} \neq \emptyset,$$

for all  $r \geq R = R(f, \epsilon)$ .

The minimum modulus function is defined by

$$m(r) = \min_{|z|=r} |f(z)|$$
, for  $r > 0$ .

### The minimum modulus function is defined by

$$m(r) = \min_{|z|=r} |f(z)|, \text{ for } r > 0.$$

## Lemma (min mod)

Suppose

$$m(\rho, f) > 1 \text{ for } \rho \in A(r^a, r^b) = \{z : r^a < \rho < r^b\}.$$

### The minimum modulus function is defined by

$$m(r) = \min_{|z|=r} |f(z)|, \text{ for } r > 0.$$

## Lemma (min mod)

Suppose

$$m(
ho, f) > 1 \, \, \textit{for} \, 
ho \in A(r^a, r^b) = \{ z : r^a < 
ho < r^b \}.$$

and

$$\delta = \frac{1}{\sqrt{\log r}} < \min\{1, \frac{b-a}{4\pi}\}.$$

#### Then (a)

$$m(\rho, f) \geq M(\rho, f)^{1-\delta}, \text{ for } \rho \in \mathcal{A}(r^{a+2\pi\delta}, r^{b-2\pi\delta}).$$

### The minimum modulus function is defined by

$$m(r) = \min_{|z|=r} |f(z)|, \text{ for } r > 0.$$

### Lemma (min mod)

Suppose

$$m(
ho, f) > 1 \, \, \textit{for} \, 
ho \in A(r^a, r^b) = \{ z : r^a < 
ho < r^b \}.$$

and

$$\delta = \frac{1}{\sqrt{\log r}} < \min\{1, \frac{b-a}{4\pi}\}.$$

#### Then (a)

$$m(\rho, f) \geq M(\rho, f)^{1-\delta}, \text{ for } \rho \in \mathcal{A}(r^{a+2\pi\delta}, r^{b-2\pi\delta}).$$

(b) f behaves like a monomial in  $A(r^{a+2\pi\delta}, r^{b-2\pi\delta})$ .

Proof of 
$$m(\rho, f) \ge M(\rho, f)^{1-\delta}$$
, for  $\rho \in A(r^{a+2\pi\delta}, r^{b-2\pi\delta})$ 

• 
$$u(z) = \log |f(z)|$$
 is positive harmonic in  $A(r^a, r^b)$ 



- $u(z) = \log |f(z)|$  is positive harmonic in  $A(r^a, r^b)$
- *U*(*t*) = *u*(*e*<sup>*t*</sup>) is positive harmonic in
   *S* = {*t* : *a* log *r* < ℜ*t* < *b* log *r*}

- $u(z) = \log |f(z)|$  is positive harmonic in  $A(r^a, r^b)$
- *U*(*t*) = *u*(*e*<sup>*t*</sup>) is positive harmonic in
   *S* = {*t* : *a* log *r* < ℜ*t* < *b* log *r*}
- Apply Harnack's Inequality on a disc in S centered at

$$t_1 \in S' = \{t : (a+2\pi\delta) \log r < \Re t < (b-2\pi\delta) \log r\}$$

of radius  $2\pi\delta \log r = 2\pi/\delta$ .

- $u(z) = \log |f(z)|$  is positive harmonic in  $A(r^a, r^b)$
- *U*(*t*) = *u*(*e*<sup>*t*</sup>) is positive harmonic in
   *S* = {*t* : *a* log *r* < ℜ*t* < *b* log *r*}
- Apply Harnack's Inequality on a disc in S centered at

$$t_1 \in S' = \{t : (a + 2\pi\delta) \log r < \Re t < (b - 2\pi\delta) \log r\}$$

of radius  $2\pi\delta \log r = 2\pi/\delta$ .

• For  $t_2 \in S'$  with  $\Re t_2 = \Re t_1$ and  $|\Im t_2 - \Im t_1| \le \pi$ , we have

$$\frac{U(t_2)}{U(t_1)} \geq \frac{2\pi/\delta - \pi}{2\pi/\delta + \pi} \geq 1 - \delta.$$

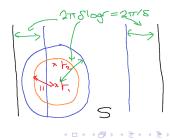
- $u(z) = \log |f(z)|$  is positive harmonic in  $A(r^a, r^b)$
- *U*(*t*) = *u*(*e*<sup>*t*</sup>) is positive harmonic in
   *S* = {*t* : *a* log *r* < ℜ*t* < *b* log *r*}
- Apply Harnack's Inequality on a disc in S centered at

$$t_1 \in S' = \{t : (a + 2\pi\delta) \log r < \Re t < (b - 2\pi\delta) \log r\}$$

of radius  $2\pi\delta \log r = 2\pi/\delta$ .

• For  $t_2 \in S'$  with  $\Re t_2 = \Re t_1$ and  $|\Im t_2 - \Im t_1| \le \pi$ , we have

$$\frac{U(t_2)}{U(t_1)} \geq \frac{2\pi/\delta - \pi}{2\pi/\delta + \pi} \geq 1 - \delta.$$



э

## Applications to wandering domains

Let *U* be a component of F(f) and let  $U_n$  denote the component of F(f) containing  $f^n(U)$ .

### Definition

A component U of F(f) is a wandering domain if

 $U_n \neq U_m$ , whenever  $n \neq m$ .



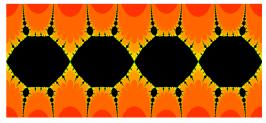
## Applications to wandering domains

Let *U* be a component of F(f) and let  $U_n$  denote the component of F(f) containing  $f^n(U)$ .

### Definition

A component U of F(f) is a wandering domain if

 $U_n \neq U_m$ , whenever  $n \neq m$ .



 $f(z) = z + \sin z + 2\pi$ 

・ロト ・聞ト ・ヨト ・ヨト 三日

イロト 不良 とくほう 不良 とうほ

### Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

• U is a wandering domain

### Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

- U is a wandering domain
- $U_{n+1}$  surrounds  $U_n$ , for large n

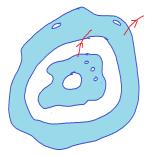
イロト 不良 とくほう 不良 とうほ

•  $U_n \to \infty$  as  $n \to \infty$ .

## Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

- U is a wandering domain
- $U_{n+1}$  surrounds  $U_n$ , for large n
- $U_n \to \infty$  as  $n \to \infty$ .

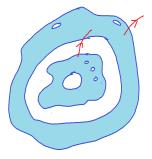


ヘロト ヘポト ヘヨト ヘヨト

### Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

- U is a wandering domain
- $U_{n+1}$  surrounds  $U_n$ , for large n
- $U_n \to \infty$  as  $n \to \infty$ .



### Theorem (Zheng, 2006)

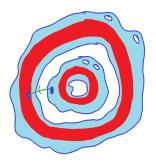
If U is a multiply connected wandering domain then there exist sequences  $(r_n)$  and  $(R_n)$  such that, for large n,

 $U_n \supset \{z : r_n \leq |z| \leq R_n\}, \text{ where } R_n/r_n \to \infty \text{ as } n \to \infty.$ 

If *U* is a multiply connected wandering domain then



If *U* is a multiply connected wandering domain then



for large  $n \in \mathbb{N}$ , there is an *absorbing* annulus

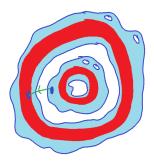
$$\mathsf{B}_n = \mathsf{A}(\mathsf{r}_n^{\mathsf{a}_n}, \mathsf{r}_n^{\mathsf{b}_n}) \subset U_n$$

with  $\liminf_{n\to\infty} b_n/a_n > 1$ 

1



If *U* is a multiply connected wandering domain then



for large  $n \in \mathbb{N}$ , there is an *absorbing* annulus

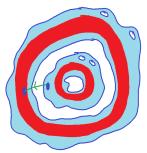
$$\mathsf{B}_n = \mathsf{A}(\mathsf{r}_n^{\mathsf{a}_n}, \mathsf{r}_n^{\mathsf{b}_n}) \subset U_n$$

with  $\liminf_{n\to\infty} b_n/a_n > 1$  such that, for every compact set  $C \subset U$ ,

 $f^n(C) \subset B_n$  for  $n \ge N(C)$ .



If *U* is a multiply connected wandering domain then



for large  $n \in \mathbb{N}$ , there is an *absorbing* annulus

$$B_n = A(r_n^{a_n}, r_n^{b_n}) \subset U_n$$

with  $\liminf_{n\to\infty} b_n/a_n > 1$  such that, for every compact set  $C \subset U$ ,

 $f^n(C) \subset B_n$  for  $n \ge N(C)$ .

・ ロ ト ・ 雪 ト ・ 目 ト ・

f behaves like a large degree monomial inside  $B_n$ .

## Proof of Bergweiler + R + S result

Let *U* be a multiply connected wandering domain, and  $z_0 \in U$ .

The functions

$$h_n(z) = \frac{\log |f^n(z)|}{\log |f^n(z_0)|}$$

are positive harmonic in *U*, with  $h_n(z_0) = 1$ .



## Proof of Bergweiler + R + S result

Let *U* be a multiply connected wandering domain, and  $z_0 \in U$ .

The functions

$$h_n(z) = \frac{\log |f^n(z)|}{\log |f^n(z_0)|}$$

・ロット (雪) (日) (日) (日)

are positive harmonic in *U*, with  $h_n(z_0) = 1$ .

• Harnack's Theorem implies  $h_{n_k}(z) \rightarrow h(z)$  in U, where h is constant or positive harmonic in U.

The functions

$$h_n(z) = \frac{\log |f^n(z)|}{\log |f^n(z_0)|}$$

are positive harmonic in *U*, with  $h_n(z_0) = 1$ .

- Harnack's Theorem implies  $h_{n_k}(z) \rightarrow h(z)$  in U, where h is constant or positive harmonic in U.
- *h* is non-constant: using Zheng's Theorem, Eremenko points Lemma and convexity Lemma, ∃*z*<sub>1</sub> ∈ *U* with

$$h(z_1) \ge \liminf \frac{\log |f^n(z_1)|}{\log |f^n(z_0)|} \ge \lim \frac{\log M^n(2|z_0|)}{\log M^n(|z_0|)} > 1.$$

The functions

$$h_n(z) = \frac{\log |f^n(z)|}{\log |f^n(z_0)|}$$

are positive harmonic in *U*, with  $h_n(z_0) = 1$ .

- Harnack's Theorem implies  $h_{n_k}(z) \rightarrow h(z)$  in U, where h is constant or positive harmonic in U.
- *h* is non-constant: using Zheng's Theorem, Eremenko points Lemma and convexity Lemma, ∃*z*<sub>1</sub> ∈ *U* with

$$h(z_1) \ge \liminf \frac{\log |f^n(z_1)|}{\log |f^n(z_0)|} \ge \lim \frac{\log M^n(2|z_0|)}{\log M^n(|z_0|)} > 1.$$

• Show  $h_n \rightarrow h$  in U.

$$h_n(z) = \frac{\log |f^n(z)|}{\log |f^n(z_0)|} \to h(z),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

a positive harmonic function in U.

$$h_n(z) = \frac{\log |f^n(z)|}{\log |f^n(z_0)|} \to h(z),$$

a positive harmonic function in U.

•  $|f^n(z)|$  is close to  $|f^n(z_0)|^{h(z)}$  for large *n*.



$$h_n(z) = \frac{\log |f^n(z)|}{\log |f^n(z_0)|} \to h(z),$$

a positive harmonic function in U.

- $|f^n(z)|$  is close to  $|f^n(z_0)|^{h(z)}$  for large *n*.
- Take  $B(z_1, r) \subset U$  and consider  $g_n(z) = \frac{\log f^n(z)}{\log |f^n(z_0)|}$ . We have  $g_n \to g$  analytic in  $B(z_1, r)$  and so  $\exists \alpha > 0$ ,

$$f^n(B(z_1,r)) \supset A(|f^n(z_1)|^{1-\alpha}, |f^n(z_1)|^{1+\alpha}) = A_n$$
, large *n*.

$$h_n(z) = \frac{\log |f^n(z)|}{\log |f^n(z_0)|} \to h(z),$$

a positive harmonic function in U.

- $|f^n(z)|$  is close to  $|f^n(z_0)|^{h(z)}$  for large *n*.
- Take  $B(z_1, r) \subset U$  and consider  $g_n(z) = \frac{\log f^n(z)}{\log |f^n(z_0)|}$ . We have  $g_n \to g$  analytic in  $B(z_1, r)$  and so  $\exists \alpha > 0$ ,

 $f^{n}(B(z_{1},r)) \supset A(|f^{n}(z_{1})|^{1-\alpha},|f^{n}(z_{1})|^{1+\alpha}) = A_{n}$ , large *n*.

• By min mod Lemma, *f* acts like a monomial in *A<sub>n</sub>*.

$$h_n(z) = \frac{\log |f^n(z)|}{\log |f^n(z_0)|} \to h(z),$$

a positive harmonic function in U.

- $|f^n(z)|$  is close to  $|f^n(z_0)|^{h(z)}$  for large *n*.
- Take  $B(z_1, r) \subset U$  and consider  $g_n(z) = \frac{\log f^n(z)}{\log |f^n(z_0)|}$ . We have  $g_n \to g$  analytic in  $B(z_1, r)$  and so  $\exists \alpha > 0$ ,

 $f^{n}(B(z_{1},r)) \supset A(|f^{n}(z_{1})|^{1-\alpha},|f^{n}(z_{1})|^{1+\alpha}) = A_{n}$ , large *n*.

• By min mod Lemma, *f* acts like a monomial in *A<sub>n</sub>*.

### Boundaries of simply connected wandering domains

**Question** If *U* is an escaping wandering domain (i.e.  $U \subset I(f)$ ), is  $\partial U \subset I(f)$ ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Boundaries of simply connected wandering domains

**Question** If *U* is an escaping wandering domain (i.e.  $U \subset I(f)$ ), is  $\partial U \subset I(f)$ ? If *U* is multiply connected then  $\overline{U} \subset A(f)$ .



**Question** If *U* is an escaping wandering domain (i.e.  $U \subset I(f)$ ), is  $\partial U \subset I(f)$ ? If *U* is multiply connected then  $\overline{U} \subset A(f)$ .

### Theorem (R+S, 2011)

If U is an escaping simply connected wandering domain, then  $\partial U \cap I(f)^c$  has zero harmonic measure in U.



**Question** If *U* is an escaping wandering domain (i.e.  $U \subset I(f)$ ), is  $\partial U \subset I(f)$ ? If *U* is multiply connected then  $\overline{U} \subset A(f)$ .

### Theorem (R+S, 2011)

If U is an escaping simply connected wandering domain, then  $\partial U \cap I(f)^c$  has zero harmonic measure in U.

### Corollary

 $I(f) \cup \{\infty\}$  is connected.



**Question** If *U* is an escaping wandering domain (i.e.  $U \subset I(f)$ ), is  $\partial U \subset I(f)$ ? If *U* is multiply connected then  $\overline{U} \subset A(f)$ .

### Theorem (R+S, 2011)

If U is an escaping simply connected wandering domain, then  $\partial U \cap I(f)^c$  has zero harmonic measure in U.

### Corollary

 $I(f) \cup \{\infty\}$  is connected.

### Theorem (R+S, 2011)

If U is a component of F(f) and  $\partial U \cap I(f)$  has positive harmonic measure in U, then  $U \subset I(f)$ .

Pick R > 0 and let  $A_n = \{z \in \partial U : |f^n(z)| \le R\}$ .



Pick R > 0 and let  $A_n = \{z \in \partial U : |f^n(z)| \le R\}$ . We will show that

 $\{z \in \partial U : |f^n(z)| \le R \text{ for infinitely many } n\}$ 



Pick R > 0 and let  $A_n = \{z \in \partial U : |f^n(z)| \le R\}$ . We will show that

 $\{z \in \partial U : |f^n(z)| \le R \text{ for infinitely many } n\} = \bigcap_{m=1}^{\infty} \bigcup_{n \ge m} A_n$ 

has zero harmonic measure in U.



Pick R > 0 and let  $A_n = \{z \in \partial U : |f^n(z)| \le R\}$ . We will show that

 $\{z \in \partial U : |f^n(z)| \le R \text{ for infinitely many } n\} = \bigcap_{m=1}^{\infty} \bigcup_{n \ge m} A_n$ has zero harmonic measure in U.

**Claim** For large  $N \in \mathbb{N}$  and  $z_0 \in U$ ,

$$\sum_{n\geq N}\omega(z_0,A_n,U)<\infty.$$

Pick R > 0 and let  $A_n = \{z \in \partial U : |f^n(z)| \le R\}$ . We will show that

 $\{z \in \partial U : |f^n(z)| \le R \text{ for infinitely many } n\} = \bigcap_{m=1}^{\infty} \bigcup_{n \ge m} A_n$ has zero harmonic measure in U.

**Claim** For large  $N \in \mathbb{N}$  and  $z_0 \in U$ ,

$$\sum_{n\geq N}\omega(z_0,A_n,U)<\infty.$$

Claim implies

$$\omega(z_0, \bigcup_{n \ge m} A_n, U) \le \sum_{n \ge m} \omega(z_0, A_n, U) \to 0 \text{ as } m \to \infty$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

Pick R > 0 and let  $A_n = \{z \in \partial U : |f^n(z)| \le R\}$ . We will show that

 $\{z \in \partial U : |f^n(z)| \le R \text{ for infinitely many } n\} = \bigcap_{m=1}^{\infty} \bigcup_{n \ge m} A_n$ has zero harmonic measure in U.

**Claim** For large  $N \in \mathbb{N}$  and  $z_0 \in U$ ,

$$\sum_{n\geq N}\omega(z_0,A_n,U)<\infty.$$

Claim implies

$$\omega(z_0, \bigcup_{n \ge m} A_n, U) \le \sum_{n \ge m} \omega(z_0, A_n, U) \to 0 \text{ as } m \to \infty$$

and hence  $\omega(z_0, \bigcap_{m=1}^{\infty} \bigcup_{n \ge m} A_n, U) = 0.$ 



# Proof of claim that $\sum_{n\geq N} \omega(z_0, A_n, U) < \infty$



## Proof of claim that $\sum_{n\geq N} \omega(z_0, A_n, U) < \infty$

Step 1 By Löwner's Lemma,

$$\omega(z_0, A_n, U) \leq \omega(z_n = f^n(z_0), E_n = f^n(A_n), U_n).$$

Proof of claim that 
$$\sum_{n\geq N} \omega(z_0, A_n, U) < \infty$$

Step 1 By Löwner's Lemma,

$$\omega(z_0, A_n, U) \leq \omega(z_n = f^n(z_0), E_n = f^n(A_n), U_n).$$

Step 2 Consider the sets

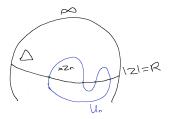
• 
$$\Delta = \{z : |z| > R\} \cup \{\infty\}$$

• 
$$E_n = \partial U_n \cap \{z : |z| \le R\}$$

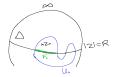
•  $V_n$  is component of  $U_n \cap \Delta$  containing  $z_n$ 

•  $F_n = \partial V_n \cap \{z : |z| = R\}$ By the extended maximum principle

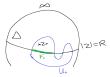
 $\omega(z, E_n, U_n) \leq \omega(z, F_n, \Delta), \text{ for } z \in V_n.$ 



・ コット (雪) ( 小田) ( コット 日)





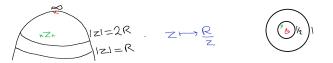


**Step 3** Choose *N* so that  $|z_n| = |f^n(z_0)| > 2R$  for  $n \ge N$ .





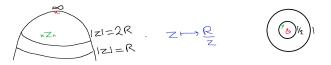
**Step 3** Choose *N* so that  $|z_n| = |f^n(z_0)| > 2R$  for  $n \ge N$ . **Step 4** By Harnack's Inequality,  $\omega(z_n, F_n, \Delta) \le 3\omega(\infty, F_n, \Delta)$ .







**Step 3** Choose *N* so that  $|z_n| = |f^n(z_0)| > 2R$  for  $n \ge N$ . **Step 4** By Harnack's Inequality,  $\omega(z_n, F_n, \Delta) \le 3\omega(\infty, F_n, \Delta)$ .



**Step 5** Since  $F_n \subset U_n$ , the sets  $F_n$  are distinct and so

$$\sum_{n\geq N}\omega(z_n,F_n,\Delta)\leq 3\sum_{n\geq N}\omega(\infty,F_n,\Delta)\leq 3.$$