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Basic definitions

f : C→ C is transcendental entire

Definition (The Fatou set)

F (f ) = {z : (f n) is equicontinuous in some neighbourhood of z}

Definition (The Julia set)

J(f ) = C \ F (f )

Definition (The escaping set)

I(f ) = {z : f n(z)→∞ as n→∞}

Eremenko’s conjecture (1989):
All the components of I(f ) are unbounded.
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The fast escaping set

The maximum modulus function is defined by

M(r) = max|z|=r |f (z)|, for r > 0.

If R is sufficiently large, then Mn(R)→∞
and we consider the following set of fast escaping points.

Definition (Bergweiler and Hinkkanen, 1999)

AR(f ) = {z ∈ C : |f n(z)| ≥ Mn(R) ∀ n ∈ N}

The fast escaping set A(f ) consists of this set and all its
pre-images and has nice properties (R+S, 2005)

J(f ) = ∂A(f )

All the components of A(f ) are unbounded.
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Useful properties of the maximum modulus
Bergweiler + R + S, 2013

The first is a strong version of Hadamard convexity

Lemma (Convexity)

log M(r c , f n) ≥ c log M(r , f n)

for all c > 1, n ∈ N, r ≥ R = R(f ).

The second follows from a refinement of Eremenko’s proof that
I(f ) 6= ∅, based on Wiman-Valiron theory.

Lemma (Eremenko points)

Given ε > 0,

Ar (f ) ∩ {z : r ≤ |z| ≤ r(1 + ε)} 6= ∅,

for all r ≥ R = R(f , ε).
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Useful properties of the minimum modulus
Bergweiler + R + S, 2013

The minimum modulus function is defined by

m(r) = min
|z|=r
|f (z)|, for r > 0.

Lemma (min mod)

Suppose

m(ρ, f ) > 1 for ρ ∈ A(ra, rb) = {z : ra < ρ < rb}.

and
δ =

1√
log r

< min{1, b − a
4π
}.

Then
(a)

m(ρ, f ) ≥ M(ρ, f )1−δ, for ρ ∈ A(ra+2πδ, rb−2πδ).

(b) f behaves like a monomial in A(ra+2πδ, rb−2πδ).
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Proof of m(ρ, f ) ≥ M(ρ, f )1−δ, for ρ ∈ A(ra+2πδ, rb−2πδ)

u(z) = log |f (z)| is positive harmonic in A(ra, rb)

U(t) = u(et ) is positive harmonic in
S = {t : a log r < <t < b log r}
Apply Harnack’s Inequality on a disc in S centered at

t1 ∈ S′ = {t : (a + 2πδ) log r < <t < (b − 2πδ) log r}

of radius 2πδ log r = 2π/δ.

For t2 ∈ S′ with
<t2 = <t1
and |=t2 −=t1| ≤ π,
we have

U(t2)

U(t1)
≥ 2π/δ − π

2π/δ + π
≥ 1−δ.
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Applications to wandering domains

Let U be a component of F (f ) and let Un denote the
component of F (f ) containing f n(U).

Definition

A component U of F (f ) is a wandering domain if

Un 6= Um, whenever n 6= m.

f (z) = z + sin z + 2π
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Multiply connected wandering domains

Theorem (Baker, 1984)

If U is a multiply connected Fatou
component then

U is a wandering domain

Un+1 surrounds Un, for large n
Un →∞ as n→∞.

Theorem (Zheng, 2006)

If U is a multiply connected wandering domain then there exist
sequences (rn) and (Rn) such that, for large n,

Un ⊃ {z : rn ≤ |z| ≤ Rn}, where Rn/rn →∞ as n→∞.
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Dynamical behaviour in multiply connected wandering
domains
Bergweiler + R + S, 2013

If U is a multiply connected wandering domain then

for large n ∈ N, there is an absorbing
annulus

Bn = A(ran
n , rbn

n ) ⊂ Un

with lim infn→∞ bn/an > 1 such that, for
every compact set C ⊂ U,

f n(C) ⊂ Bn for n ≥ N(C).

f behaves like a large degree monomial inside Bn.
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Proof of Bergweiler + R + S result

Let U be a multiply connected wandering domain, and z0 ∈ U.

The functions
hn(z) =

log |f n(z)|
log |f n(z0)|

are positive harmonic in U, with hn(z0) = 1.

Harnack’s Theorem implies hnk (z)→ h(z) in U,
where h is constant or positive harmonic in U.
h is non-constant: using Zheng’s Theorem, Eremenko
points Lemma and convexity Lemma, ∃z1 ∈ U with

h(z1) ≥ lim inf
log |f n(z1)|
log |f n(z0)|

≥ lim
log Mn(2|z0|)
log Mn(|z0|)

> 1.

Show hn → h in U.
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Proof of Bergweiler + R + S result

Let U be a multiply connected wandering domain, and z0 ∈ U.
We have

hn(z) =
log |f n(z)|
log |f n(z0)|

→ h(z),

a positive harmonic function in U.

|f n(z)| is close to |f n(z0)|h(z) for large n.

Take B(z1, r) ⊂ U and consider gn(z) = log f n(z)
log |f n(z0)| . We have

gn → g analytic in B(z1, r) and so ∃α > 0,

f n(B(z1, r)) ⊃ A(|f n(z1)|1−α, |f n(z1)|1+α) = An, large n.

By min mod Lemma, f acts like a monomial in An.
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Boundaries of simply connected wandering domains

Question If U is an escaping wandering domain (i.e. U ⊂ I(f )),
is ∂U ⊂ I(f )?

If U is multiply connected then U ⊂ A(f ).

Theorem (R+S, 2011)

If U is an escaping simply connected wandering domain, then
∂U ∩ I(f )c has zero harmonic measure in U.

Corollary

I(f ) ∪ {∞} is connected.

Theorem (R+S, 2011)

If U is a component of F (f ) and ∂U ∩ I(f ) has positive harmonic
measure in U, then U ⊂ I(f ).
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∂U ∩ I(f )c has zero harmonic measure in U.

Corollary

I(f ) ∪ {∞} is connected.
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Proof that ∂U ∩ I(f )c has zero harmonic measure if U
is an escaping wandering domain

Pick R > 0 and let An = {z ∈ ∂U : |f n(z)| ≤ R}.

We will show that

{z ∈ ∂U : |f n(z)| ≤ R for infinitely many n} =
⋂∞

m=1
⋃

n≥m An

has zero harmonic measure in U.

Claim For large N ∈ N and z0 ∈ U,∑
n≥N

ω(z0,An,U) <∞.

Claim implies

ω(z0,
⋃

n≥m

An,U) ≤
∑
n≥m

ω(z0,An,U)→ 0 as m→∞

and hence ω(z0,
⋂∞

m=1
⋃

n≥m An,U) = 0.
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Proof of claim that
∑

n≥N ω(z0,An,U) <∞

Step 1 By Löwner’s Lemma,

ω(z0,An,U) ≤ ω(zn = f n(z0),En = f n(An),Un).

Step 2 Consider the sets

∆ = {z : |z| > R} ∪ {∞}
En = ∂Un ∩ {z : |z| ≤ R}
Vn is component of
Un ∩∆
containing zn

Fn = ∂Vn ∩ {z : |z| = R}
By the extended maximum principle

ω(z,En,Un) ≤ ω(z,Fn,∆), for z ∈ Vn.
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Proof that
∑

n≥N ω(zn,Fn,∆) <∞

Step 3 Choose N so that |zn| = |f n(z0)| > 2R for n ≥ N.
Step 4 By Harnack’s Inequality, ω(zn,Fn,∆) ≤ 3ω(∞,Fn,∆).

Step 5 Since Fn ⊂ Un, the sets Fn are distinct and so∑
n≥N

ω(zn,Fn,∆) ≤ 3
∑
n≥N

ω(∞,Fn,∆) ≤ 3.
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