A Newhouse phenomenon in transcendental dynamics

Adam Epstein (with Lasse Rempe-Gillen)

Warwick University

Attractors

We will consider entire maps $f : \mathbb{C} \to \mathbb{C}$ as dynamical systems.

Recall that a period p cycle $\langle \zeta \rangle$ is said to be *attracting*, *indifferent* or *repelling* according as the *multiplier* $(f^p)'(\zeta)$ is less than, equal to, or greater than 1. The multiplier is 0 precisely when the cycle contains a critical point: such a cycle is said to be *superattracting*.

- A polynomial $f: \mathbb{C} \to \mathbb{C}$ has only finitely many attractors [Fatou]. A polynomial of degree D has at most D-1 [Douady-Hubbard].
- A transcendental $f: \mathbb{C} \to \mathbb{C}$ may have infinitely many attractors. For example, $z \mapsto z \sin z$ has infinitely many superattractors.

Singular Values

For entire $f:\mathbb{C}\to\mathbb{C}$, we denote by :

- $\Gamma(f)$ the set $\{z: f'(z) = 0\}$ of all *critical points*,
- C(f) the set $f(\Gamma(f))$ of all *critical values*,
- A(f) is the set of all finite asymptotic values (limits along paths tending to infinity),
- S(f) the set of all finite values which are *singular* in the sense of covering space theory : $S(f) = \overline{C(f) \cup A(f)}$.
- $\Pi(f)$ the set of finite values which are attained only finitely often. By Picard's Theorem, $\#\Pi(f) \le 1$ for any entire transcendental f.

Finite and Bounded type maps

We say that $f: \mathbb{C} \to \mathbb{C}$ is of

- finite type if S(f) is finite,
- bounded type if S(f) is bounded.

Both conditions are preserved under composition, hence by iteration, since $S(f \circ g) = \overline{g(S(f))} \cup S(g)$ for any entire maps f and g.

Theorem (Eremenko-Lyubich)

A finite type transcendental $f: \mathbb{C} \to \mathbb{C}$ has only finitely many attractors. In fact, at most #S(f) many.

Question (Mihaljević-Brandt)

What about bounded type transcendental maps?

Results

Theorem

There exists a bounded type entire map with infinitely many attractors.

In fact, bounded type entire maps with infinitely many attractors are prevalent in suitable families. The following is analogous to the *Newhouse phenomenon* of higher dimensional dynamics:

Theorem

Let $f: \mathbb{C} \to \mathbb{C}$ be an entire map such that the interior of the closure of the critical value set contains a repelling fixed point. There exist a neighborhood of 0 and a residual subset \mathfrak{R} such that for any $\beta \in \mathfrak{R}$ the map $f + \beta$ has infinitely many attractors.

Bifurcations

For entire $f: \mathbb{C} \to \mathbb{C}$, we denote by E(f) the set of all $z \in \mathbb{C}$ with finite backward orbit $\bigcup_{k=0}^{\infty} f^{-k}(z)$.

- There is at most one point in E(f). Indeed, if f is transcendental than $E(f) \subseteq \Pi(f)$, by Picard's Theorem.
- The backward orbit of any other point accumulates everywhere on the Julia set of f.

Bifurcations

Proposition

Let $\lambda \mapsto f_{\lambda}$ be an analytic family of entire maps parametrized by a connected open neighborhood Λ of 0 in \mathbb{C} , and let $\lambda \mapsto \chi_{\lambda}$ and $\lambda \mapsto \zeta_{\lambda}$ be analytic functions defined on Λ . Assume that :

- for every $\lambda \in \Lambda$, the point ζ_{λ} is a repelling fixed point of f_{λ} ,
- the function $\lambda \mapsto \zeta_{\lambda} f_{\lambda}(\chi_{\lambda})$ vanishes at 0 but not identically,
- $\chi_0 \notin E(f_0)$.

Then for any sufficiently large positive integer p, there exists $\mu \in \Lambda$ such that χ_{μ} has period p under f_{μ} .

Deformations

Theorem

Let f be an entire map with repelling fixed point ζ , let $D \ni \zeta$ be a disc with $\overline{D} \cap S(f) \subseteq \{\zeta\}$, and let \mathcal{K} be the set of all connected components of $f^{-1}(D)$. Consider the set \mathfrak{B} of all functions $V \mapsto \mathbf{b}_V$ from $\Upsilon = \{V \in \mathcal{K} : d_V > 1\}$ to D whose image is bounded in D. Note that \mathfrak{B} is an open neighborhood of the origin in the Banach space $\ell^{\infty}(\Upsilon)$. There exists an analytic family $\mathbf{b} \mapsto \mathbf{f}_{\mathbf{b}}$ such that for any $\mathbf{b} \in \mathfrak{B}$:

- There exists an analytic family $\mathbf{b}\mapsto f_\mathbf{b}$ such that for any $\mathbf{b}\in\mathfrak{B}$:
 - $f_{\mathbf{b}} \circ \psi^{-1}$ agrees with f outside $f^{-1}(D)$,
 - $f_{\mathbf{b}}$ restricts to a cover $\psi(V \setminus f^{-1}(0)) \to D \setminus \{\mathbf{b}_V\}$ for each $V \in \Upsilon$.

Moreover, the family $\mathbf{b} \mapsto \mathbf{f_b}$ has the following properties :

- $C(f_{\mathbf{b}}) = \{\mathbf{b}_V : d_V < \infty\} \cup (C(f) \setminus \{\zeta\}),$
- $A(f_{\mathbf{b}}) = \{\mathbf{b}_V : d_V = \infty\} \cup (A(f) \setminus \{\zeta\}),$
- $\Pi(f) = \emptyset$ implies $\Pi(f_{\mathbf{b}}) = \emptyset$.

Order

Recall that the *order* of *f* is

$$\rho(f) = \limsup_{R \to \infty} \frac{\log_+ \log_+ \sup_{|z| = R} |f(z)|}{\log R}$$

where $\log_+ R = \max(0, \log R)$.

By the Ahlfors Distortion Theorem,

- $\rho(f) \geq \frac{1}{2}$ for any bounded type transcendental map,
- $\rho(f) \geq 1$ for any finite type map with $A(f) \neq \emptyset$,
- if $\rho(f) < \infty$ then f is of bounded type precisely when C(f) is bounded.

Order

For the family $\mathbf{b} \mapsto f_{\mathbf{b}}$, we have

$$\rho(f_{\mathbf{b}}) = \rho(f)$$

provided that:

• $\{V: |\mathbf{b}_V| > \epsilon\}$ is finite for every $\epsilon > 0$ and $\mathbf{b}_V = 0$ whenever $d_V = \infty$,

or

• if f has the Area Property:

$$\int_{f^{-1}(K)\setminus\mathbb{D}}\frac{\mathrm{d}x\,\mathrm{d}y}{|z|^2}<\infty$$

for every compact set $K \subset \mathbb{C} \setminus S(f)$.

Lemma

Consider the entire map $\mathfrak{f}:\mathbb{C}\to\mathbb{C}$ given by

$$\mathfrak{f}(z) = \left(\sin\frac{\pi}{2}\sqrt{z}\right)^2 = \frac{1 - \cos\pi\sqrt{z}}{2}.$$

- f has a repelling fixed point at 0 with multiplier $\frac{\pi^2}{4}$.
- ② $\Gamma(f) = \{n^2 : n \in \mathbb{Z}\} \setminus \{0\}$ consists of simple critical points. The corresponding critical values $\mathfrak{f}(n^2)$ are 1 for odd n and 0 for even n. Moreover, $\mathfrak{f}^{-1}(1) \subset \Gamma(f)$ and $\mathfrak{f}^{-1}(0) \setminus \{0\} \subset \Gamma(f)$.
- f is a map of finite type.
- **1** $\rho(\mathfrak{f}) = \frac{1}{2}$.
- The map has the Area Property.