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Introduction

We consider the dynamical system given by the iterates of an entire function f : C→ C
(not linear).

Fatou set Ff = {z ∈ C | (f n) is normal in a nbh of z}
Fatou component is a connected component of Ff

A Fatou component Ω is pre-periodic if there are non-negative integers n 6= m such
that f n(Ω) ∩ f m(Ω) 6= ∅.
A Fatou component which is not pre-periodic is called a wandering Fatou
component or a wandering domain.

One of the main goals in complex dynamics is to obtain a complete classification of all
possible Fatou components for a given class of maps in terms of their dynamical
behaviour and their geometry.
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Classification in terms of internal dynamical behaviour

For entire functions we have a complete description of:
Pre-periodic Fatou components (Fatou & examples of Siegel and Baker)
Multiply connected wandering domains (Bergweiler-Rippon-Stallard ’13)
Simply connected wandering domains in terms of the hyperbolic distance between
orbits of points and in terms of convergence to the boundary

(Benini-Evdoridou-Fagella-Rippon-Stallard ’19) All nine types can be realized by
escaping wandering domains.
(Evdoridou-Rippon-Stallard ’20) only six of these types can be realized by oscillating
wandering domains.



External point of view

Escaping wandering domain - the orbit leaves every compact,
Oscillating wandering domain - there is a subsequence of the orbit that leaves every
compact, and another subsequence that is bounded,
Dynamically bounded wandering domains - the orbit is bounded.

Question
Does ther exist an entire function with a dynamically bounded wandering domain?
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Geometry of bounded simply connected wandering domains

Theorem (B.T. 2021)
Let Ω ⊂ C be a bounded connected regular open set whose closure has a connected
complement. There exists an entire function f for which Ω is an escaping (oscillating)
wandering domain and the iterates f n|Ω are univalent.

Recall that an open set U is called regular if and only if U = Int(U) and notice that the
conditions of the theorem imply that Ω is simply connected.

Corollary
Every simply connected Jordan domain is a wandering domain of some entire function.
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Necessity of conditions

The condition that Ω is a regular open set is not only sufficient but also necessary.

Ω wandering domain ⇒ Ff is disconnected.
f is continuous and open map ⇒ f n(Int(Ω)) ⊂ Int(f n(Ω)) ⊂ Int(Un) for all n ≥ 0.
Here Un is a Fatou component.
If Ω is not regular ⇒ Int(Ω) ∩ Jf 6= ∅ ⇒ ∪∞n=0f n(int(Ω)) covers the whole plane
with at most one exception.
This is now a contradiction since

∞⋃
n=0

f n(int(Ω)) ⊂
⋃

U Fat.Comp.

int(U) ( C\{point}.

If Ω is regular then ∂Ω = ∂(C\Ω) hence there exists a sequence of points (xn) ⊂ C\Ω
that accumulates everywhere on ∂Ω.



Necessity of conditions

The condition that Ω is a regular open set is not only sufficient but also necessary.

Ω wandering domain ⇒ Ff is disconnected.
f is continuous and open map ⇒ f n(Int(Ω)) ⊂ Int(f n(Ω)) ⊂ Int(Un) for all n ≥ 0.
Here Un is a Fatou component.
If Ω is not regular ⇒ Int(Ω) ∩ Jf 6= ∅ ⇒ ∪∞n=0f n(int(Ω)) covers the whole plane
with at most one exception.
This is now a contradiction since

∞⋃
n=0

f n(int(Ω)) ⊂
⋃

U Fat.Comp.

int(U) ( C\{point}.

If Ω is regular then ∂Ω = ∂(C\Ω) hence there exists a sequence of points (xn) ⊂ C\Ω
that accumulates everywhere on ∂Ω.



Necessity of conditions

The condition that Ω is a regular open set is not only sufficient but also necessary.

Ω wandering domain ⇒ Ff is disconnected.
f is continuous and open map ⇒ f n(Int(Ω)) ⊂ Int(f n(Ω)) ⊂ Int(Un) for all n ≥ 0.
Here Un is a Fatou component.
If Ω is not regular ⇒ Int(Ω) ∩ Jf 6= ∅ ⇒ ∪∞n=0f n(int(Ω)) covers the whole plane
with at most one exception.
This is now a contradiction since

∞⋃
n=0

f n(int(Ω)) ⊂
⋃

U Fat.Comp.

int(U) ( C\{point}.

If Ω is regular then ∂Ω = ∂(C\Ω) hence there exists a sequence of points (xn) ⊂ C\Ω
that accumulates everywhere on ∂Ω.



Necessity of conditions

The condition that Ω is a regular open set is not only sufficient but also necessary.

Ω wandering domain ⇒ Ff is disconnected.
f is continuous and open map ⇒ f n(Int(Ω)) ⊂ Int(f n(Ω)) ⊂ Int(Un) for all n ≥ 0.
Here Un is a Fatou component.
If Ω is not regular ⇒ Int(Ω) ∩ Jf 6= ∅ ⇒ ∪∞n=0f n(int(Ω)) covers the whole plane
with at most one exception.
This is now a contradiction since

∞⋃
n=0

f n(int(Ω)) ⊂
⋃

U Fat.Comp.

int(U) ( C\{point}.

If Ω is regular then ∂Ω = ∂(C\Ω) hence there exists a sequence of points (xn) ⊂ C\Ω
that accumulates everywhere on ∂Ω.



Necessity of conditions

The condition that Ω is a regular open set is not only sufficient but also necessary.

Ω wandering domain ⇒ Ff is disconnected.
f is continuous and open map ⇒ f n(Int(Ω)) ⊂ Int(f n(Ω)) ⊂ Int(Un) for all n ≥ 0.
Here Un is a Fatou component.
If Ω is not regular ⇒ Int(Ω) ∩ Jf 6= ∅ ⇒ ∪∞n=0f n(int(Ω)) covers the whole plane
with at most one exception.
This is now a contradiction since

∞⋃
n=0

f n(int(Ω)) ⊂
⋃

U Fat.Comp.

int(U) ( C\{point}.

If Ω is regular then ∂Ω = ∂(C\Ω) hence there exists a sequence of points (xn) ⊂ C\Ω
that accumulates everywhere on ∂Ω.



Necessity of conditions

The condition that Ω is a regular open set is not only sufficient but also necessary.

Ω wandering domain ⇒ Ff is disconnected.
f is continuous and open map ⇒ f n(Int(Ω)) ⊂ Int(f n(Ω)) ⊂ Int(Un) for all n ≥ 0.
Here Un is a Fatou component.
If Ω is not regular ⇒ Int(Ω) ∩ Jf 6= ∅ ⇒ ∪∞n=0f n(int(Ω)) covers the whole plane
with at most one exception.
This is now a contradiction since

∞⋃
n=0

f n(int(Ω)) ⊂
⋃

U Fat.Comp.

int(U) ( C\{point}.

If Ω is regular then ∂Ω = ∂(C\Ω) hence there exists a sequence of points (xn) ⊂ C\Ω
that accumulates everywhere on ∂Ω.



Necessity of conditions

The other two conditions in our theorem, namely that Ω is bounded and that C\Ω is
connected, are needed for the application of the following stronger version of the
well-known Runge’s Approximation Theorem.

Theorem
Let K1, . . . ,Kn ⊂ C be pairwise disjoint compact sets whose complements C\Kj are
connected. Let Lk ⊂ Kk be a finite set of points and hk : Kk → C a holomorphic map for
every 1 ≤ k ≤ n. For every ε > 0 there exists an entire function f satisfying:

‖hk − f ‖Kk < ε

f (x) = hk (x) for all x ∈ Lk

f ′(x) = h′k (x) for all x ∈ Lk

for every 1 ≤ k ≤ n.

This theorem is a combination of several results due to Benhke-Stein 49’, Florack 48’,
Royden 67’. A very similar approximation result was presented by Eremenko-Lyubich 87’
(Main Lemma).
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Necessity of conditions

We do not know whether the condition of C\Ω being connected is also a necessary
condition:

Question
Is the complement of the closure of a bounded simply connected Fatou component
always connected?

If the answer is positive, then our result describes all possible geometries of bounded
simply connected wandering domains.
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Proof

Let R > 0 and let (mn) be a strictly increasing sequence of integers such that disks
∆(mn,R) are pairwise disjoint and disjoint from Ω.
Let (xn) ∈ C\Ω be a sequence of points which accumulates everywhere on ∂Ω.

The idea is to inductively construct a sequence of entire functions (fn) that converges
uniformly on compacts to the entire function f with the following properties:

1 f n(Ω) ⊂ ∆(mn,R), for all n ≥ 1,
2 f (ζ) = ζ ∈ C\Ω and f ′(ζ) = 1

2
3 f n(xn) = ζ as for all n ≥ 1,
4 f n|Ω is univalent for all n ≥ 1

(1) implies that Ω is contained in the Fatou set and its orbit leaves every compact.
(2) and (3) imply that the pre-images of an attracting fixed point accumulate everywhere
on ∂Ω, hence Ω is a Fatou component.
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How to obtain the sequence (fn) for the unit disk

We define xn := 2n+1
2n e i

√
2n and Un := ∆(0, 2n+2

2n+1 ).
Un+1 ⊂ int(Un) ⊂ ∆(0, 2) for all n ≥ 0,
∆(0, 1) =

⋂
n≥0 Un.

xn ∈ int(Un−1)\Un for all n ≥ 1,
(xn) accumulates everywhere on ∂Ω.



Let K1 = U1, K2 = {x1}, K3 = {3} and h1(z) = z + 8, h2(z) = 3, h3(z) = 1
2 (z − 3) + 3.

By the approximation theorem for every ε1 > 0 there is an entire function f1, such that
‖f1 − hj‖Kj < ε1 for j = 1, 2, 3
f1(x1) = 3
f1(3) = 3 and f ′1 (3) = 1

2 .



Let K1 = f1(U2), K2 = {x1
2 }, K3 = ∆(0, 4) and h1(z) = z + 8, h2(z) = 3, h3(z) = f1(z).

Given ε2 > 0 there is an entire function f2, such that
‖f2 − hj‖Kj < ε2 for j = 1, 2, 3
f2(x1) = f1(x1)
f2(x2) = f1(x2) =: x1

2

f2(3) = f1(3) and f ′2 (3) = f ′1 (3).
f2(x1

2 ) = 3



Let K1 = f 2
2 (U3), K2 = {x2

3 }, K3 = ∆(0, 12) and h1(z) = z + 8, h2(z) = 3, h3(z) = f2(z).

Given ε3 > 0 there is an entire function f3, such that
‖f3 − hj‖Kj < ε3 for j = 1, 2, 3
f3(x1) = f2(x1)
f j
3 (x2) = f j

2 (x2) for j = 1, 2
f j
3 (x3) = f j

2 (x3) =: x j
3 for j = 1, 2

f3(3) = f2(3) and f ′3 (3) = f ′2 (3).
f3(x2

3 ) = 3



Oscillating



Automorphisms of Cm≥2

The polynomially-convex hull of a compact set K ⊂ Cm is defined as

K̂ = {z ∈ Cm : |p(z)| ≤ supK |p| for all holomorphic polynomials p}

We say that K is polynomially convex if K̂ = K .

A compact set K ⊂ C is polynomially convex if and only if C\K is connected.

Theorem (B.T. 2020)
Let Ω ⊂ Cm≥2 be a bounded regular open set whose closure is polynomially convex.
There exists an automorphism of Cm with an escaping (oscillating) wandering domain
equal to Ω.
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Examples of such domains

Any bounded convex domain in Cn.
Topologically non-trivial examples: It is known that any totally real compact
manifold M ⊂ Cn of dimension k < n can be smoothly perturbed so that its
perturbation M′ is totally real compact manifold which is polynomially convex, in
particular M′ has the same topology as M. By taking an appropriate tubular
neighbourhood of M′ we obtain an open set with desired properties.

This shows that there is rich variety of wandering domains which are topologically
non-equivalent.



About the proof

The idea of the proof is essentially the same, but its complexity increases due to the
restrictive nature of automorphisms.
Trouble: Uniformly convergent sequence of automorphisms may not converge to an
automorphism (surjectivity can be lost, e.g Fatou-Bieberbach domains).
The key ingredient: Approximation result of the Andersén–Lempert theory

Theorem
Let K1,K2, . . . ,Kn be pairwise disjoint compact sets in Cm such that all but one are
starshape. Let Fj ∈ Aut(Cm) (j = 1, . . . , n) be such that the images K ′j = Fj (Kj ) are
pairwise disjoint.
If the sets A = ∪n

j=1Kj and B = ∪n
j=1K ′j are polynomially convex, then for every ε > 0

there exists G ∈ Aut(Cm) such that ‖G − Fj‖Kj < ε for all j = 1, . . . ,m.
In particular the automorphism G can be chosen so that its finite order jets agree with
the corresponding jets of Fj at any given finite set of points in Kj , for 1 ≤ j ≤ m.
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