Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion
000	00000000	0000000	00000	00

Comparison of Newton and Ehrlich-Aberth rootfinding dynamical systems: practice and theory

Sergey Shemyakov

Topics in complex dynamics, virtual Barcelona

April 20, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion
000				

Introduction

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Introduction ○●○	Setup 00000000	The experiments	Theoretical viewpoint	Conclusion 00
Dynamica	l rootfindo			

- Finding polynomial roots by dynamical systems A case study, DCDS, 2020, Shemyakov et al.
- Natural emergence of iterative dynamical systems in rootfinders.
- We focus on Newton's method and Ehrlich-Aberth's method.
- The rootfinding goal: to find all roots of a polynomial.
- Newton: complex 1-dimensional

$$N_p(z) = z - \frac{p}{p'}(z).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Ehrlich-Aberth: *d*-dimensional, updates in each coordinate depend on all other coordinates.

Introduction ○○●	Setup 00000000	The experiments	Theoretical viewpoint	Conclusion
Theory a	nd practice			

- Theoretical results for Newton's: [Hubbard, Schleicher, Sutherland, 2001] and others. Not so many practical results.
- Theoretical results for Ehrlich-Aberth: local theory, recent ideas about general convergence [Reinke, 2020]. It's a non-trivial multi-dimensional dynamical system.
- Goal of the talk: experiments to compare the performance of Newton and Ehrlich-Aberth, try to explain results from practical and theoretical viewpoint.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion
	0000000			

Setup

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction 000	Setup ○●000000	The experiments	Theoretical viewpoint	Conclusion 00
Newton				
Newton's	s method: tl	heory		

• Newton update function:

$$N_p(z)=z-\frac{p}{p'}(z).$$

- Electrostatic interpretation: positive charges at the roots, negative charge at the iterate.
- Local behavior: quadratic convergence at simple roots (linear for higher order roots).
- The real challenge to find all roots: starting points.
- Attracting cycles.

Introduction 000	Setup 00●00000	The experiments 0000000	Theoretical viewpoint	Conclusion
Newton				

Global dynamics and attracting cycles

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Introduction 000	Setup ○00●0000	The experiments	Theoretical viewpoint	Conclusion	
Newton					
Global dynamics for Newton					

- Infinity is a repelling point, zeros of p are (super-)attracting points.
- Poles at critical points of *p*.
- Basins of attraction and immideate basins. Fatou and Julia sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Channels to infinity.

Introduction 000	Setup ○000●000	The experiments 0000000	Theoretical viewpoint	Conclusion
Newton				
NI . 1				

Newton's method: practice

- Channels help us to choose good starting points.
- Practical problem: we iterate too many points without interesting outcome.
- Idea: iterated refinement. Start with few points and add new orbits when something interesting happens.
- With this idea Robin Stoll efficently computed roots of polynomial of degree up to 1 million, Marvin Randig up to 1 billion (2017).

Introduction	Setup	The experiments	Theoretical viewpoint	Conclus
000	○0000●00	0000000		00
Newton				

Starting points: how to hit all channels

ロト (日) (王) (王) (王) (のへの

Introduction 000	Setup ○00000●○	The experiments	Theoretical viewpoint	Conclusion 00
Newton				
Iterated refinement				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ehrlich-Aberth's method: theory

• Ehrlich-Aberth update function:

$$EA^{(i)}(\bar{z}) = z^{(i)} - \frac{\frac{p}{p'}(z^{(i)})}{1 - \frac{p}{p'}(z^{(i)}) \sum_{j \neq i} \frac{1}{z^{(i)} - z^{(j)}}}$$

- Electrostatic interpretation: positive charges at the roots, negative at iterates, iterates see each other.
- Local convergence: superlinear for simple zeros and linear for multiple zeros.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Attracting cycles for Ehrlich-Aberth?

Introduction 000	Setup 00000000	The experiments	Theoretical viewpoint	Conclusion

The experiments

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion
000	00000000	○●00000		00
Experimen	tal setup			

- Polynomials considered: iterated quadratic (with roots on Julia set for $z^2 + i$), Chebyshev and Legendre (with real roots), with geometrical root configuration: on a circle, semicircle, on a perturbed circle, in a disk, on a grid, in clusters, on a segment.
- Fast and slow evaluation of polynomials, set of variable parameters. Evaluated total number of operations performed.
- Compare the total number of operations for Newton (iterated refinement) and Ehrlich-Aberth.

Results for iterated quadratic

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Iterated quadratic polynomials, c = i

Introduction 000	Setup 0000000	The experiments ○00●000	Theoretical viewpoint	Conclusion
Results fo	r roots on	the circle		

Random roots on the unit circle

Introduction 000	Setup 00000000	The experiments ○000●00	Theoretical viewpoint	Conclusion
Results fo	or roots in t			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion
000	00000000	○00000●		00
Practical	observation	ς		

- Logarithmic evaluation: Newton wins.
- Conjecture is that Newton works better if roots are well-exposed to the infinity. Otherwise Ehrlich-Aberth seems to be more efficient.
- Newton searches roots from the outside, iterations move slower when inside the convex hull of roots.
- Ehrlich-Aberth searches all the roots simultaniously, there are less orbits but they require more time to compute.

Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion
000	00000000	0000000	●○○○○	00

Theoretical viewpoint

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion
000	0000000	0000000	○●000	00

Immideate basisn and channels

00 000000 000000 00000 00	ntroduction	Setup	The experiments	Theoretical viewpoint	Conclusion
				00000	

Channels and efficiency for Newton

Definition (Width of a channel)

Let W be a channel, far enough from the origin we factorize W by the dynamics. We get a Riemann surface homeomorphic to an annulus, the modulus of this annulus is the width of W.

Proposition (Estimate for width from below)

Each root α has a channel with width at least $\pi/\log m$, where m is the number of critical points of N_p in the immediate basin of α .

• Wider channels are easier to hit with starting points.

Introduction 000	Setup 00000000	The experiments 0000000	Theoretical viewpoint	Conclusion

The case of real roots

Proposition (Critical points control channels)

If some immediate basin has m critical points of N_p , then it has m different channels.

Proposition (Channels for real roots)

Let p be a polynomial with simple real roots. Then each root has a channel with width at least $\pi/\log 3$.

- Observe that N_p has 2d 2 critical points.
- Each root except the smallest and the largest has at least two channels due to symmetry.
- There are only two channels left to the smalles and the largest roots.
- Every root has a channel with width at least $\pi/\log 3$.

Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion
			00000	

Conjecture for the outer roots

Conjecture

Let α be a root of p such that it lies on the boundary of convex hull of roots. Then α has a channel with width at least $\pi/\log 3$ (a main channel).

- Compare with the Proposition for real roots.
- Theoretical explanation for why Newton finds ∞ -exposed roots better.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Improves theoretical estimates by log d.

Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion
000	00000000	0000000		●○

Conclusion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Introduction 000	Setup 00000000	The experiments	Theoretical viewpoint	Conclusion ○●

- Two viewpoints on why Newton is especially efficient in finding ∞ -exposed roots.
- Good example how theory and practice interplay and support each other.
- More experiments are needed. Several potential optimization can be implemented.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Setup	The experiments	Theoretical viewpoint	Conclusion

Thanks for the attention!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @