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holomorphic dynamics

Let f : C → C be an entire map.

f n ..= f◦ n· · · ◦f

I Fatou set: set of stability. F(f).

small perturbations small perturbations.

I Julia set: locus of chaotic behaviour. J(f) = C \ F(f).

I escaping set: points that escape to infinity under iteration:

I(f) = {z ∈ C : f n(z) → ∞}.

In particular,
J(f) = ∂I(f) .
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curves in the escaping set

I Fatou observed in 1926 that the escaping sets of certain functions
in the sine family contain arcs to infinity.

I In the eighties, Devaney, with several co-authors, found many
such curves for maps in the exponential family fλ(z) = λez.

I These curves are known as (Devaney) hairs or dynamic rays.
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cantor bouquet julia sets

Definition
J(f) is a Cantor bouquet if
I Every conn. comp. of J(f) is an arc to infinity, called hair;
I J(f) is topologically straight, i.e., there is a homeo. φ : C → C such
that the image of every hair is a straight horizontal line.

Theorem (Aarts–Oversteegen, ’93)

The Julia set of any λ sin(z) with λ ∈ (0, 1) and µ exp(z) with
µ ∈ (1, 1/e) is a Cantor bouquet.
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criniferous functions

Definition (Benini-Rempe ’20)

An entire function f is criniferous if for every z ∈ I(f) and for all
sufficiently large n, there is an arc γn connecting fn(z) to∞, such that
I f maps γn injectively onto γn+1;
I minz∈γn |z| → ∞ as n→ ∞.

Remark: If f is criniferous, then every z ∈ I(f) can be connected to
infinity by a curve of escaping points.
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singular values

The set of singular values S(f) is the smallest closed subset of C
such that f : C \ f−1(S(f)) → C \ S(f) is a covering map.

S(f) = { asymptotic and critical values of f }.

⋆ Eremenko-Lyubich class:

B ..=
{
f : C → C transcendental entire : S(f) is bounded

}
.

Remark: If f ∈ B, then I(f) ⊂ J(f).
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criniferous functions

Examples of criniferous functions:

- Exponential family, [Schleicher-Zimmer ’03],

fλ(z) = λez.

- Cosine family, [Rottenfußer-Schleicher ’08],

fa,b(z) = aez + be−z.

- Functions of finite order in class B.
[Barański ’07], [Ruckert-Rottenfußer-Rempe-Schleicher ’11].

* f has finite order of growth if log log |f(z)| = O(log |z|).

- BRRRS: functions in B that satisfy a uniform head-start condition.
[RRRS]. UHSC
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non-criniferous functions

However, not all functions in B are criniferous:

I There is f ∈ B such that J(f), and hence I(f), contains no arc [RRRS].

I Different arc-like continua in J(f) ∪ {∞} [Rempe ’16].

I Alternative to rays: dreadlocks [Benini-Rempe ’20].
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disjoint type maps

Definition
An entire function f is of disjoint type if f ∈ B and every point in S(f)
tends to an attracting fixed point of f under iteration.

Proposition
If f ∈ B, then λf is of disjoint type for |λ| sufficiently small.

⋆ λf is in the parameter space of f.
⋆ The dynamics of λf and f are related near infinity by some
analogue of Böttcher’s Theorem. [Rempe ’09] Conjugacy
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cantor bouquet julia sets

⋆ Aarts and Oversteegen’s result generalizes to some disjoint type
functions:

Theorem (Barański-Jarque-Rempe ’12)

If f ∈ B is of finite order and of disjoint type, then J(f) is a Cantor
bouquet.
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criniferous vs cantor bouquet

We want to understand the relation between criniferousness and
Cantor bouquets Julia sets...

⋆ If f is disjoint type, then

J(f) Cantor Bouquet =⇒ f criniferous.

Question: f criniferous =⇒ J(f) Cantor Bouquet?

Theorem A (P.- Rempe)

There is f ∈ B criniferous and of disjoint type such that J(f) is not a
Cantor bouquet.
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characterization of cantor bouquets

Theorem
A set X ⊂ C is a Cantor Bouquet if and only if the following
conditions are satisfied:
1. X is closed.
2. Every connected component of X is an arc connecting a finite
endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs [yn,∞)

converge to [y,∞) in the Hausdorff metric.
4. The endpoints of X are dense in X.
5. If x ∈ X is accessible from C \ X, then x is an endpoint of X.
(Equivalently, every hair of X is accumulated on by other hairs
from both sides.)
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criniferous functions

If f is a disjoint type and criniferous, then

1. J(f) is closed.
2. Every connected component of J(f) is an arc connecting a finite
endpoint to infinity.

3. For any sequence yn → y, the arcs [yn,∞) converge to [y,∞) in
the Hausdorff metric. ??

4. The endpoints of J(f) are dense in J(f).
5. Every hair of J(f) is accumulated on by other hairs from both
sides.
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proof of theorem a

-We construct f ∈ B with “hooked hairs”.

13



absorbing cantor bouquets

Definition
We say that a subset A ⊂ J(f) is absorbing if it is forward-invariant,
every escaping point eventually enters A; i.e.

I(f) ⊂
∞∪
n=0

f−n(A),

and if γ ⊂ A is an arc to infinity, so is f(γ).

Theorem B (P.-Rempe)

Let f ∈ B be of disjoint type. The following are equivalent.
(a) J(f) is a Cantor bouquet.
(b) There is R > 0 and a Cantor bouquet X ⊂ J(f) such that

X ⊃ JR(f) ..= {z ∈ J(f) : |f n(z)| ≥ R for all n ≥ 1}.

(c) There is an absorbing Cantor bouquet X ⊂ J(f).
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the class cb

Definition
We say that f ∈ B belongs to the class CB if J(λf) is a Cantor bouquet
for |λ| sufficiently small.

Remark: BRRRS ⊂ CB.

Theorem C (P. ’19)

All functions in CB are criniferous.

Theorem D (P.-Rempe)

Let f ∈ B. Then f ∈ CB if and only if J(f) contains an absorbing Cantor
bouquet. Moreover, BRRRS ( CB.
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conjugacy near infinity

JR(f) ..= {z ∈ J(f) : |fn(z)| ≥ R for all n ≥ 1}.

Theorem (Rempe ’09)

Let f ∈ B and let g ..= λf be of disjoint type. Then there exist a
constant R > 0 and a continuous map ϑ : JR(g) → J(f) such that

ϑ ◦ g = f ◦ ϑ

and is a homeomorphism onto its image. Moreover,

Je2R(f) ⊂ ϑ(JR(g)).

Remark: The map ϑ extends to a quasiconformal map ϑ : C → C.
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conjugacy near infinity

Disjoint type

*Pictures by Rempe.
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uniform head start condition

Definition (Uniform head-start condition)

Let f ∈ B. We say that f satisfies a uniform head-start condition (with
respect to |z|) on its Julia set if there is an upper semicontinuous
function φ : [0,∞) → [0,∞) with the following properties for all
points z and w belonging to the same component of J(f).
(i) If |w| > φ(|z|), then |f(w)| > φ(|f(z)|).
(ii) If z ̸= w, then there is n ≥ 0 such that either |fn(w)| > φ(|fn(z)|) or

|fn(z)| > φ(|fn(w)|).
Note that the conditions imply, in particular, that φ(t) > t for all t.

Criniferous
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