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2 The fundamental theorem for algebra

Theorem 1 (Gauss)
Every (univariate) degree d polynomial over C has exactly d
roots, counting multiplicity.

Theorem 2 (Ruffini–Abel)
For degree d ≥ 5, there is no general formula by finitely many
radicals to find all roots of every degree d polynomial.

Conclusion: the d roots have to be found by iterative
methods.

Theorem 3 (Curt McMullen; PhD thesis)
For degrees d > 3 there is no holomorphic root finding method
iterating on C that is generally convergent (i.e. converges to
roots on an open dense subset of C for all polynomials).
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3 Several root-finding methods

Numerical analysis has numerous algorithms to find the roots:

1 Newton’s method — finds one root at a time (when it does),
well understood as a one-dimensional dynamical system

2 Weierstrass method (Durand–Kerner) — finds all d roots
simultaneously (when it does), good in practice, seems to
converge fast in most cases, but no theory

3 Ehrlich–Aberth-method — similar to Weierstrass’ method,
but apparently faster

4 Eigenvalue methods — seem to work well for moderate
degrees

5 Victor Pan’s algorithm: almost best possible theoretical
complexity, but unusable in practice — many further
methods

Our focus today: the first three methods (blue); iteration of
complex analytic mappings. — Dynamical systems in heavy
practical use — but very hard to understand
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4 Overview

The root-finding methods by Newton, Weierstrass,
Ehrlich–Aberth
Motto: what is the difference between theory and practice?
Local properties, global questions
do they always converge? almost?
positive practical evidence — BUT failure of global
convergence;
I. New theorem: Weierstrass is not generally convergent; has
orbits that are always defined and converge, but not to roots
II. (not so) new results: Newton’s method has good theory and
works well in practice
III. Newton as a dynamical system: pioneering method for
understanding dynamics of rational maps
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5 The Newton Method

Given differentiable f : R→ R, or f : C→ C, the Newton map is

z 7→ Nf (z) = z − f (z)/f ′(z)

Idea: the best-approximating linear map to f at z is
w 7→ (z − w)f ′(z) + f (z), its zero is at z − f (z)/f ′(z).
This is good approximation when w is close to z; otherwise,
iterate . . . and hope!

This finds one zero at a time; how can we go for all roots?
Starting any d orbits might find the same root many times. . .
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6 Derivation of Weierstrass and Ehrlich–Aberth

Let Pd be the space of monic polynomials of degree d. Given
p(z) =

∏
i(z − αi) ∈ Pd and (z1, . . . , zd ) ∈ Cd , consider

qi(z) =
p(z)∏

j 6=i(z − zj)
∈ C(z)

Heuristic interpretation: if p(z) =
∏

i(z − αi) and zj ≈ αj , then
qi(z) ≈ z − αi .
(Each coordinate thinks that the others must be correct)

Weierstrass:

zi 7→ zi − qi(zi)

solves qi as linear polynomial

Ehrlich–Aberth:

zi 7→ zi −
qi(zi)

q′i (zi)

Newton step for qi

Update all d components in parallel: dynamics in Cd
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7 Relations of Weierstrass to Newton

How to find all d roots of a degree d polynomial p at once?
Given polynomial
p(z) = zd + ad−1zd−1 + · · ·+ a1z + a0 =

∏
i(z − αi)

From a root vector (α1, . . . , αd ), the coefficient vector
(a1, . . . ,ad ) is determined through elementary symmetric
functions.
Need to compute the inverse (a1, . . . ,ad ) 7→ (α1, . . . , αd ).
We have to solve d equations in d variables. Can use Newton’s
method in d variables and iterate. This iteration equals the
Weierstrass method.
Consequence: invariant hyperplane in which the sum of all
components is constant, Weierstrass projects to this
hyperplane, hence iteration in Cd−1.
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8 Relations of Ehrlich–Aberth to Newton

Write Newton in one variable, using roots αi

z 7→ z − p(z)/p′(z) = z −

(∑
i

1
z − αi

)−1

(roots not known ahead of time, but expression helpful anyway).
Electrostatic interpretation: have test charges at positions of
the roots αi ; the Newton displacement Np(z)− z is (the inverse
of) the electrostatic field at z.
For d orbits in parallel with approximation vector (z1, . . . , zd ),
produce next generation approximation vector
(z ′1, . . . , z

′
d ) = EA(z1, . . . , zd ) via improved Newton step:

zk 7→ zk − qk (zk )/q′k (zk ) = zk −

∑
i

1
zk − αi

−
∑
i 6=k

1
zk − zi

−1

Attracting charges at roots, repelling charges at other
approximations!
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9 Local Properties, Global Problems

For all three methods, points z ∈ C (for Newton) or vectors
(z1, . . . , zd ) ∈ Cd (for the others) are fixed if and only if one root,
resp. all roots, are found.
All these fixed points are attracting: there is a neighborhood in
C resp. Cd so that all these points converge to the root(s).
The convergence is always very fast: quadratic (number of valid
digits doubles in each step); Ehrlich–Aberth is even cubic.
Global properties difficult: where does one have to start? how
many iterations required (what is the complexity)?
Known problems:
a) symmetry; for real polynomials with non-real roots, real
starting vectors, convergence must fail
b) basin boundaries: different root (vectors) have disjoint open
basins, =⇒ ∃ basin boundaries; may have positive measure!
c) orbits may jump to∞ (Newton) or fail to be defined (points of
indeterminacy) (Weierstrass / E–A)
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10 Empirical evidence: Newton

Newton: for as simple polynomials as z 7→ z3 − 2z + 2, there
are attracting orbits: open sets in C that converge to periodic
cycles but not roots. Newton’s method is not generally
convergent!
Difficult to correlate the orbits of d starting points, hoping to find
d different roots (deflation is usually not an option!). [But theory
available; see below].
Attracting cycles are a problem, but polynomials with degrees
in the millions and billions have been factorized successfully!
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11 Empirical evidence: Weierstrass and Ehrlich–Abert

Weierstrass / Ehrlich–Aberth: are “known to converge in all
cases, except the obvious cases with symmetry”; have passed
the test of time over decades in uncounted experiments.
Successful in standard implementations such as MPSolve,
degrees up to millions.
Recent (heuristic) improvement by Dario Bini (Pisa) to MPSolve
for special (recursive) polynomials: Ehrlich–Aberth successful
in selected cases for degrees up to billions.
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12 What can go wrong? Complex manifolds and
eigenvalues

Main (known) problem are attracting cycles: periodic orbits for
which a neighborhood converges to these, rather than to roots.
Lemma: If f : Ck → Ck differentiable with f (w) = w and Df |w
has all eigenvalues in D, then w is attracting.
For us, k = 1 for Newton and k = d for Weierstrass / Ehrlich–Aberth.

If f is Newton, Weierstrass, E-A, then this is what happens at
root. But if it is an iterate, we obtain an attracting cycle. This
situation is stable under perturbations:
attracting cycles spoil general convergence.
If k > 1 and only m < k eigenvalues are in D, then there is an
invariant m-dimensional complex manifold (the stable manifold)
on which orbits converge to the cycle (tangent to the
appropriate eigenvectors). Semi-attracting cycles!
But does this happen?
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13 Parameter space and dimension count

Space of monic complex polynomials of degree d is Cd (parametrized
e.g. by coefficients).
All three methods respect affine coordinate changes: these lead to
conjugate dynamics with same (semi-)attracting dynamics. Hence
space of non-equivalent polynomials (parameter space) is complex
d − 2-dimensional.
Easiest case: cubic polynomials, up to conjugation can suppose roots
are at 0, 1, λ ∈ C: parameter space is C for all three methods.
Fundamental case!
Equivalently, parametrize as p(z) = z3 + λz + 1 or in other ways.
Every periodic point satisfies an algebraic equation in λ, so all
eigenvalues are algebraic functions. Can they all be in D?
=⇒ real algebraic question!

Dimension count: for cubic Newton: one parameter, one eigenvalue:
=⇒ there must (generically) be attracting cycles of all periods!
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14 Cubic Newton parameter space

Theorem [Douady–Hubbard, 1980’s]
The set of parameters λ so that the Newton method for
p(z) = z(z − 1)(z − λ) has an attracting cycle of period n ≥ 2 is
contained in finitely many homeomorphic copies of the
Mandelbrot set.
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15 Cubic Weierstrass

Cubic Weierstrass: one parameter, three eigenvalues (iteration
in C3): generically, expect semi-attracting cycles.
Reminder: dynamics projects to invariant d − 1-dim.
hyperplane, so one eigenvalue always zero, two eigenvalues
remain.
There is no a priori reason why both eigenvalues can or cannot
be in D. (Separate question for each period.)
Conjecture (Steven Smale): in some cases, there should be
attracting cycles
Common wisdom (numerical analysis community): attracting
cycles would have been found experimentally (decades ago!) if
they existed.
Since both eigenvalues are algebraic functions on the same
surface, they must satisfy an algebraic (polynomial) relation.
So question moves from numerical analysis via dynamical
systems to algebra; computer algebra brings new tools !
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16 Dynamical results about Weierstrass method

Theorem A (Reinke–S.–Stoll 2020)
There is an open set of polynomials p of every degree d ≥ 3
such that the (partially defined) Weierstrass iteration
Wp : Cd → Cd associated to p has attracting cycles of period 4.
Period 4 is minimal with this property.

⇒Weierstrass’s method is not generally convergent!
Existence of attracting cycles was already conjectured by
Smale, has never been observed in practice.
Additional result by Bernhard: Weierstrass (and
Ehrlich–Aberth) have orbits that are defined forever that
converge, but not to a root but to∞ (or elsewhere).
This work brings together dynamical systems, numerical
analysis, algebra, and computer algebra.
=⇒ See talk of Bernhard Reinke this Thursday, 17:00,
The Weierstrass root finder is not generally convergent
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17 Is Ehrlich–Aberth generally convergent?

In principle, the question can be asked. Similar methods can be
used for Ehrlich–Aberth. Three additional difficulties:
? The Ehrlich–Aberth-map is more complicated than
Weierstrass;
? Ehrlich–Aberth does not project to a hyperplane, so have one
more non-trivial eigenvalue to consider;
? Ehrlich–Abert not only invariant under affine maps, but even
under all Möbius maps.
This seems like a good property, however:
Up to equivalence, there are only three different cubic
Ehrlich–Aberth-cases: all roots distinct, or one double/one
simple root, or one triple root. Cubic parameter space trivial, so
interesting case is degree 4 with one complex degree of
freedom: even more complicated.
Seems out of reach of current computer algebra systems :-(
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18 Towards Global Results

All these are local results: periodic points and their eigenvalues.
But what are the global properties of the dynamics?
In particular: where do we need to start the iteration to find the
roots?
No global theory for Weierstrass and Ehrlich–Aberth: they
seem to work and nobody knows why.
Experience suggests to start with d equidistributed points on
large circle.
However, for Newton there is meanwhile quite a bit of global
theory.
My “mathematical home”: dynamical systems. Interesting
interaction with root finding experts (Dario Bini, Victor Pan)

Dierk Schleicher Root Finding: Complex Analysis, Dynamics, Computer Algebra



19 Good Starting Points for Newton’s Method

Definition. The immediate basin of a
root α is the connected component of
the basin containing α.
Theorem. Every immediate basin is
simply connected and unbounded, ex-
tends to ∞ in k ≥ 1 directions “chan-
nels”. (Przytycki, 1980’s)
Let d be the degree of the polynomial.

Theorem 4 (Hubbard, S., Sutherland, 2001)

Every root has at least one channel with “thickness” π/ log d .
Hence 1.1d log2 d starting points suffice to find all roots.
If all roots are real, then 1.3 d starting points suffice.

(First paper with color figures in Inventiones.)

Theorem 5 (Bollobás, Lackmann, S., 2011)

With high probability, O(d(log log d)2) starting points suffice.
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20 Good starting points

Left: the guaranteed starting points for a degree 50 polynomial.
Note the extra attracting cycles (grey).
Right: complex basins help even when all roots are real.
Near-multiple roots are easily distinguished.
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21 Theory on Number of Iterations

Let Sd be the guaranteed set of starting points with
|Sd | ≈ 2d log2 d .

Theorem 6 (Fast convergence; S, 2002–2015)
For every degree d and every ε > 0 there is an Md > 0 so that
for each p ∈ Pd and each root αj of p, at least one starting point
zj ∈ Sd converges to αj under Np, and |N◦mj

p (zj)− αj | < ε with∑
j mj < Md .

We have Md ∈ O(d4 + d log ε) in the worst case, and
Md ∈ O(d2 log4 d + d log | log ε|) in the expected case.

Refinements in Bachelor thesis of T. Bilarev; Math Comp 2016
Roughly speaking, some of the guaranteed starting points
suffice to find all roots in O(d2 log4 d) iterations.
Note. This is essentially best possible for the guaranteed set of
starting points.
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22 Why is this bound best possible? And Wasteful!

All orbits have to start in area
of controlled dynamics, away
from disk containing roots.
On this domain Np(z) ≈ d−1

d z.
To move a factor of r towards
D, each orbit needs ≈ d log r
iterations.
Need at least d orbits for d
roots: complexity ≥ Ω(d2).

Note. Upper and lower bounds coincide up to log-factors.
... but it does work in practice!
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23 Newton’s Method in Practice

Heuristically, 4d equidistribu-
ted starting points on single
circle find “most” roots;
if some remain missing, refine
to 8d ...
In practice, several families of
polynomials of degree one mil-
lion completely factored
(Robin Stoll, high school stu-
dent, on old laptop).

A posteriori guarantee that all proofs found: if |N(z)− z| < ε,
then at least one root α with |z − α| < dε, need to have d
disjoint disks.
Clear refinement strategy while roots are missing: add more
initial orbits.
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24 The Iterated Refinement Method

Natural heuristics: in area
where dynamics “parallel”, use
only few orbits and refine as
dynamics becomes non-linear.
Danger: no longer clear that
all roots are found. If roots
missing, no obvious place for
refining Newton dynamics.

“Experimental” improvements, no complete theory yet.
But successful experiments: again Robin Stoll, now young
university student — and Marvin Randig, another high school
student. Up to degrees 230 > 109 on a student laptop!
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25 Root finding: overview

? root finding is a classical and important problem
? there are various methods that work well in practice (at least
for moderate degrees), but GAP between theory and practice
? Weierstrass and Ehrlich–Aberth: basis of standard software
package, have very good reputation, but little theory
? failure of general converge (Weierstrass) and diverging orbits
(both) are new phenomena in global dynamics
? Newton used to have poor reputation (except locally), but
meanwhile unique good combination of theory and practice
? (but most efficient implementation not yet supported by
theory)
? For a systematic comparison on Newton and Ehrlich–Aberth
as root finders, see talk by Sergey Shemyakov tomorrow 18:00
? many questions on all topics still wide open
=⇒ these root finding methods give rise to most interesting
dynamical systems
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26 Dynamical systems and Newton’s method
The BIGGEST question in (holo-
morphic) dynamics:
Is the Mandelbrot set locally
connected? (Space of iterated
quadratic polynomials

Question with long history: Douady-Hubbard 80’s, Yoccoz 90’s,
Lyubich&coauthors since then: deep results, still not resolved.
Why relevant? Provides topological model for Mandelbrot set;
shows that all quadratic polynomials have combinatorially
distinct dynamics.
Question is far more general: can all holomorphic dynamical
systems be combinatorially distinguished? Rigidity conjecture!
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27 Rigidity in holomorphic dynamics

Rigidity conjecture: Can all holomorphic dynamical systems be
combinatorially distinguished?
Big and fundamental question, very deep results — and still
wide open!
Fundamental principle in holomorphic dynamics: many features
determined by dynamics of critical points (points where the
derivative vanishes). The more critical points, the more
complications!
A rational map of degree d has 2d − 2 critical points. For a
polynomial, half of them are fixed at∞.
=⇒ easiest case: quadratic polynomial, only 1 “active” critical
point! Thus pioneering and deepest results about quadratics
Second easiest case: unicritical polynomials: 1 critical point of
high multiplicity: combinatorics same as for quadratics, analytic
difficulties resolved by Kahn&Lyubich early 2000’s.
Several “active” critical points MUCH HARDER!
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28 Rigidity beyond the unicritical case

Holomorphic dynamics in the 2020’s: move from special cases
with one active critical point to natural generality. Live up to the
promise that “one active critical point” features are universal.
However, with several active critical points, structure is much
more difficult!
Fundamental ingredient: box mappings by Kozlovski–van Strien
(recently rejuvenated jointly with Kostya Drach).
Yields progress for polynomials of higher degrees.
Common wisdom: non-polynomial rational maps yet MUCH
more difficult. Polynomials have very good and useful
coordinates around infinity, not available for rational maps.
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29 Newton’s method as a rational map

For polynomial p of degree d , Newton’s method
Np(z) = z − p(z)/p′(z) is a rational map of degree d (in
general). Of its 2d − 2 critical points, d are fixed at the roots,
the remaining d − 2 are “active”. Parameter space has complex
dimension d − 2.
Classical case: d = 3, one active critical point, parameter
space complex 1-dimensional. Satisfactory work by
Douady-Hubbard, Tan Lei, Pascale Roesch & others: well
understood “modulo embedded Mandelbrot sets”.

Higher dimensional parameter spaces much bigger challenge!
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30 Newton’s method as a rational map

Various Newton dynamical systems on the complex plane and
the Riemann sphere
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31 Newton’s method as a rational map, general degree

Global structure for arbitrary rational maps much more difficult,
no general theory. Assumed to be much more complicated than
polynomials. Even polynomials of degree d ≥ 3 are not rigid in
general (Buff&Henriksen, . . . )
Rational Rigidity Principle: every iterated rational map is rigid
(can be distinguished combinatorially from other rational maps),
except where embedded polynomial dynamics interferes.
However, Newton maps are well behaved dynamical systems:

Theorem 7 (Rigidy of Newton dynamics: Drach–S., 2020)

Every Newton map of every polynomial of every degree is rigid,
except when embedded dynamics of iterated polynomials
interferes.

(See talk by Kostiantyn Drach this Friday morning.)
There is hope to extend these methods: from Newton maps to
“Newton-like” and more...
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32 Conclusion

? Newton maps are dynamical systems, well motivated by root
finding
? are known to be very good for polishing up “approximate
roots”, but globally chaotic, not generally convergent, have bad
reputation
? but are unique as root finders that have good theory and work
well for degrees up to billions
? Weierstrass and Ehrlich–Aberth have very good reputation,
converge “always in practice”
? but have no global theory whatsoever, and (W.) not generally
convergent either
? Moreover, Newton is a pioneering dynamical system: the only
non-polynomial rational maps for which we have satisfactory
theory! “Rational rigidity” works for Newton maps and probably
beyond.
Thank you!
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