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For any transcendental entire function (tef) f : C→ C, denote the
maximum and minimum modulus by

M(r) = M(r , f ) = max
|z|=r

|f (z)| and m(r) = m(r , f ) = min
|z|=r

|f (z)|.

Clearly m(r) ≤ M(r) for all r ≥ 0.

M(r) strictly increases to ∞ as r →∞.

m(r) alternately increases and decreases between values at which
m(r) = 0.

We denote the iterates of M(r) and m(r) by Mn(r) and mn(r).
— So, for example, m2(r) = m(m(r)).

The iterated maximum modulus Mn(r) has played a role in complex
dynamics for some years. For any tef, if r is large enough then we have

Mn(r)→∞ as n→∞.



This talk surveys the role played by the iterated minimum modulus mn(r).

After some introductory comments on escaping sets and spiders’ webs, the
talk has two main parts:

1) Results about entire functions with the property:

there exists r > 0 such that mn(r)→∞ as n→∞. (?)

2) Examples of functions that do, or do not, satisfy this iterated
minimum modulus condition (?).



Escaping sets and spiders’ webs

Definition

The escaping set I (f ) := {z ∈ C : f n(z)→∞ as n→∞}.

Eremenko (1989) showed that

I (f ) ∩ J(f ) 6= ∅, where J(f ) is the Julia set;

J(f ) = ∂I (f );

all components of I (f ) are unbounded.

Eremenko’s conjecture

All components of I (f ) are unbounded.

Rippon and Stallard (2005) showed that I (f ) always has at least one
unbounded component.



Eremenko’s conjecture is known to hold for a wide range of examples:

for many tefs, including the exponential family, I (f ) is a “Cantor
bouquet” of uncountably many unbounded curves;

we will see that for many other families I (f ) has the structure of a
“spider’s web”.

Definition

A set I ⊂ C is a spider’s web if

I is connected; and

there exist bounded, simply connected domains Gn such that

Gn ⊂ Gn+1, ∂Gn ⊂ I , and
⋃

n∈N

Gn = C.

Note: I (f ) a spider’s web =⇒ I (f ) connected
=⇒ Eremenko’s conjecture holds for f .



Part 1: Results when m
n(r)→∞

Our first result concerns tefs for which mn(r)→∞ particularly quickly.

Theorem (Rippon, Stallard)

If f is a tef and there exist r ≥ R > 0 such that

mn(r) ≥ Mn(R)→∞, as n→∞,

then I (f ) is a spider’s web (so is connected) and the Fatou set F (f ) has
no unbounded components.

The hypothesis above is satisfied if any of the following hold:

f has a multiply-connected Fatou component;

f grows not too fast and has “regular growth”;

f grows extremely slowly; for example if ∃k ≥ 2 such that
log logM(r) < log r

logk r
for large r .



A digression on Baker’s conjecture

Baker’s conjecture (1981)

The Fatou set of a tef f has no unbounded components if the order of f is
less than 1

2 , or if f has order 1
2 minimal type.

Recall that the order of f is ρ(f ) := lim sup
r→∞

log logM(r)

log r
and that f is said

to have order 1
2 minimal type if

ρ(f ) =
1

2
and lim

r→∞

logM(r)

r1/2
= 0.

Baker’s conjecture holds for the functions on the previous slide,
i.e. satisfying the condition that ∃r ≥ R with mn(r) ≥ Mn(R)→∞.

However, not all functions of order < 1
2 satisfy this condition. Not

even all functions of order zero!



J.-H. Zheng (2000) proved that for functions of order ≤ 1
2 min type, all

(pre)periodic components of the Fatou set are bounded. So the remaining
case for Baker’s conjecture is to rule out unbounded wandering Fatou
components.

We have a partial result for real entire functions.
Here ‘real’ means that f (x) ∈ R when x ∈ R, or equivalently f (z) = f (z).

Theorem (N., Rippon, Stallard)

Let f be a real tef of order less than 1 with only real zeroes.
Then f has no orbits of unbounded wandering Fatou components.

Using Wiman’s result that the minimum modulus m(r) is unbounded for
functions of order ≤ 1

2 min type, we get:

Corollary

Baker’s conjecture holds for real tefs with only real zeroes.



Next we move on from the strong condition mn(r) ≥ Mn(R) to the much
weaker condition that

there exists r > 0 such that mn(r)→∞ as n→∞. (?)

Theorem (Osborne, Rippon, Stallard)

Let f be a tef. If (?) holds, then the set of points with unbounded orbit

{z ∈ C : (f n(z))n∈N is unbounded}

is connected.

Theorem (N., Rippon, Stallard)

Let f be a real tef of finite order with only real zeros. If (?) holds, then
the escaping set I (f ) is a spider’s web (so I (f ) is connected).



Sketch of proof

Let f be real tef, ρ(f ) <∞, with only real zeroes. Assume mn(r)→∞
for some r . We can show that ρ(f ) ≤ 2 (more on this later).

Suppose I (f ) is not a spider’s web.

Find a long curve γ0 that is disjoint from I (f ). [Actually some subset]

Find sequence γn+1 ⊂ f (γn) such that either:

(I) the γn experience repeated
radial stretching, escaping to ∞
(so γ0 meets I (f ) — contradiction);

OR

(II) eventually some γn winds round 0.
But then γn meets an unbounded
component of I (f ),
again a contradiction.



Part 2: For which functions is there r with m
n(r)→∞?

It is often useful to consider the increasing quantity

m̃(r) := max
0≤s≤r

m(s).

This leads to equivalent ways to state the mn(r)→∞ condition:

Lemma (Osborne, Rippon, Stallard)

Let f be a tef. The following are equivalent:

There exists r > 0 such that mn(r)→∞ as n→∞. (?)

There exists R > 0 such that m̃(r) > r for all r ≥ R .

There exists rn →∞ such that m(rn) ≥ rn+1.

This lemma often allows one to show that (?) holds (or does not hold)
from function theoretic considerations. For example ...



Theorem (Osborne, Rippon, Stallard)

Let f be a tef. There exists r > 0 such that mn(r)→∞ if any of the
following hold:

(a) The order ρ(f ) < 1
2 .

(b) f has a multiply-connected Fatou component.

(c) f has “Hayman gaps” or f has finite order and “Fabry gaps”.

Here Fabry gaps means that f (z) =
∑

akz
nk with nk/k →∞; while

nk > k1+ε implies Hayman gaps.

Proof of (a)
If ρ(f ) < α < 1

2 , then by the cosπρ theorem there is ε > 0 such that for
all large r there is s ∈ (r ε, r) such that m(s) > M(s)cosπα. So

m̃(r) ≥ M(s)cosπα ≥ M(r ε)cosπα > r

for all large r (using logM(r)
log r →∞).

Thus, by the previous lemma, there exists r such that mn(r)→∞.



Examples

Osborne, Rippon and Stallard give the following examples of functions
which do or do not have the property that

there exists r > 0 such that mn(r)→∞ as n→∞. (?)

cos
√
z has order 1

2 and does not satisfy (?) since m(r) ≤ 1.

2z cos
√
z has order 1

2 and does satisfy (?).

Moreover, for p ∈ N, cos zp does not satisfy (?), but 2z cos zp does.

Functions in the Eremenko-Lyubich class B have m(r) bounded so do
not satisfy (?).

2z(1 + e−z) satisfies (?).

z + b sin z with b > 2π satisfies (?).

Fatou’s function z + 1 + e−z does not satisfy (?), but I (f ) is a
spider’s web (Evdoridou).



Order 1
2 minimal type

Recall that:

Order < 1
2 implies ∃r such that mn(r)→∞. (?)

Wiman: order 1
2 minimal type implies m(r) is unbounded.

Order 1
2 min type means lim sup

r→∞

log logM(r)
log r = 1

2 and logM(r)

r1/2
→ 0.

So we might ask: is order 1
2 minimal type sufficient to imply (?)?

Theorem (N., Rippon, Stallard)

Let f be a tef of order at most 1
2 minimal type. Then (?) holds if ∃r0 such

that, for r > r0
logM(r)

r1/2
≤ 1

4

logM(s)

s1/2
,

for some 0 < s < r which satisfies M(s) ≥ r2.

The condition here says roughly that logM(r)

r1/2
→ 0 in a regular manner.

Without some extra condition, the answer to the above question is “no”...



Recall (?): ∃r > 0 such that mn(r)→∞.

Theorem (N., Rippon, Stallard)

There exist tefs with order 1
2 minimal type for which (?) does not hold.

These can be chosen to be real functions with only real zeroes.

Construction of examples is via a generalisation (by R. + S.) of a method
of Kjellberg. This produces tefs with slow growth and tight control over
m(r) by first making a continuous subharmonic function with the required
properties.



1
2 ≤ Order ≤ 2

Recall (?): ∃r > 0 such that mn(r)→∞.

Theorem (N., Rippon, Stallard)

For any 1
2 ≤ ρ ≤ 2, there exist examples of real tefs with only real zeroes

and order ρ such that (?) does, and does not, hold.

Examples constructed as infinite products:

Using very evenly distributed zeroes one can make m(r) bounded,
so (?) fails. E.g. for 1

2 < ρ < 1

f (z) =
∞
∏

n=1

(

1− z

n1/ρ

)

. (Hardy, 1905)

Using very unevenly distributed zeroes (big gaps and high
multiplicities) can make examples where (?) holds.



Order > 2

Theorem (N., Rippon, Stallard)

Let f be a tef with 2 < ρ(f ) <∞ and only real zeroes. Then

(a) there exists θ such that f (re iθ)→ 0 as r →∞; and

(b) 0 is a deficient value of f .

(a) Proof uses an analysis of the Hadamard factorisation of f .

(b) Follows from a result of Edrei, Fuchs and Hellerstein (1961).

Recall (?): ∃r > 0 such that mn(r)→∞.

Note that either (a) or (b) implies m(r)→ 0 as r →∞, so (?) does
not hold for such f .

This is used in the proof of the earlier result that for a real tef of
finite order with only real zeroes and (?), I (f ) is a spider’s web.

Conjecture: (?) fails for all tef of infinite order with only real zeroes.


