Dynamics of Generalized Tangent maps

Tao Chen

City University Of New York

TCD 2021 at Barcelona

April 19, 2021

Tao Chen (CUNY)

Generalized Tangent maps

April 19, 2021 1 / 22

A value v ∈ Ĉ an asymptotic value of a holomorphic function f if there is a path γ : [0, 1) such that

$$\lim_{t\to 1^-} r(t) = \infty \text{ and } \lim_{t\to 1^-} f(\gamma(t)) = v.$$

A value v ∈ Ĉ an asymptotic value of a holomorphic function f if there is a path γ : [0, 1) such that

$$\lim_{t\to 1^-} r(t) = \infty \text{ and } \lim_{t\to 1^-} f(\gamma(t)) = v.$$

② Let v be asymptotic value of f. If there exists neighborhood V of v and an unbounded simply connected set U such that f : U → V \ {v} is a universal covering, then U is an asymptotic tract of v. The most well-known family of exponential maps

$$f_k(z) = e^z + k$$
 or $f_\lambda(z) = \lambda e^z$

Two asymptotic values are k and ∞ (0 and ∞) and their asymptotic tracts are left and right half plane respectively.

The most well-known family of exponential maps

$$f_k(z) = e^z + k$$
 or $f_\lambda(z) = \lambda e^z$

Two asymptotic values are k and ∞ (0 and ∞) and their asymptotic tracts are left and right half plane respectively.

Interpretent of the most well-known family of meromorphic maps

$\lambda \tan z$.

Two asymptotic values are $\pm \lambda i$ and their asymptotic tracts are upper and lower half plane respectively

Theorem (Rempe–Schleicher, 09)

- The bifurcation locus is connected
- 2 Each hyperbolic component is unbounded and its boundary is a unbounded Jordan arc tending to ∞ in both directions.

L. Rempe and D. Schleicher

Bifurcations in the Space of Exponential Maps Invent. Math. 175 (2009), No. 1, 103 - 135

Bifurcation of Exponential Maps

Figure: Parameter space of $e^z + k$ by L. Rempe and D. Schleicher

Tao Chen (CUNY)

Any map $f_{\lambda} = \lambda \tan z$ is an odd function. If $\{z_1, z_2, \dots, z_k\}$ is a cycle, then $\{-z_1, -z_2, \dots, -z_k\}$ is also a cycle with the same multiplier.

Let $\Omega_k = \{\lambda : f_\lambda \text{ has two attracting cycles of period } k\}$ and $\Omega'_k = \{\lambda : f_\lambda \text{ has one attracting cycles of period } 2k\}.$

Parameter Space of $\lambda \tan z$

$$\lambda = i\pi/2$$
 satisfies $f_{\lambda}(i\lambda) = \infty$.

Tao Chen (CUNY)

Theorem (Keen-Kotus, 97)

 ${\small \bigcirc} \ \Omega_1 \ \text{and} \ \Omega_1' \ \text{are unbounded, and other components are bounded}$

2 There is a pair of Ω_k and Ω'_k meeting at each solution of $f_{\lambda}^{k-1}(\lambda i) = \infty$.

L. Keen and J. Kotus

Dynamics of the family $\lambda \tan z$ Conform. Geom. Dyn. 1 (1997), 28-57

- Fagella and Keen considered M_{∞} , a family of meromorphic maps of finite type for which ∞ is not an asymptotic value.
- **Operation** Dynamically natural slice: the dynamics of singular values is fixed except one asymptotic value, denoted by v_{λ} .
- A component in the parameter space of which the free asymptotic value v_λ is attracted by a new attracting cycle is called a shell component. Let Ω_k denote components where the period of the attracting cycle is k.

Theorem (Fagella-Keen 2020)

- Each shell component is simply connected.
- **2** Each component in Ω_1 is unbounded.
- On the boundary any shell component, there exists a λ , such that $f_{\lambda}^{k}(v_{\lambda}) = \infty$, called virtual cycle parameter.

N. Fagella and L. Keen

Stable components in the parameter plane of transcendental functions of finite type.

The Journal of Geometric Analysis (2020), 1-40.

Theorem (Fagella–Keen, 2020)

- Each shell component is simply connected.
- **2** Each component in Ω_1 is unbounded.
- On the boundary of any shell component, there exists a virtual cycle parameter, that is a λ, such that f^k_λ(v_λ) = ∞.

Theorem (Fagella–Keen, 2020)

- Each shell component is simply connected.
- **2** Each component in Ω_1 is unbounded.
- On the boundary of any shell component, there exists a virtual cycle parameter, that is a λ, such that f^k_λ(v_λ) = ∞.

Question/Conjecture

- Conjecture (Fagella-Keen, 2020): Each component of Ω_k, k ≥ 2 is bounded.
- Por each virtual cycle parameter λ, is it on the boundary of a shell component?

Consider the family $\mathcal{N}_{p,q,r}$ consisting of $f = P \circ g \circ Q$, where P, Q are polynomials of degree p, q respectively, and $g \in \mathcal{N}_r$ is a meromorphic function with no critical values and r asymptotic values counted with multiplicity of asymptotic tracts. They can be characterized as

$$S_g(z) = a_{r-2}z^{r-2} + \cdots + a_0.$$

Note that $f(z) = e^{e^z}$ has 3 asymptotic values $\{0, 1, \infty\}$. However, $f \notin \mathcal{N}_3$ since both ∞ and 0 have infinitely many asymptotic tracts.

Theorem (C.-Keen, 2019)

For any dynamical natural slice of $\mathcal{N}_{p,q,r}$, at every virtual cycle parameter λ , there exists a shell component Ω , such that $\lambda \in \partial \Omega$.

The family $\mathcal{F}_{\lambda} = \{f_{\lambda}(z) = \lambda \tan^{p} z^{q}, p, q \in N, pq > 1, \ \lambda \neq 0\}.$

- Critical points: solutions of $z^{q-1} \tan^{p-1} z^q = 0$
- Critical Value: 0. Thus it is super-attracting.
- attracting basin: $A(0) = \{z : f_{\lambda}^{n}(z) \to 0 \text{ as } n \to \infty\}$
- immediate basin: $A^*(0)$ the component of A(0) containing 0.
- Asymptotic value: $(\pm i)^p \lambda$
- Denote $i^p \lambda$ by v_{λ}

Theorem

The Julia set of f_{λ} is connected if and only if $v_{\lambda} \in A^*(0)$.

Tao Chen (CUNY)

Image: Image:

- Capture components C consist of λ such that fⁿ_λ(v_λ) → 0.
 C_k = {λ : k is the smallest integer such that f^k_λ(v_λ) ∈ A^{*}(0)}
- Shell components S consist of λ such that v_λ is attracted to a nonzero attracting cycle.
 - pq is even, \mathcal{S}_k consists of λ such that f_λ has an attracting cycle of period k
 - pq is odd, S_k consists of λ such that f_λ has an attracting cycle of period 2k or two attracting cycles of period k.

Parameter space of $\lambda \tan^2 z^3$

Tao Chen (CUNY)

April 19, 2021 17 / 22

Theorem (C.-Keen)

- **1** $C_0 \cup \{0\}$ is simply connected.
- **2** Each component of C_k for $k \ge 1$ is simply connected and contains a unique solution of

 $f_{\lambda}^{k}(v_{\lambda})=0.$

P. Roesch

Hyperbolic components of polynomials with a fixed critical point of maximal order. Annales Scientifiques de L'Ecole Normale Supérieure, Vol 40(6), 2007, 901-949.

N. Fagella and A. Garijo

The parameter planes of $\lambda z^m e^z$, $m \ge 2$.

Communications in mathematical physics 273 (3), 2007, 755-783.

Theorem (C.-Keen)

- **1** $D(0, r_1) \subset C_0 \cup \{0\}$, where $r_1 = \sqrt[q]{\frac{\pi}{4}}$.
- Phere exists a covering: φ : C₀ → D*. Any periodic rational parameter ray lands at a parabolic parameter λ (That is, f_λ has a parabolic periodic point.) or a Misiurewicz point λ (That is, v_λ lands at a period cycle of f_λ.)

Theorem (C.-Keen, 2019)

- **①** The set S_1 consists of 2q unbounded simply connected components.
- Sor k ≥ 2, at each solution of f^{k-1}_λ(v_λ) = ∞, there are 2pq components of S_k.
- 3 All components of C_k , $k \ge 0$, and S_k , $k \ge 2$, are bounded.

- Improve the second s
- Ø Meromorphic functions with more critical values or asymptotic values

Thank you for your attention!

Tao Chen (CUNY)

Image: A matrix and A matrix