Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annul

Singular orbits and Baker domains

Lasse Rempe

Department of Mathematical Sciences, University of Liverpool

Topics in Complex Dynamics, Barcelona, April 2021

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Invariant Fatou components of rational maps

▲□▶▲□▶▲□▶▲□▶ □ の000

- *Fatou set F*(*f*) set of normality;
- A *Fatou component* is a connected component of *F*(*f*).
- A Fatou component *U* is *invariant* if $f(U) \subset U$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Invariant Fatou components of rational maps

▲□▶▲□▶▲□▶▲□▶ □ の000

- Fatou set F(f) set of normality;
- A *Fatou component* is a connected component of *F*(*f*).
- A Fatou component *U* is *invariant* if $f(U) \subset U$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Invariant Fatou components of rational maps

▲□▶▲□▶▲□▶▲□▶ □ の000

- *Fatou set F*(*f*) set of normality;
- A *Fatou component* is a connected component of *F*(*f*).
- A Fatou component *U* is *invariant* if $f(U) \subset U$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Invariant Fatou components of rational maps

▲□▶▲□▶▲□▶▲□▶ □ の000

- Fatou set F(f) set of normality;
- A *Fatou component* is a connected component of *F*(*f*).
- A Fatou component *U* is *invariant* if $f(U) \subset U$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Types of invariant Fatou components

Every invariant Fatou component of a *rational map* is one of the following:

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Types of invariant Fatou components

Every invariant Fatou component of a *rational map* is one of the following:

- an immediate (super-)attracting basin;
- an immediate *parabolic basin*;
- a rotation domain.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Types of invariant Fatou components Every invariant Fatou component of a *rational map* is one of the following:

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Types of invariant Fatou components

Every invariant Fatou component of a *rational map* is one of the following:

- an immediate (super-)attracting basin;
- an immediate *parabolic basin*;
- a rotation domain.

Types of invariant Fatou components

and Baker domains Lasse Rempe

Singular orbits

Every invariant Fatou component of a *rational map* is one of the following:

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Types of invariant Fatou components

Every invariant Fatou component of a *rational map* is one of the following:

- an immediate (super-)attracting basin;
- an immediate *parabolic basin*;
- a rotation domain.

Types of invariant Fatou components

domains Lasse Rempe

Singular orbits and Baker

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annul

Every invariant Fatou component of a *rational map* is one of the following:

(Image by Arnaud Chéritat)

▲□▶▲□▶▲□▶▲□▶ □ の000

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

By work of *Fatou*, there is a close relationship between invariant Fatou components of a rational map *f* and the *critical values* of *f*:

The role of critical values

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

By work of *Fatou*, there is a close relationship between invariant Fatou components of a rational map *f* and the *critical values* of *f*: • Every attracting or parabolic basin *contains a critical value*;

• The boundary of any rotation domain is in the postcritical set

The role of critical values

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The role of critical values

Singular orbits and Baker domains

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annul

By work of *Fatou*, there is a close relationship between invariant Fatou components of a rational map *f* and the *critical values* of *f*:

The role of critical values

Singular orbits and Baker domains

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

By work of *Fatou*, there is a close relationship between invariant Fatou components of a rational map *f* and the *critical values* of *f*:

・ロト・国ト・ヨト・ヨー うへぐ

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

The role of critical values

By work of *Fatou*, there is a close relationship between invariant Fatou components of a rational map *f* and the *critical values* of *f*:

- Every attracting or parabolic basin contains a critical value;
- The boundary of any rotation domain is in the *postcritical set*

$$\mathcal{P}(f) := \overline{\bigcup_{f'(c)=0} \bigcup_{n=1}^{\infty} f^n(c)}.$$

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

By work of *Fatou*, there is a close relationship between invariant Fatou components of a rational map *f* and the *critical values* of *f*:

The role of critical values

(Image by Arnaud Chéritat)

Meromorphic functions

▲□▶▲□▶▲□▶▲□▶ □ の000

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Now let

$f\colon \mathbb{C}\to \hat{\mathbb{C}}$

be a transcendental meromorphic function.

- *Fatou set* F(f): Iterates are *defined* and form a normal family.
- Note: All *poles* and their preimages under *fⁿ* are in the *Julia set* J(f) = C \ F(f).

Meromorphic functions

▲□▶▲□▶▲□▶▲□▶ □ の000

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Now let

 $f\colon \mathbb{C}\to \hat{\mathbb{C}}$

be a transcendental meromorphic function.

• Fatou set F(f): Iterates are defined and form a normal family.

• Note: All *poles* and their preimages under f^n are in the *Julia set* $J(f) = \mathbb{C} \setminus F(f)$.

Meromorphic functions

▲□▶▲□▶▲□▶▲□▶ □ の000

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Now let

be a transcendental meromorphic function.

- Fatou set F(f): Iterates are defined and form a normal family.
- Note: All *poles* and their preimages under *fⁿ* are in the *Julia set* J(f) = ℂ \ F(f).

 $f \colon \mathbb{C} \to \hat{\mathbb{C}}$

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Singular values

$f \colon \mathbb{C} \to \hat{\mathbb{C}}$ transcendental meromorphic.

The role of critical values is now played by

sing(f^{-1}) = {"singularities of f^{-1} "} = {critical values} \cup {asymptotic values}.

Postsingular set:

$$\mathcal{P}(f) := \overline{\bigcup_{n=0}^{\infty} f^n(\operatorname{sing}(f^{-1}))}.$$

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Singular values

$f \colon \mathbb{C} \to \hat{\mathbb{C}}$ transcendental meromorphic.

The role of critical values is now played by

sing(f^{-1}) = {"singularities of f^{-1} "} = {critical values} \cup {asymptotic values}

Postsingular set:

$$\mathcal{P}(f) := \overline{\bigcup_{n=0}^{\infty} f^n(\operatorname{sing}(f^{-1}))}.$$

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Singular values

$f \colon \mathbb{C} \to \hat{\mathbb{C}}$ transcendental meromorphic.

The role of critical values is now played by

sing(f^{-1}) = {"singularities of f^{-1} "} = {critical values} \cup {asymptotic values}.

Postsingular set:

 $\mathcal{P}(f) := \overline{\bigcup_{n=0}^{\infty} f^n(\operatorname{sing}(f^{-1}))}.$

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Singular values

$f \colon \mathbb{C} \to \hat{\mathbb{C}}$ transcendental meromorphic.

The role of critical values is now played by

sing(f^{-1}) = {"singularities of f^{-1} "} = {critical values} \cup {asymptotic values}.

Postsingular set:

$$\mathcal{P}(f) := \overline{\bigcup_{n=0}^{\infty} f^n(\operatorname{sing}(f^{-1}))}.$$

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Invariant Fatou components

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Invariant Fatou components Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- an immediate (super-)attracting basin;
 (intersects sing(f⁻¹))
- an immediate parabolic basin;
 (intersects sing(f⁻¹))
- a *rotation domain*. (boundary in $\mathcal{P}(f)$)
- a *Baker domain U*, where $f^n(z) \to \infty$ for $z \in U$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Invariant Fatou components

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

- an immediate (super-)attracting basin; (intersects sing(f⁻¹))
- an immediate parabolic basin;
 (intersects sing(f⁻¹))
- a rotation domain. (boundary in $\mathcal{P}(f)$)
- a *Baker domain U*, where $f^n(z) \to \infty$ for $z \in U$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annul

Invariant Fatou components

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

 $z \mapsto \sin(z)/2$

attracting basin

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Invariant Fatou components

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

- an immediate (super-)attracting basin; (intersects sing(f⁻¹))
- an immediate *parabolic basin*;
 - (intersects sing(f^{-1}))
- a rotation domain. (boundary in $\mathcal{P}(f)$)
 - (boundary in $\mathcal{P}(t)$)
- a *Baker domain U*, where $f^n(z) \to \infty$ for $z \in U$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Invariant Fatou components

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

- an immediate (super-)attracting basin; (intersects sing(f⁻¹))
- an immediate parabolic basin; (intersects sing(f⁻¹))
- a rotation domain.
 - (boundary in $\mathcal{P}(f)$)
- a *Baker domain U*, where $f^n(z) \to \infty$ for $z \in U$.

Invariant Fatou components

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annul

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

parabolic basin

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Invariant Fatou components

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

- an immediate (super-)attracting basin; (intersects sing(f⁻¹))
- an immediate parabolic basin; (intersects sing(f⁻¹))
- a rotation domain.
 - (boundary in $\mathcal{P}(f)$)
- a *Baker domain U*, where $f^n(z) \to \infty$ for $z \in U$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Invariant Fatou components

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

- an immediate (super-)attracting basin; (intersects sing(f⁻¹))
- an immediate parabolic basin; (intersects sing(f⁻¹))
- a rotation domain.
 (boundary in *P*(f))
- a *Baker domain U*, where $f^n(z) \to \infty$ for $z \in U$.

Invariant Fatou components

Singular orbits and Baker domains

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

Siegel disc

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

Invariant Fatou components

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

- an immediate (super-)attracting basin; (intersects sing(f⁻¹))
- an immediate parabolic basin; (intersects sing(f⁻¹))
- a rotation domain.
 (boundary in *P*(f))
- a *Baker domain U*, where $f^n(z) \to \infty$ for $z \in U$.

Invariant Fatou components

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annul

Every invariant Fatou component of a *transcendental meromorphic function* is one of the following:

Baker domain

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Singular values and Baker domains

▲□▶▲□▶▲□▶▲□▶ □ のQ@

In his famous 1993 survey on the *iteration of meromorphic functions*, Bergweiler asks:

Question 4. Let f be a meromorphic function with a cycle of Baker domains that does not contain a point of $sing(f^{-1})$. Is there some relation between $sing(f^{-1})$ and the boundaries of the domains of this cycle?

In particular, he asks:

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Singular values and Baker domains

▲□▶▲□▶▲□▶▲□▶ □ のQ@

In his famous 1993 survey on the *iteration of meromorphic functions*, Bergweiler asks:

Question 4. Let f be a meromorphic function with a cycle of Baker domains that does not contain a point of $sing(f^{-1})$. Is there some relation between $sing(f^{-1})$ and the boundaries of the domains of this cycle?

In particular, he asks:

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Singular values and Baker domains

In his famous 1993 survey on the *iteration of meromorphic functions*, Bergweiler asks:

Question 4. Let f be a meromorphic function with a cycle of Baker domains that does not contain a point of $sing(f^{-1})$. Is there some relation between $sing(f^{-1})$ and the boundaries of the domains of this cycle?

In particular, he asks:

Question 5. Is it possible that a meromorphic function f has Baker domains if $O^+(z)$ is bounded for all $z \in sing(f^{-1})$?

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

_arge annuli

A Baker domain despite finite singular orbits

Theorem (R., 2021)

There is a transcendental meromorphic function f such that every point of $sing(f^{-1})$ is a superattracting periodic point of period 2, and such that f has an invariant Baker domain.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Postsingular points near Baker domains

Concerning *Question 4*, Bergweiler showed in 1995 that there exists a transcendental *entire* function *f* having a Baker domain *U* such that $dist(\mathcal{P}(f), U) > 0$. On the other hand, he proved the following.

Theorem (Bergweiler, 1995)

Let f be a transcendental entire function with a Baker domain U disjoint from $sing(f^{-1})$. Then there is a sequence (p_n) in $\mathcal{P}(f)$ such that

(a)
$$|p_n| \to \infty;$$

(b) $\frac{\operatorname{dist}(p_n, U)}{|p_n|} \to 0; an$

(c)
$$\lim_{n\to\infty} \frac{p_{n+1}}{p_n} = 1$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ �� ◆

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Postsingular points near Baker domains

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Concerning *Question 4*, Bergweiler showed in 1995 that there exists a transcendental *entire* function *f* having a Baker domain *U* such that $dist(\mathcal{P}(f), U) > 0$. On the other hand, he proved the following.

Theorem (Bergweiler, 1995)

Let *f* be a transcendental entire function with a Baker domain U disjoint from $sing(f^{-1})$. Then there is a sequence (p_n) in $\mathcal{P}(f)$ such that

(a)
$$|p_n| \to \infty;$$

(b) $\frac{\operatorname{dist}(p_n, U)}{|p_n|} \to 0; an$

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Postsingular points near Baker domains

Concerning *Question 4*, Bergweiler showed in 1995 that there exists a transcendental *entire* function *f* having a Baker domain *U* such that $dist(\mathcal{P}(f), U) > 0$. On the other hand, he proved the following.

Theorem (Bergweiler, 1995)

Let f be a transcendental entire function with a Baker domain U disjoint from $sing(f^{-1})$. Then there is a sequence (p_n) in $\mathcal{P}(f)$ such that

(a)
$$|p_n| \to \infty;$$

(c)
$$\lim_{n\to\infty} \frac{p_{n+1}}{p_n} = 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Postsingular points near Baker domains

Concerning *Question 4*, Bergweiler showed in 1995 that there exists a transcendental *entire* function *f* having a Baker domain *U* such that $dist(\mathcal{P}(f), U) > 0$. On the other hand, he proved the following.

Theorem (Bergweiler, 1995)

Let f be a transcendental entire function with a Baker domain U disjoint from $sing(f^{-1})$. Then there is a sequence (p_n) in $\mathcal{P}(f)$ such that

(a)
$$|p_n| \to \infty;$$

dist $(p_n, U) \to 0$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Postsingular points near Baker domains

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Concerning *Question 4*, Bergweiler showed in 1995 that there exists a transcendental *entire* function *f* having a Baker domain *U* such that $dist(\mathcal{P}(f), U) > 0$. On the other hand, he proved the following.

Theorem (Bergweiler, 1995)

Let f be a transcendental entire function with a Baker domain U disjoint from $sing(f^{-1})$. Then there is a sequence (p_n) in $\mathcal{P}(f)$ such that

(a)
$$|p_n| \to \infty;$$

(b) $\frac{\operatorname{dist}(p_n, U)}{|p_n|} \to 0;$ and
(c) $\lim_{n\to\infty} \frac{p_{n+1}}{p_n} = 1.$

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Theorem (Bergweiler, 1995)

Let f be a transcendental entire function with a Baker domain U disjoint from $sing(f^{-1})$. Then there is a sequence (p_n) in $\mathcal{P}(f)$ such that

a)
$$|p_n| o \infty;$$

b) $|rac{\operatorname{dist}(p_n,U)}{|p_n|} o 0;$ and

 $Iim_{n\to\infty} \frac{p_{n+1}}{p_n} = 1.$

Theorem (Mihaljević-R., 2013)

The same holds for meromorphic f provided that we replace (c) by

$$\limsup_{n\to\infty}\frac{p_{n+1}}{p_n}<\infty.$$

Lasse Rempe

Invariant components of the Fatou set

Singular orbit and Baker domains

Large annuli

Theorem (Bergweiler, 1995)

Let f be a transcendental entire function with a Baker domain U disjoint from $sing(f^{-1})$. Then there is a sequence (p_n) in $\mathcal{P}(f)$ such that

$$|p_n| \rightarrow \infty;$$

(a)
$$\left|\frac{\operatorname{dist}(p_n,U)}{|p_n|}
ightarrow 0;$$
 and

() $\lim_{n\to\infty}\frac{p_{n+1}}{p_n}=1.$

Theorem (Mihaljević-R., 2013)

The same holds for meromorphic f provided that we replace (c) by

$$\limsup_{n\to\infty}\frac{p_{n+1}}{p_n}<\infty.$$

・ロト・日本・日本・日本・日本

Bergweiler (f entire):

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

$$\lim_{n\to\infty}\frac{p_{n+1}}{p_n}=1.$$
 (*)

$$\limsup_{n\to\infty}\frac{p_{n+1}}{p_n}<\infty.$$

Question (Mihaljevi'c-R., 2013)

Can (**) be replaced by (*) for meromorphic f?

Theorem (Barański-Fagella-Jarque-Karpińska, 2020)

Yes, if $\mathbb{C} \setminus U$ has an unbounded component.

・ロト・国ト・ヨト・ヨー うへぐ

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Bergweiler (*f* entire):

$$\lim_{n\to\infty}\frac{p_{n+1}}{p_n}=1.$$
 (*)

$$\limsup_{n\to\infty}\frac{p_{n+1}}{p_n}<\infty.$$

(**)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Question (Mihaljevi'c-R., 2013)

Can (**) be replaced by (*) for meromorphic f?

Theorem (Barański-Fagella-Jarque-Karpińska, 2020)

Yes, if $\mathbb{C} \setminus U$ has an unbounded component.

domains Bergweiler (*f* entire):

$\lim_{n\to\infty}\frac{p_{n+1}}{p_n}=1.$ (*

Mihaljević-R. (f meromorphic):

Singular orbi and Baker domains

Large annuli

$$\limsup_{n\to\infty}\frac{p_{n+1}}{p_n}<\infty.$$

Question (Mihaljevi'c-R., 2013)

Can (**) be replaced by (*) for meromorphic f?

Theorem (Barański-Fagella-Jarque-Karpińska, 2020)

Yes, if $\mathbb{C} \setminus U$ has an unbounded component.

・ロト・西ト・ヨト・ヨー うへで

(**

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Theorem (R., 2021)

There is a transcendental meromorphic function f such that every point of $sing(f^{-1})$ is a superattracting periodic point of period 2, and such that f has an invariant Baker domain.

Given ho > 0, the function f can be chosen such there is a sequence ${f R}_j o \infty$ with

 $\{z\in\mathbb{C}\colon R_j<|z|<\rho R_j\}\subset U$

for all j.

The proof uses quasiconformal surgery, starting from the linear map

 $z\mapsto \mu z,$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where $|\mu| > 1$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Theorem (R., 2021)

There is a transcendental meromorphic function f such that every point of $sing(f^{-1})$ is a superattracting periodic point of period 2, and such that f has an invariant Baker domain.

Given $\rho > 0$, the function f can be chosen such there is a sequence $R_j \to \infty$ with

 $\{z \in \mathbb{C} \colon R_j < |z| < \rho R_j\} \subset U$

for all j.

The proof uses quasiconformal surgery, starting from the linear map

 $z\mapsto \mu z,$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where $|\mu| > 1$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Theorem (R., 2021)

There is a transcendental meromorphic function f such that every point of $sing(f^{-1})$ is a superattracting periodic point of period 2, and such that f has an invariant Baker domain.

Given $\rho > 0$, the function f can be chosen such there is a sequence $R_j \to \infty$ with

 $\{z \in \mathbb{C} \colon R_j < |z| < \rho R_j\} \subset U$

for all j.

The proof uses quasiconformal surgery, starting from the linear map

 $z \mapsto \mu z$,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where $|\mu| > 1$.

Lasse Rempe

Invariant components of the Fatou set

Singular orbits and Baker domains

Large annuli

Thank you!