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Introduction

Definition
Let f : C→ C be an entire function. The Julia set J (f ) is the set of all
points in C where the family of iterates {f n : n ∈ N} is not normal with
respect to the spherical metric of C.

Intuitively the Julia set is the set where the iterates of f behave chaotically.
An alternative definition is using the blow-up property.

Blow-up property
Let f be a holomorphic map of the complex plane and J (f ) its Julia set.
Let z ∈ J (f ). Then for any open neighbourhood U of z it is true that

C \
∞⋃

n=0
f n(U)

contains at most two points.
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When studying dynamics of entire (or meromorphic) functions we seek to
understand the behaviour of whole classes/families of maps.

The simplest and most well studied families of entire functions are the
quadratic family

fc : z 7→ z2 + c

for polynomials and the exponential family

Eκ : z 7→ κez , κ ∈ C \ {0}

for transcendental (essential singularity at ∞) entire functions.

Studying those maps is usually the first step towards a better
understanding of more general classes of maps.
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In this talk we confine ourselves to the case κ > 0.

Theorem (Misiurewicz, 1981)
For κ > 1/e the Julia set J (Eκ) is the entire complex plane.

Theorem (Devaney and Krych, 1984)
For 0 < κ ≤ 1/e the Julia set J (Eκ) consists of uncountably many,
disjoint curves each of which has a finite endpoint and goes off to infinity.

Source: wikipedia
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Quasiregular maps

Quasiregular maps, from Rd to Rd , are a generalization of
holomorphic maps in the complex plane.

Holomorphic maps send infinitesimally small circles to infinitesimally
small circles.
Quasiregular maps send infinitesimally small spheres to infinitesimally
small ellipsoids of bounded eccentricity.
Quasiregular maps stretch the space locally by a bounded amount.

Examples
An easy one: (x , y)→ (2x , y).
Winding maps (i.e. in polar coordinates (r , θ)→ (r , kθ))
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Why quasiregular maps?

1 They appear naturally in many places (complex dynamics, PDE’s, ...).
2 Liouville’s Theorem on conformal maps.

If we want an interesting function theory in Rd , d > 2 then we must study
quasiregular maps.
Indeed:

Quasiregular maps are open, discrete and differentiable a.e.
(Reshetnyak 1967-68).
There is an analogue of Picard’s Theorem (Rickman 1980).

Definition
A quasiregular map in Rd is said to be of polynomial type if
limx→∞ f (x) =∞. If this limit does not exist we say that f is of
transcendental type.
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Julia sets for qr maps
Definition (Julia set for quasiregular maps, Bergweiler, 2013)
Let f be a quasiregular map on Rd . We define the Julia set to be
{x ∈ Rd : cap

(
Rd \

⋃∞
k=1 f n(U)

)
= 0,U any open neighboorhood of x}

This new Julia set has many of the properties of the classical Julia set

Theorem (Bergweiler, Nicks, 2014)
Let f be a quasiregular map on Rd . Then assuming deg f > K

J (f ) is non empty.
J (f ) is completely invariant.

Moreover if capJ (f ) > 0 then:
J (f ) is perfect.
J (f p) = J (f ).
J (f ) = O−f (x), where x ∈ J (f ) \ E (f ).
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Another way of looking at the exponential map
Define h : [−π

2 ,
π
2 ]→ R2 as h(y) = (cos y , sin y).

Note that h is a bi-Lipschitz map:
2
π |y1 − y2| ≤ |h(y1)− h(y2)| ≤ |y1 − y2|.
Define E : (x , y) 7→ exh(y) for (x , y) in the strip
{(x , y) : −π

2 ≤ y ≤ π
2 }.

Then extend E to the whole plane by reflecting across the boundaries
of strips in the domain and across the imaginary axis in the range.
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Zorich maps
First defined by Zorich in 1969.

The Zorich maps can be defined in Rd but we restrict ourselves in R3 for
simplicity.
First consider an L bi-Lipschitz, sense-preserving map h′ that maps the
square

Q :=
{

(x1, x2) ∈ R2 : |x1| ≤ 1, |x2| ≤ 1
}

to the upper hemisphere

{(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1, x3 ≥ 0}.

h'
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Then define Z : Q × R→ R3 as Z (x1, x2, x3) = ex3h′(x1, x2). The map Z
maps the square beam Q × R to the upper half-space.

By repeatedly reflecting now, across the sides of the square beam in the
domain and the x1x2 plane in the range, we get a map Z : R3 → R3.
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Z
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Properties:
Z is doubly periodic, meaning that
Z (x1 + 4, x2, x3) = Z (x1, x2 + 4, x3) = Z (x1, x2, x3).
Unlike the exponential map, Z has a non empty branch set meaning
that

BZ := {x ∈ R3 : Z is not locally homeomorphic at x} 6= ∅.

Z is quasiregular, omits 0 and has an essential singularity at infinity,
just like the exponential map on the plane.
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Julia sets of Zorich maps

For the family of maps Zν = νZ , ν > 0 in analogy with the exponential
family we have the following.

Theorem (Bergweiler, 2010 and Bergweiler, Nicks, 2014)
For all ν small enough, the Julia set of the Zorich map J (Zν) consists of
uncountably many, disjoint curves each of which has a finite endpoint and
goes off to infinity.

Theorem (Karpinska’s paradox in R3) (Bergweiler, 2010)
The Hausdorff dimension of the Julia set J (Zν), for small values of ν is 3
while the dimension of the Julia set with the endpoints removed is 1!

Question: Is it true that the Julia set of Zν is the entire R3 for large ν?
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Modifying the construction of Zorich maps
First consider an L bi-Lipschitz, sense-preserving map h′ that maps the
square Q to the upper hemisphere.

We require that our map h′(x1, x2) = (h′1(x1, x2), h′2(x1, x2), h′3(x1, x2))
must satisfy

The images of the diagonal lines of the initial square stay on the
planes x1 = x2 and x1 = −x2.

The technical condition is that:
h′1(x1, x1) = h′2(x1, x1)
h′1(x1,−x1) = −h′2(x1,−x1).

h

O

O

λ

2λ
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Second, we scale things by a factor λ > 1 and define

h(x1, x2) = λh′
( 1
λ

(x1, x2)
)
, (x1, x2) ∈ λQ.

Define now the Zorich maps as before using this h instead. We denote
those Zorich maps by Z.
Z : λQ × R→ R3 as Z(x1, x2, x3) = ex3h(x1, x2) and reflect across sides
and the plane x1x2.

h

O

O

λ

2λ
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Julia sets of Zorich maps

Theorem 1 (T., 2020)

Let λ > L5. Then for all ν >
√

2L
λ the Zorich map Zν we get using this

scale factor λ has as its Julia set the whole R3.

In fact we prove that if the assumptions of the above theorem are
satisfied and V is any open set of R3 then

⋃
n≥0Zn

ν (V ) covers
R3 \ {0}.
Note that we can not use normality arguments which are essential in
Misiurewicz’s proof.
Our proof is in this sense more elementary and thus also more
complicated.
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Density of periodic points
In the complex plane we know that

Theorem (Baker, 1968)
Let f be a transcendental entire function then repelling periodic points are
dense in J (f ).

Corollary
The repelling periodic points of Eκ for κ > 1/e are dense in C.

It is still unknown if the periodic points of a quasiregular map are dense in
its Julia set.

Theorem 2 (T. 2020)

Let λ > L5. Then for all ν >
√

2L
λ the periodic points of Zν are dense in

R3.
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Escaping set

Definition
The escaping set is defined as I(f ) := {x ∈ Rd : limn→∞ |f n(x)| =∞}.

Theorem, (Eremenko, 1989)
Let f entire then I(f ) 6= ∅ and ∂I(f ) = J (f ).

Theorem (Bergweiler, Fletcher, Langley, Meyer, 2009)
Let f : Rd → Rd , d ≥ 2 be a quasiregular map of transcendental type.
Then I(f ) is not empty.

However we only have J (f ) ⊂ ∂I(f ) in the quasiregular setting.
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Then I(f ) is not empty.

However we only have J (f ) ⊂ ∂I(f ) in the quasiregular setting.

Athanasios Tsantaris Dynamics of Zorich Maps 19 / 22



Connectedness of the escaping set
Theorem (Devaney and Krych, 1984)
For 0 < κ ≤ 1/e the escaping set I(Eκ) is not a connected set of C. Its
connected components are curves that go off at infinity.

Theorem (Rempe, 2010)
For κ > 1/e the escaping set I(Eκ) is a connected and dense subset of the
plane.

Theorem (Bergweiler, 2010)
For small enough ν > 0 the escaping set I(Zν) is not a connected set of
R3. Its connected components are curves that go off at infinity.

Theorem 3 (T. 2020)

Let λ > L5. Then for all ν >
√

2L
λ the escaping set I(Zν) is a connected

and dense subset of R3.
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Further Questions

Question 1: What happens for smaller values of the scale factor λ?

Question 2: What is the typical orbit of the Zorich maps Zν we
constructed?

Question 3: Do higher dimensional indecomposable continua exists
related with the dynamics of Zorich maps?
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Thank you!
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