Dynamics of Zorich Maps

Athanasios Tsantaris

University of Nottingham

Topics in Transcedental dynamics, Barcelona, April 19 2021

Introduction

Definition

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. The Julia set $\mathcal{J}(f)$ is the set of all points in \mathbb{C} where the family of iterates $\{f^n : n \in \mathbb{N}\}$ is not normal with respect to the spherical metric of $\overline{\mathbb{C}}$.

Introduction

Definition

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. The Julia set $\mathcal{J}(f)$ is the set of all points in \mathbb{C} where the family of iterates $\{f^n : n \in \mathbb{N}\}$ is not normal with respect to the spherical metric of $\overline{\mathbb{C}}$.

Intuitively the Julia set is the set where the iterates of f behave chaotically.

Introduction

Definition

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. The Julia set $\mathcal{J}(f)$ is the set of all points in \mathbb{C} where the family of iterates $\{f^n : n \in \mathbb{N}\}$ is not normal with respect to the spherical metric of $\overline{\mathbb{C}}$.

Intuitively the Julia set is the set where the iterates of f behave chaotically. An alternative definition is using the blow-up property.

Blow-up property

Let f be a holomorphic map of the complex plane and $\mathcal{J}(f)$ its Julia set. Let $z \in \mathcal{J}(f)$. Then for any open neighbourhood U of z it is true that

$$\overline{\mathbb{C}}\setminus\bigcup_{n=0}^{\infty}f^n(U)$$

contains at most two points.

When studying dynamics of entire (or meromorphic) functions we seek to understand the behaviour of whole classes/families of maps.

When studying dynamics of entire (or meromorphic) functions we seek to understand the behaviour of whole classes/families of maps.

The simplest and most well studied families of entire functions are the quadratic family

$$f_c: z \mapsto z^2 + c$$

for polynomials and the exponential family

$$E_{\kappa}: z \mapsto \kappa e^{z}, \ \kappa \in \mathbb{C} \setminus \{0\}$$

for transcendental (essential singularity at ∞) entire functions.

Studying those maps is usually the first step towards a better understanding of more general classes of maps.

In this talk we confine ourselves to the case $\kappa > 0$.

In this talk we confine ourselves to the case $\kappa > 0$.

Theorem (Misiurewicz, 1981)

For $\kappa > 1/e$ the Julia set $\mathcal{J}(E_{\kappa})$ is the entire complex plane.

In this talk we confine ourselves to the case $\kappa > 0$.

Theorem (Misiurewicz, 1981)

For $\kappa > 1/e$ the Julia set $\mathcal{J}(E_{\kappa})$ is the entire complex plane.

Theorem (Devaney and Krych, 1984)

For $0 < \kappa \leq 1/e$ the Julia set $\mathcal{J}(E_{\kappa})$ consists of uncountably many, disjoint curves each of which has a finite endpoint and goes off to infinity.

Source: wikipedia

• Quasiregular maps, from \mathbb{R}^d to \mathbb{R}^d , are a generalization of holomorphic maps in the complex plane.

- Quasiregular maps, from \mathbb{R}^d to \mathbb{R}^d , are a generalization of holomorphic maps in the complex plane.
- Holomorphic maps send infinitesimally small circles to infinitesimally small circles.

- Quasiregular maps, from \mathbb{R}^d to \mathbb{R}^d , are a generalization of holomorphic maps in the complex plane.
- Holomorphic maps send infinitesimally small circles to infinitesimally small circles.
- Quasiregular maps send infinitesimally small spheres to infinitesimally small ellipsoids of bounded eccentricity.

- Quasiregular maps, from \mathbb{R}^d to \mathbb{R}^d , are a generalization of holomorphic maps in the complex plane.
- Holomorphic maps send infinitesimally small circles to infinitesimally small circles.
- Quasiregular maps send infinitesimally small spheres to infinitesimally small ellipsoids of bounded eccentricity.
- Quasiregular maps stretch the space locally by a bounded amount.

Examples

- An easy one: $(x, y) \rightarrow (2x, y)$.
- Winding maps (i.e. in polar coordinates $(r, \theta) \rightarrow (r, k\theta)$)

- **1** They appear naturally in many places (complex dynamics, PDE's, ...).
- 2 Liouville's Theorem on conformal maps.

- **1** They appear naturally in many places (complex dynamics, PDE's, ...).
- 2 Liouville's Theorem on conformal maps.

If we want an interesting function theory in \mathbb{R}^d , d > 2 then we must study quasiregular maps.

Indeed:

• Quasiregular maps are open, discrete and differentiable a.e. (Reshetnyak 1967-68).

- **1** They appear naturally in many places (complex dynamics, PDE's, ...).
- 2 Liouville's Theorem on conformal maps.

If we want an interesting function theory in \mathbb{R}^d , d > 2 then we must study quasiregular maps.

Indeed:

- Quasiregular maps are open, discrete and differentiable a.e. (Reshetnyak 1967-68).
- There is an analogue of Picard's Theorem (Rickman 1980).

- **1** They appear naturally in many places (complex dynamics, PDE's, ...).
- 2 Liouville's Theorem on conformal maps.

If we want an interesting function theory in \mathbb{R}^d , d > 2 then we must study quasiregular maps.

Indeed:

- Quasiregular maps are open, discrete and differentiable a.e. (Reshetnyak 1967-68).
- There is an analogue of Picard's Theorem (Rickman 1980).

Definition

A quasiregular map in \mathbb{R}^d is said to be of *polynomial type* if $\lim_{x\to\infty} f(x) = \infty$. If this limit does not exist we say that f is of *transcendental type*.

Julia sets for qr maps

Definition (Julia set for quasiregular maps, Bergweiler, 2013)

Let f be a quasiregular map on \mathbb{R}^d . We define the Julia set to be $\{x \in \mathbb{R}^d : \operatorname{cap}\left(\mathbb{R}^d \setminus \bigcup_{k=1}^{\infty} f^n(U)\right) = 0, U \text{ any open neighboorhood of } x\}$

This new Julia set has many of the properties of the classical Julia set

Theorem (Bergweiler, Nicks, 2014)

Let f be a quasiregular map on \mathbb{R}^d . Then assuming deg f > K

- $\mathcal{J}(f)$ is non empty.
- $\mathcal{J}(f)$ is completely invariant.
- Moreover if cap $\mathcal{J}(f) > 0$ then:
 - $\mathcal{J}(f)$ is perfect.

•
$$\mathcal{J}(f^p) = \mathcal{J}(f).$$

• $\mathcal{J}(f) = \overline{O_f^-(x)}$, where $x \in \mathcal{J}(f) \setminus E(f)$.

Another way of looking at the exponential map • Define $h: [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbb{R}^2$ as $h(y) = (\cos y, \sin y)$.

- Define $h: [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbb{R}^2$ as $h(y) = (\cos y, \sin y)$.
- Note that *h* is a bi-Lipschitz map: $\frac{2}{\pi}|y_1 - y_2| \le |h(y_1) - h(y_2)| \le |y_1 - y_2|.$

- Define $h: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}^2$ as $h(y) = (\cos y, \sin y)$.
- Note that *h* is a bi-Lipschitz map: $\frac{2}{\pi}|y_1 - y_2| \le |h(y_1) - h(y_2)| \le |y_1 - y_2|.$
- Define $E: (x, y) \mapsto e^x h(y)$ for (x, y) in the strip $\{(x, y): \frac{-\pi}{2} \le y \le \frac{\pi}{2}\}.$

- Define $h: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}^2$ as $h(y) = (\cos y, \sin y)$.
- Note that *h* is a bi-Lipschitz map: $\frac{2}{\pi}|y_1 - y_2| \le |h(y_1) - h(y_2)| \le |y_1 - y_2|.$
- Define $E: (x, y) \mapsto e^x h(y)$ for (x, y) in the strip $\{(x, y): \frac{-\pi}{2} \le y \le \frac{\pi}{2}\}.$

- Define $h: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}^2$ as $h(y) = (\cos y, \sin y)$.
- Note that *h* is a bi-Lipschitz map: $\frac{2}{\pi}|y_1 - y_2| \le |h(y_1) - h(y_2)| \le |y_1 - y_2|.$
- Define $E: (x, y) \mapsto e^x h(y)$ for (x, y) in the strip $\{(x, y): \frac{-\pi}{2} \le y \le \frac{\pi}{2}\}.$

• Then extend *E* to the whole plane by reflecting across the boundaries of strips in the domain and across the imaginary axis in the range.

Athanasios Tsantaris

Zorich maps

First defined by Zorich in 1969.

Zorich maps

First defined by Zorich in 1969.

The Zorich maps can be defined in \mathbb{R}^d but we restrict ourselves in \mathbb{R}^3 for simplicity.

Zorich maps

First defined by Zorich in 1969.

The Zorich maps can be defined in \mathbb{R}^d but we restrict ourselves in \mathbb{R}^3 for simplicity.

First consider an L bi-Lipschitz, sense-preserving map h' that maps the square

$$Q:=\Big\{(x_1,x_2)\in \mathbb{R}^2: |x_1|\leq 1, |x_2|\leq 1\Big\}$$

to the upper hemisphere

$$\{(x_1,x_2,x_3)\in \mathbb{R}^3: x_1^2+x_2^2+x_3^2=1, x_3\geq 0\}.$$

Then define $Z: Q \times \mathbb{R} \to \mathbb{R}^3$ as $Z(x_1, x_2, x_3) = e^{x_3} h'(x_1, x_2)$. The map Z maps the square beam $Q \times \mathbb{R}$ to the upper half-space.

Then define $Z: Q \times \mathbb{R} \to \mathbb{R}^3$ as $Z(x_1, x_2, x_3) = e^{x_3} h'(x_1, x_2)$. The map Z maps the square beam $Q \times \mathbb{R}$ to the upper half-space.

By repeatedly reflecting now, across the sides of the square beam in the domain and the x_1x_2 plane in the range, we get a map $Z : \mathbb{R}^3 \to \mathbb{R}^3$.

Properties:

- Z is doubly periodic, meaning that $Z(x_1 + 4, x_2, x_3) = Z(x_1, x_2 + 4, x_3) = Z(x_1, x_2, x_3).$
- Unlike the exponential map, Z has a non empty branch set meaning that

 $B_Z := \{x \in \mathbb{R}^3 : Z \text{ is not locally homeomorphic at } x\} \neq \emptyset.$

• Z is quasiregular, omits 0 and has an essential singularity at infinity, just like the exponential map on the plane.

For the family of maps $Z_{\nu} = \nu Z$, $\nu > 0$ in analogy with the exponential family we have the following.

Theorem (Bergweiler, 2010 and Bergweiler, Nicks, 2014)

For all ν small enough, the Julia set of the Zorich map $\mathcal{J}(Z_{\nu})$ consists of uncountably many, disjoint curves each of which has a finite endpoint and goes off to infinity.

For the family of maps $Z_{\nu} = \nu Z$, $\nu > 0$ in analogy with the exponential family we have the following.

Theorem (Bergweiler, 2010 and Bergweiler, Nicks, 2014)

For all ν small enough, the Julia set of the Zorich map $\mathcal{J}(Z_{\nu})$ consists of uncountably many, disjoint curves each of which has a finite endpoint and goes off to infinity.

Theorem (Karpinska's paradox in \mathbb{R}^3) (Bergweiler, 2010)

The Hausdorff dimension of the Julia set $\mathcal{J}(Z_{\nu})$, for small values of ν is 3 while the dimension of the Julia set with the endpoints removed is 1!

For the family of maps $Z_{\nu} = \nu Z$, $\nu > 0$ in analogy with the exponential family we have the following.

Theorem (Bergweiler, 2010 and Bergweiler, Nicks, 2014)

For all ν small enough, the Julia set of the Zorich map $\mathcal{J}(Z_{\nu})$ consists of uncountably many, disjoint curves each of which has a finite endpoint and goes off to infinity.

Theorem (Karpinska's paradox in \mathbb{R}^3) (Bergweiler, 2010)

The Hausdorff dimension of the Julia set $\mathcal{J}(Z_{\nu})$, for small values of ν is 3 while the dimension of the Julia set with the endpoints removed is 1!

Question: Is it true that the Julia set of Z_{ν} is the entire \mathbb{R}^3 for large ν ?

Modifying the construction of Zorich maps

First consider an L bi-Lipschitz, sense-preserving map h' that maps the square Q to the upper hemisphere.

Modifying the construction of Zorich maps

First consider an L bi-Lipschitz, sense-preserving map h' that maps the square Q to the upper hemisphere.

We require that our map $h'(x_1, x_2) = (h'_1(x_1, x_2), h'_2(x_1, x_2), h'_3(x_1, x_2))$ must satisfy

• The images of the diagonal lines of the initial square stay on the planes $x_1 = x_2$ and $x_1 = -x_2$.

Modifying the construction of Zorich maps

First consider an L bi-Lipschitz, sense-preserving map h' that maps the square Q to the upper hemisphere.

We require that our map $h'(x_1, x_2) = (h'_1(x_1, x_2), h'_2(x_1, x_2), h'_3(x_1, x_2))$ must satisfy

• The images of the diagonal lines of the initial square stay on the planes $x_1 = x_2$ and $x_1 = -x_2$.

The technical condition is that:

• $h'_1(x_1, x_1) = h'_2(x_1, x_1)$

•
$$h'_1(x_1, -x_1) = -h'_2(x_1, -x_1).$$

Second, we scale things by a factor $\lambda > 1$ and define

$$h(x_1,x_2) = \lambda h'\left(rac{1}{\lambda}(x_1,x_2)
ight), \ (x_1,x_2) \in \lambda Q.$$

Define now the Zorich maps as before using this h instead. We denote those Zorich maps by \mathcal{Z} .

 $\mathcal{Z}: \lambda Q \times \mathbb{R} \to \mathbb{R}^3$ as $\mathcal{Z}(x_1, x_2, x_3) = e^{x_3}h(x_1, x_2)$ and reflect across sides and the plane x_1x_2 .

Theorem 1 (T., 2020)

Let $\lambda > L^5$. Then for all $\nu > \sqrt{\frac{2L}{\lambda}}$ the Zorich map \mathcal{Z}_{ν} we get using this scale factor λ has as its Julia set the whole \mathbb{R}^3 .

Theorem 1 (T., 2020)

Let $\lambda > L^5$. Then for all $\nu > \sqrt{\frac{2L}{\lambda}}$ the Zorich map \mathcal{Z}_{ν} we get using this scale factor λ has as its Julia set the whole \mathbb{R}^3 .

In fact we prove that if the assumptions of the above theorem are satisfied and V is any open set of ℝ³ then U_{n≥0} Zⁿ_ν(V) covers ℝ³ \ {0}.

Theorem 1 (T., 2020)

Let $\lambda > L^5$. Then for all $\nu > \sqrt{\frac{2L}{\lambda}}$ the Zorich map \mathcal{Z}_{ν} we get using this scale factor λ has as its Julia set the whole \mathbb{R}^3 .

- In fact we prove that if the assumptions of the above theorem are satisfied and V is any open set of ℝ³ then U_{n≥0} Zⁿ_ν(V) covers ℝ³ \ {0}.
- Note that we can not use normality arguments which are essential in Misiurewicz's proof.

Theorem 1 (T., 2020)

Let $\lambda > L^5$. Then for all $\nu > \sqrt{\frac{2L}{\lambda}}$ the Zorich map \mathcal{Z}_{ν} we get using this scale factor λ has as its Julia set the whole \mathbb{R}^3 .

- In fact we prove that if the assumptions of the above theorem are satisfied and V is any open set of ℝ³ then U_{n≥0} Zⁿ_ν(V) covers ℝ³ \ {0}.
- Note that we can not use normality arguments which are essential in Misiurewicz's proof.
- Our proof is in this sense more elementary and thus also more complicated.

In the complex plane we know that

Theorem (Baker, 1968)

Let f be a transcendental entire function then repelling periodic points are dense in $\mathcal{J}(f)$.

In the complex plane we know that

Theorem (Baker, 1968)

Let f be a transcendental entire function then repelling periodic points are dense in $\mathcal{J}(f)$.

Corollary

The repelling periodic points of E_{κ} for $\kappa > 1/e$ are dense in \mathbb{C} .

In the complex plane we know that

Theorem (Baker, 1968)

Let f be a transcendental entire function then repelling periodic points are dense in $\mathcal{J}(f)$.

Corollary

The repelling periodic points of E_{κ} for $\kappa > 1/e$ are dense in \mathbb{C} .

It is still unknown if the periodic points of a quasiregular map are dense in its Julia set.

In the complex plane we know that

Theorem (Baker, 1968)

Let f be a transcendental entire function then repelling periodic points are dense in $\mathcal{J}(f)$.

Corollary

The repelling periodic points of E_{κ} for $\kappa > 1/e$ are dense in \mathbb{C} .

It is still unknown if the periodic points of a quasiregular map are dense in its Julia set.

Theorem 2 (T. 2020)

Let $\lambda > L^5$. Then for all $\nu > \sqrt{\frac{2L}{\lambda}}$ the periodic points of \mathcal{Z}_{ν} are dense in \mathbb{R}^3 .

Definition

The escaping set is defined as $I(f) := \{x \in \mathbb{R}^d : \lim_{n \to \infty} |f^n(x)| = \infty\}.$

Definition

The escaping set is defined as $I(f) := \{x \in \mathbb{R}^d : \lim_{n \to \infty} |f^n(x)| = \infty\}.$

Theorem, (Eremenko, 1989)

Let f entire then $I(f) \neq \emptyset$ and $\partial I(f) = \mathcal{J}(f)$.

Definition

The escaping set is defined as $I(f) := \{x \in \mathbb{R}^d : \lim_{n \to \infty} |f^n(x)| = \infty\}.$

Theorem, (Eremenko, 1989)

Let f entire then
$$I(f) \neq \emptyset$$
 and $\partial I(f) = \mathcal{J}(f)$.

Theorem (Bergweiler, Fletcher, Langley, Meyer, 2009)

Let $f : \mathbb{R}^d \to \mathbb{R}^d$, $d \ge 2$ be a quasiregular map of transcendental type. Then I(f) is not empty.

Definition

The escaping set is defined as $I(f) := \{x \in \mathbb{R}^d : \lim_{n \to \infty} |f^n(x)| = \infty\}.$

Theorem, (Eremenko, 1989)

Let f entire then
$$I(f) \neq \emptyset$$
 and $\partial I(f) = \mathcal{J}(f)$.

Theorem (Bergweiler, Fletcher, Langley, Meyer, 2009)

Let $f : \mathbb{R}^d \to \mathbb{R}^d$, $d \ge 2$ be a quasiregular map of transcendental type. Then I(f) is not empty.

However we only have $\mathcal{J}(f) \subset \partial I(f)$ in the quasiregular setting.

Theorem (Devaney and Krych, 1984)

For $0 < \kappa \leq 1/e$ the escaping set $I(E_{\kappa})$ is not a connected set of \mathbb{C} . Its connected components are curves that go off at infinity.

Theorem (Devaney and Krych, 1984)

For $0 < \kappa \leq 1/e$ the escaping set $I(E_{\kappa})$ is not a connected set of \mathbb{C} . Its connected components are curves that go off at infinity.

Theorem (Rempe, 2010)

For $\kappa > 1/e$ the escaping set $I(E_{\kappa})$ is a connected and dense subset of the plane.

Theorem (Devaney and Krych, 1984)

For $0 < \kappa \leq 1/e$ the escaping set $I(E_{\kappa})$ is not a connected set of \mathbb{C} . Its connected components are curves that go off at infinity.

Theorem (Rempe, 2010)

For $\kappa > 1/e$ the escaping set $I(E_{\kappa})$ is a connected and dense subset of the plane.

Theorem (Bergweiler, 2010)

For small enough $\nu > 0$ the escaping set $I(Z_{\nu})$ is not a connected set of \mathbb{R}^3 . Its connected components are curves that go off at infinity.

Theorem (Devaney and Krych, 1984)

For $0 < \kappa \leq 1/e$ the escaping set $I(E_{\kappa})$ is not a connected set of \mathbb{C} . Its connected components are curves that go off at infinity.

Theorem (Rempe, 2010)

For $\kappa > 1/e$ the escaping set $I(E_{\kappa})$ is a connected and dense subset of the plane.

Theorem (Bergweiler, 2010)

For small enough $\nu > 0$ the escaping set $I(Z_{\nu})$ is not a connected set of \mathbb{R}^3 . Its connected components are curves that go off at infinity.

Theorem 3 (T. 2020)

Let $\lambda > L^5$. Then for all $\nu > \sqrt{\frac{2L}{\lambda}}$ the escaping set $I(\mathcal{Z}_{\nu})$ is a connected and dense subset of \mathbb{R}^3 .

Athanasios Tsantaris

Question 1: What happens for smaller values of the scale factor λ ?

Question 2: What is the typical orbit of the Zorich maps \mathcal{Z}_{ν} we constructed?

Question 3: Do higher dimensional indecomposable continua exists related with the dynamics of Zorich maps?

Thank you!