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Introduction
Definition

Let f : C — C be an entire function. The Julia set J(f) is the set of all

points in C where the family of iterates {f” : n € N} is not normal with
respect to the spherical metric of C.
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Introduction

Definition

Let f : C — C be an entire function. The Julia set J(f) is the set of all
points in C where the family of iterates {f” : n € N} is not normal with
respect to the spherical metric of C.

Intuitively the Julia set is the set where the iterates of f behave chaotically.
An alternative definition is using the blow-up property.

Blow-up property

Let f be a holomorphic map of the complex plane and J(f) its Julia set.
Let z € J(f). Then for any open neighbourhood U of z it is true that

(G

c\ U

n=0

contains at most two points.
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When studying dynamics of entire (or meromorphic) functions we seek to
understand the behaviour of whole classes/families of maps.
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When studying dynamics of entire (or meromorphic) functions we seek to
understand the behaviour of whole classes/families of maps.

The simplest and most well studied families of entire functions are the
quadratic family
foiz— 22 +¢

for polynomials and the exponential family
E.:z— re*, ke C\{0}

for transcendental (essential singularity at co) entire functions.

Studying those maps is usually the first step towards a better
understanding of more general classes of maps.
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In this talk we confine ourselves to the case x > 0.

Athanasios Tsantaris Dynamics of Zorich Maps 4 /22



In this talk we confine ourselves to the case k > 0.
Theorem (Misiurewicz, 1981)
For k > 1/e the Julia set J(E) is the entire complex plane.
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In this talk we confine ourselves to the case k > 0.
Theorem (Misiurewicz, 1981)
For k > 1/e the Julia set J(E) is the entire complex plane.

Theorem (Devaney and Krych, 1984)

For 0 < k < 1/e the Julia set J(E,) consists of uncountably many,
disjoint curves each of which has a finite endpoint and goes off to infinity. )

Source: wikipedia
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Quasiregular maps

e Quasiregular maps, from R? to RY, are a generalization of
holomorphic maps in the complex plane.
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Quasiregular maps

o Quasiregular maps, from R? to RY, are a generalization of
holomorphic maps in the complex plane.

@ Holomorphic maps send infinitesimally small circles to infinitesimally
small circles.

@ Quasiregular maps send infinitesimally small spheres to infinitesimally
small ellipsoids of bounded eccentricity.

@ Quasiregular maps stretch the space locally by a bounded amount.

Examples
@ An easy one: (x,y) — (2x,y).
e Winding maps (i.e. in polar coordinates (r,8) — (r, k0))
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Why quasiregular maps?

© They appear naturally in many places (complex dynamics, PDE's, ...).

@ Liouville's Theorem on conformal maps.

Athanasios Tsantaris Dynamics of Zorich Maps 6 /22



Why quasiregular maps?

© They appear naturally in many places (complex dynamics, PDE’s, ...).
@ Liouville’s Theorem on conformal maps.

If we want an interesting function theory in R?, d > 2 then we must study
quasiregular maps.
Indeed:

@ Quasiregular maps are open, discrete and differentiable a.e.
(Reshetnyak 1967-68).
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Why quasiregular maps?

© They appear naturally in many places (complex dynamics, PDE’s, ...).
@ Liouville’s Theorem on conformal maps.

If we want an interesting function theory in R?, d > 2 then we must study
quasiregular maps.
Indeed:
@ Quasiregular maps are open, discrete and differentiable a.e.
(Reshetnyak 1967-68).

@ There is an analogue of Picard’s Theorem (Rickman 1980).

Definition

A quasiregular map in R is said to be of polynomial type if
limy—oo f(x) = o0. If this limit does not exist we say that f is of
transcendental type.
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Julia sets for gr maps

Definition (Julia set for quasiregular maps, Bergweiler, 2013)

Let f be a quasiregular map on R?. We define the Julia set to be
{x € RY: cap (Rd \ Ure1 f”(U)) = 0, U any open neighboorhood of x}

This new Julia set has many of the properties of the classical Julia set

Theorem (Bergweiler, Nicks, 2014)

Let f be a quasiregular map on RY. Then assuming deg f > K
e J(f) is non empty.
e J(f) is completely invariant.
Moreover if cap J(f) > 0 then:
e J(f) is perfect.
e J(fP)=J(f).
o J(f) = O (x), where x € J(f)\ E(f).
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Another way of looking at the exponential map
o Define h:[-3,5] — R? as h(y) = (cosy,siny).
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Another way of looking at the exponential map
o Define h:[-3,5] — R? as h(y) = (cosy,siny).
@ Note that h is a bi-Lipschitz map:
2vi =2l < [h(y1) = h(y2)| < |y1 = yal.
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Another way of looking at the exponential map
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Another way of looking at the exponential map
o Define h:[-3,5] — R? as h(y) = (cosy,siny).
@ Note that h is a bi-Lipschitz map:

2y = yol < [h(y1) = h(y2)| < |y1 = yal.
o Define E : (x,y) — e*h(y) for (x, y) in the strip

{y): 5F <y <35)

n/2

-n/2

@ Then extend E to the whole plane by reflecting across the boundaries
of strips in the domain and across the imaginary axis in the range.
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Zorich maps
First defined by Zorich in 1969.
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Zorich maps

First defined by Zorich in 1969.
The Zorich maps can be defined in R? but we restrict ourselves in R3 for
simplicity.
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Zorich maps

First defined by Zorich in 1969.

The Zorich maps can be defined in R? but we restrict ourselves in R3 for
simplicity.

First consider an L bi-Lipschitz, sense-preserving map h’ that maps the
square

Q= {(xl,XQ) €R?: x| < 1,[x| < 1}

to the upper hemisphere

{(x1,x2,x3) € R3: X12 —l—X22 —i—x32 =1,x3 > 0}.

h

/_\
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Then define Z: Q x R — R3 as Z(x1, x2, x3) = e*h(x1,x2). The map Z
maps the square beam Q X R to the upper half-space.
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Then define Z: Q x R — R3 as Z(x1, x2, x3) = e*h(x1,x2). The map Z
maps the square beam Q X R to the upper half-space.

By repeatedly reflecting now, across the sides of the square beam in the
domain and the xyxo plane in the range, we get a map Z : R3 — R3.

)
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Properties:

@ Z is doubly periodic, meaning that
Z(x1+4,x0,x3) = Z(x1,x2 + 4,x3) = Z(x1, X2, X3).

@ Unlike the exponential map, Z has a non empty branch set meaning
that

Bz := {x € R®: Z is not locally homeomorphic at x} # (.

@ Z is quasiregular, omits 0 and has an essential singularity at infinity,
just like the exponential map on the plane.
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Julia sets of Zorich maps

For the family of maps Z, = vZ, v > 0 in analogy with the exponential
family we have the following.

Theorem (Bergweiler, 2010 and Bergweiler, Nicks, 2014)

For all v small enough, the Julia set of the Zorich map J(Z,) consists of
uncountably many, disjoint curves each of which has a finite endpoint and
goes off to infinity.
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Julia sets of Zorich maps

For the family of maps Z, = vZ, v > 0 in analogy with the exponential
family we have the following.

Theorem (Bergweiler, 2010 and Bergweiler, Nicks, 2014)

For all v small enough, the Julia set of the Zorich map J(Z,) consists of
uncountably many, disjoint curves each of which has a finite endpoint and
goes off to infinity.

Theorem (Karpinska's paradox in R3) (Bergweiler, 2010)

The Hausdorff dimension of the Julia set 7(Z,), for small values of v is 3
while the dimension of the Julia set with the endpoints removed is 1!
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Julia sets of Zorich maps

For the family of maps Z, = vZ, v > 0 in analogy with the exponential
family we have the following.

Theorem (Bergweiler, 2010 and Bergweiler, Nicks, 2014)

For all v small enough, the Julia set of the Zorich map J(Z,) consists of
uncountably many, disjoint curves each of which has a finite endpoint and
goes off to infinity.

Theorem (Karpinska's paradox in R3) (Bergweiler, 2010)

The Hausdorff dimension of the Julia set 7(Z,), for small values of v is 3
while the dimension of the Julia set with the endpoints removed is 1!

Question: Is it true that the Julia set of Z, is the entire R3 for large v?
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Modifying the construction of Zorich maps

First consider an L bi-Lipschitz, sense-preserving map h’ that maps the
square @ to the upper hemisphere.
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Modifying the construction of Zorich maps

First consider an L bi-Lipschitz, sense-preserving map h’ that maps the
square @ to the upper hemisphere.

We require that our map h'(x1,x2) = (hy(x1, x2), Ph(x1, x2), h5(x1, x2))
must satisfy

@ The images of the diagonal lines of the initial square stay on the
planes x; = x» and x; = —x».
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Modifying the construction of Zorich maps

First consider an L bi-Lipschitz, sense-preserving map h’ that maps the
square @ to the upper hemisphere.

We require that our map h'(x1,x2) = (hy(x1, x2), Ph(x1, x2), h5(x1, x2))
must satisfy

@ The images of the diagonal lines of the initial square stay on the
planes x; = x» and x; = —x».

The technical condition is that:
o hi(x1,x1) = hh(x1,x1)

o hi(x1,—x1) = —hy(x1,—x1).

2\ —mH

h
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Second, we scale things by a factor A > 1 and define
1
h(x1,x2) = AW (X(X]_,XQ)) , (x1,x2) € AQ.

Define now the Zorich maps as before using this h instead. We denote
those Zorich maps by Z.

Z:AQ xR — R3 as Z(x1, x0, x3) = €3h(x1, x2) and reflect across sides
and the plane x;x;.

2A —
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Julia sets of Zorich maps

Theorem 1 (T., 2020)

Let A > L°. Then for all v > \/% the Zorich map Z,, we get using this
scale factor \ has as its Julia set the whole R3.
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Julia sets of Zorich maps

Theorem 1 (T., 2020)

Let A > L®. Then for all v > \/% the Zorich map Z,, we get using this
scale factor \ has as its Julia set the whole R3.

@ In fact we prove that if the assumptions of the above theorem are
satisfied and V' is any open set of R? then (J,>o Z/(V) covers

R3\ {0}.
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@ Note that we can not use normality arguments which are essential in
Misiurewicz's proof.

Athanasios Tsantaris Dynamics of Zorich Maps 17 / 22



Julia sets of Zorich maps

Theorem 1 (T., 2020)

Let A > L®. Then for all v > \/% the Zorich map Z,, we get using this
scale factor \ has as its Julia set the whole R3.

@ In fact we prove that if the assumptions of the above theorem are
satisfied and V' is any open set of R? then (J,>o Z/(V) covers

R3\ {0}.
@ Note that we can not use normality arguments which are essential in
Misiurewicz's proof.

@ Our proof is in this sense more elementary and thus also more
complicated.
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Density of periodic points
In the complex plane we know that

Theorem (Baker, 1968)

Let f be a transcendental entire function then repelling periodic points are
dense in J(f).
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Corollary

The repelling periodic points of E, for k > 1/e are dense in C.
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Density of periodic points
In the complex plane we know that

Theorem (Baker, 1968)

Let f be a transcendental entire function then repelling periodic points are
dense in J(f).

Corollary
The repelling periodic points of E, for k > 1/e are dense in C.

v

It is still unknown if the periodic points of a quasiregular map are dense in
its Julia set.
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Density of periodic points
In the complex plane we know that

Theorem (Baker, 1968)

Let f be a transcendental entire function then repelling periodic points are
dense in J(f).

Corollary
The repelling periodic points of E, for k > 1/e are dense in C.

’

It is still unknown if the periodic points of a quasiregular map are dense in
its Julia set.

Theorem 2 (T. 2020)

Let A > L>. Then for all v > \/% the periodic points of Z,, are dense in
R3.
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Escaping set

Definition
The escaping set is defined as I(f) := {x € R? : lim,_, |f"(x)| = oc}. J
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Theorem, (Eremenko, 1989)
Let f entire then I(f) # 0 and 0I(f) = J(f).

Theorem (Bergweiler, Fletcher, Langley, Meyer, 2009)

Let f : R — RY, d > 2 be a quasiregular map of transcendental type.
Then I(f) is not empty.
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Escaping set

Definition

The escaping set is defined as /(f) := {x € R? : lim,_,o |f"(x)| = c0}.

Theorem, (Eremenko, 1989)
Let f entire then I(f) # 0 and 0I(f) = J(f).

Theorem (Bergweiler, Fletcher, Langley, Meyer, 2009)

Let f : R — RY, d > 2 be a quasiregular map of transcendental type.
Then I(f) is not empty.

However we only have J(f) C 0I(f) in the quasiregular setting.
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Connectedness of the escaping set
Theorem (Devaney and Krych, 1984)

For 0 < k < 1/e the escaping set /(E,) is not a connected set of C. Its
connected components are curves that go off at infinity.
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Connectedness of the escaping set
Theorem (Devaney and Krych, 1984)

For 0 < k < 1/e the escaping set /(E,) is not a connected set of C. lts
connected components are curves that go off at infinity.

Theorem (Rempe, 2010)

For k > 1/e the escaping set /(E,) is a connected and dense subset of the
plane.
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Connectedness of the escaping set

Theorem (Devaney and Krych, 1984)

For 0 < k < 1/e the escaping set /(E,) is not a connected set of C. lts
connected components are curves that go off at infinity.

Theorem (Rempe, 2010)

For k > 1/e the escaping set /(E,) is a connected and dense subset of the
plane.

v

Theorem (Bergweiler, 2010)

For small enough v > 0 the escaping set /(Z,) is not a connected set of
R3. Its connected components are curves that go off at infinity.
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Connectedness of the escaping set

Theorem (Devaney and Krych, 1984)

For 0 < k < 1/e the escaping set /(E,) is not a connected set of C. lts
connected components are curves that go off at infinity.

Theorem (Rempe, 2010)

For k > 1/e the escaping set /(E,) is a connected and dense subset of the

lane.
p V.

Theorem (Bergweiler, 2010)

For small enough v > 0 the escaping set /(Z,) is not a connected set of
R3. Its connected components are curves that go off at infinity.

Theorem 3 (T. 2020)

Let A > L°. Then for all v > \/% the escaping set /(Z,) is a connected
and dense subset of R3.
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Further Questions

Question 1: What happens for smaller values of the scale factor A\?

Question 2: What is the typical orbit of the Zorich maps Z, we
constructed?

Question 3: Do higher dimensional indecomposable continua exists
related with the dynamics of Zorich maps?
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Thank you!

Athanasios Tsantaris Dynamics of Zorich Maps 22 /22



