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Abstract

Populations are diverse in size, capacity response, and measures to
contain a pandemic such covid19. Then, it rises serious and critical
questions to whether general measures can be taken worldwide. Also,
it is unclear if conventional parametric methods are suitable to study
pandemics since their dynamic is modulated by biological, economi-
cal, environmental, social, and cultural factors. In this manuscript,
we apply a recently developed non-parametric mathematical method
that comes from regional economy, to investigate the dynamic of a
pandemic. We apply this novel methodology to study the ongoing
covid19 pandemic in all USA states and in the country itself. The
generality of our methodology makes it suitable to investigate also the
worldwide dynamics of diseases such HIV or tuberculosis.
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1 Introduction

The ongoing pandemic caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-Cov2) has infected more than two million people and
claimed more than 130,000 lives worldwide until 17 April 2020 [1]. Since
neither effective antiviral drugs or vaccine exist in a new outbreak, preven-
tive measures are needed to stop the spreading of virus. Therefore, control
measures (e.g. social distancing) should be properly undertaken in order to
modulate the trajectory of the epidemic and minimize the impact on the
health care system [2]. However, it is not clear wether similar measures
should be taken by regions with a different health care capacity response
(e.g. number of tests or intensive care units beads), population size, and the
number of new positive along with fatal cases daily. It is also unclear which
measures are more effective than others in different regions. These concerns
are even more critical and urgent since new outbreaks are predicted in a
not-to-far future [3].

Several factors may influence the trajectory of the pandemic which may
difficult its modeling and thus model predictions become unreliable. First,
for the case of coronavirus, two strains are identified: the S- and L-type,
being the later the most aggressive and infectious. The L-type was more
prevalent in early stages of the outbreak in Wuhan than the S-type, and the
relative prevalence of these strains have changed during the pandemic [4]. We
remark that it is unclear if the relative frequency between the S- and L-strain
follows a similar pattern in different regions affected by the virus. Second,
environmental factors such as humidity, temperature, and airflow are relevant
to determine the transmission and the stability of human respiratory viruses
such as the SARS-Cov2 [5], [6]. Therefore, the diversity of environmental
conditions will also determine the dynamic of the pandemic in different re-
gions affected by the virus. Third, risk factors such as older age or cardiac
injury were associated with higher in-hospital mortality [10], [11]. This re-
sult indicates that the dynamic of the covid19 pandemic will be different
in regions whose the elderly represents a higher percentage of the popula-
tion. Fourth, the coronavirus spreads mainly through close interaction with
infected people, by coming into contact with droplets, exhaled or coughed,
that contain the coronavirus [18]. Thus, public measures are designed to
reduce people’s mobility and so the spreading of the disease [2]. However,
we remark that the severeness of these measures are associated to the im-
pact on the economy and are culturally and socially influenced whereas its
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effectiveness depends on human behavior. Lastly, social inequality, poverty,
malnutrition, the lack of clean water and adequate sanitation, and the lack
of infrastructural and financial preparedness significantly increase individual
susceptibility to infection, and increase the risk of morbidity-mortality dur-
ing an outbreak [12]. Therefore, parametric models are unrealistic because
they ignore or are not able to account for all these collective factors that may
alter the dynamic of the pandemic [7], [8], [9]. Thus, non-parametric models
will be more informative where parametric models fail.

Here, we apply the recent modification of a well-established and a non-
parametric methodology in regional economy, the location quotient (LQ) to
understand the dynamic of a pandemic. The location quotient (LQ) was
introduced by Robert Murray Haig in 1920 [13] and have a wide application
in economy, [14], [16], [15] and [17]. However, LQ was seriously criticized. In
regional economy, the LQ needs two dimensions for its definition, the econom-
ical dimension (productive sector of the economy) and the spacial dimension
(the regions of the economy). Recently, in a PhD thesis1 at the Catholic
University of Brasilia, modified LQ by considering an extra dimension, the
time. With this modification, now the applicability of this non-parametric
framework can be extended to problems dealing with a temporal dynamic
such a pandemic.

2 A new non-parametric model

Here V (s, r, t) is the observation of the variable s in the region r at time
t. The new dimension t, define an horizon H for observations (H units of
times). In this horizon, we define periods, where each period has P units
of time, which define a total of H − P + 1 periods. Each period p can
be seen as a moving window of size P spanning the complete horizon H.
In term of lineal Algebra, we fix a region r ∈ {1, 2, · · · , R} and a period
p ∈ {1, 2, · · · , H − P + 1} to define a matrix with S rows and P columns,
called the Regional Matrix of location quotients, denoted by RMLQp

r. Here,
each matrix has associated a semi definite symmetric matrix (the covariance
matrix), denoted here as CV p

r . Since CV p
r is symmetric and semi definite, it

has real eigenvalues and eigenvectors. The interpretation of each eigenvalue

1This thesis was advised by the second author, the PhD student is Jose França and the
title is “Quocientes de locação e politicas públicas de desenvolvimento regional: Teoria y
aplicações”. the thesis defense was rescheduled by the covid19 quarantine in Brasilia.
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λ is as follows: if m is the mean of the rows of the matrix RMLQp
r and £ is

the line that passes through m with direction of the eigenvector v associated
to λ, then λ represent the dispersion of the projections of the rows of matrix
RMLQp

r over £. So, all the eigenvalues represent the dispersion of the rows
respect to m. Since the focus is the concentration of all the productive sectors
in the region r at the period p, then the norm of the vector contains all the
eigenvalues of the matrix CV p

r is defined as the concentration index of all
productive sectors in the region r at the period p.

However, the CI matrix is not sufficient to understand the global behavior
of each variable in the country, because each CI component in the matrix
represents dispersion of the behavior of three variables in a given state at
certain period. Therefore, the analysis of CI is complemented with the
analysis of the global percentage GP to describe the global behavior of each
variable s in the country at each time t. Therefore, considering both GP and
CI we can investigate a global and local dynamic of the covid19 pandemic
in different regions of the country and of the country itself.

3 Application of the non-parametric model

to the covid19 pandemic

The pandemic of the covid19 is controlled by performing nation wide tests,
the results to this test is positive or negative (the asymptomatic cases and
the ones without covid19), and a portion of infected people (positive test)
result in deaths. So, we consider the variables, the number of test s = 1,
positive test s = 2 and deaths s = 3 as a productive sector of the covid19, for
each state r in USA. The economy is USA (without regions with low number
of data). Therefore, we have,

1. R = 52 (states or regions, it includes also Hawaii, Alaska, and Puerto
Rico)

2. S = 3 (three variables: test, positive test, and deaths)

3. H = 41 (since the day the majority of US states reported test, positive
cases and deaths, March 06, to the date the data was collected until
April 16)

4. P = 7 time spam of the government response to take measures (“mov-
ing window”). For a first approximation, we chose seven days.
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So,

1. V (s, r, t) component of tensor V with size S ×R×H (the data),

2. AXR(r, t) =
∑S

k=1 V (k, r, t) component of aggregation by regions ma-
trix AXR with size R×H,

3. AXS(s, t) =
∑R

i=1 V (s, i, t) component of aggregation by sector matrix
AXS with size S ×H,

4. TA(t) =
∑R

i=1AXR(i, t) component of total aggregation vector TA
with H components,

5. GP (s, t) = AXS(s, t)/TA(t) component of global percentage matrix
GP with size S ×H,

6. LP (s, r, t) = V (s, r, t)/AXR(r, t) component of local percentage tensor
LP with size S ×R×H.

So, the location quotient of the variable s in the state r at time t is defined
as:

LQ(s, r, t) =

[
LP (s, r, t)

GP (s, t)

]
The matrix CI is built from the LQ tensor for each state at each period.

The tensor LQ is the transformation of the data V . So, CI has R rows and
H − P + 1 columns. Each component CI(r, p) is defined as the norm of the
vector contain all the eigenvalues of the covariance matrix of RMLQp

r (here,
RMLQp

r(t, s) = LQ(s, r, t) for s ∈ {1, 2, 3} and t ∈ {p, p+1, · · · , p+P −1}).
When CI(r, p) is close to zero, means that each component LQ(s, r, t) of
RMLQp

r is close to one. This case means that for the state r at period p the
corresponding part of the sequences of LP (s, r, t) follows the dynamic of the
corresponding part of the sequences of GP (s, t). But, when CI(r, t) is far
from zero, there exists components LQ(s, r, t) is far to one. It implies there
exists states and sectors such that LP (s, r, t) > GP (s, t).

4 The global view of the covid19 pandemic

In this section we start with the analysis of global percentage matrix GP .
Here, the pandemic is controlled when there is no new death ({GP (3, t)}
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converges to zero) and there is no new positive test (infected people) in
the country ({GP (2, t)} converges to zero). This indicates that {GP (1, t)}
converges to one, since GP (1, t) +GP (2, t) +GP (3, t) = 1.

Daily historical data of number of tests, positives tests, and deaths were
collected from the database “COVID Tracking Project2” for all USA states.
After collecting this data, we applied our model using a code written in
Scilab and built the matrices GP and AXS for USA. We mentioned earlier
that the coronavirus mainly spreads through close interaction with infected
people [18]. As a result, the Centers for Disease Control (CDC) and all
states of USA have taken several measures (between march 15 - 16 +/− 5
days, Figure 1) such legally enforcing social distancing, declaring state of
emergency, or closing all non-essential businesses, among other measures, to
limit people’s contact [18], namely reduce people’s mobility. Note that some
measures are more flexible than others and they also differ between USA
states, making it hard to correlate them with GP and AXS. Therefore, we
also collected people’s mobility daily data of all USA states to correlate it
with the the dynamics of GP and AXS (Figure 1). We believe that the
reduction of people’s mobility is a result of all types of diverse measures
taken by a particular USA state or the country to reduce the spread of
the coronavirus. In other words, restriction of people’s mobility aims to
the convergence GP (2, t) and GP (3, t) to zero. Daily historical people’s
mobility data per USA state was collected from the ”wallethub” database
(https://wallethub.com/edu/).

From our results (Figure 1), the following observations are pointed out:

1. Within the first ten days of the pandemic, from March 06 to march
16 of the pandemic, the global percentage of positive test ({GP (2, t)})
approached to zero (from 0.3 to 0.1) whereas the global percentage of
deaths ({GP (3, t)}) remained close to zero (around 0.002) (Figure 1C,
1E). Consequently, the global percentage of test ({GP (1)}) approached
to one or remained close to one (Figure 1A). These observations in-
dicate that the positive test (infected people) and deaths were close
to be contained ({GP (2, t)}, Figure 1C). Note that the reduction of
{GP (3, t)} and {GP (2, t)} is accompanied by the decrease of people’s
mobility from around 10 to 0%, where public measures start taking
place between march 15-16 (Figure 1E). Note that the aggregation of

2https://covidtracking.com/data
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positive test ({AXS(2, t)}) and fatal cases ({AXS(3, t)}), increased
monotonically during 29 day (from March 06) (Figure 1D, 1F).

2. After March 16, the global percentage of positive test ({GP (2, t)})
slightly increased (until march 26) but then remained stationary, oscil-
lating around 0.16 for the rest of the pandemic. Meanwhile, the global
percentage of fatal case ({GP (3, t)}) still remained close to 0.002 before
March 26. Coincidentally, when people’s mobility decreases to around
-25%, the ({GP (2, t)}) remained stationary. This observation suggests
that the spread of the virus is contained when a public measures result
in a significant decrease of more than 25% of people’s mobility. There
is a time interval of around 13 days where people mobility goes from +5
to -25% (Figure 1). Therefore, if public measures were taken at least
13 days before (between march 2 - 3), the covid19 pandemic could have
been controlled ({GP (2, t)}) close and approaching to zero).

3. Since March 31, the global percentage of fatal cases ({GP (3, t)}), in-
creased monotonically from 0.002 to below 0.014. This result indicates
that everyday more infected people is dying, namely the fatality rate
is worsening in USA (Figure 1E).

It is possible that before March 16, the covid19 pandemic was close to
be contained since the hospital capacity response (e.g. ICU beads per 10000
people) was not overwhelmed. However, after March 26, the hospital capacity
response was surpassed by the increasingly number of infected people (Figure
1D). In USA, around 68,000 people die annually due to the lack of health care
insurance [19]. Thus, uninsuranced people may also contribute to the increase
of the fatality rate, as a consequence of the lack of treatment. We remark that
the behavior of {GP (2, t)} and {GP (3, t)} within the first ten days, where
the pandemic was close to be contained, cannot be easily observed using
classical methods such counting (or accumulating) the new the number of
infected people (positive tests) and deaths daily (Figure 1D, 1F).

The {GP (2, t)} and {GP (3, t)} values define the global dynamic of the
covid19 pandemic in the country, USA is this case. If they move away from
zero, then it is necessary to establish more restrictive measures to people’s
mobility to reduce the spreading of the virus. Therefore, federal public mea-
sures should be established and their effectiveness should be monitored based
on the periodic analysis and the behavior of {GP (2, t)} and {GP (3, t)}. Now,
we cannot assume all states are equally successful in controlling the spreading
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and the lethality of the pandemic, in fact some USA states may be contribut-
ing negatively or positively to the global dynamic. To detect which USA
state has a negative contribution to GP , we then proceed with the analysis
of concentration indexes CI and the local percentage LP (next section).

5 The local view of the covid19 pandemic

In this section we will be focused on the local dynamic in USA states and
their contribution to the global behavior of the pandemic in the country,
considering the matrix CI and the tensor of local percentage LP . The matrix
CI describe the behavior of the dispersion of these LP values, relative to
GP , for a particular state r within a certain period p. For each state r, the
sequence {CI(r, p)} is close to zero if the state r follows the global trend of the
global percentage at one given period p, namely {LP (s, r, t)} and {GP (r, t)}
are very similar. On the other hand, a large {CI(r, p)} value (away from
zero) indicates that this particular USA state r will contribute negatively
or positively to the global percentage at one given period p. For the case
of deaths and infected people, a negative contribution is when GP (s, t) <
LP (s, r, t) and a positive contribution is when GP (s, t) > LP (s, r, t).

Through the individual analysis of CI and LP values of all USA states,
we carefully selected the ones that have high CI values (more than 1) and
GP (s, t) < LP (s, r, t) for the case of positive test (infected people, s = 2)
and deaths (s = 3). After this process, we selected six USA states for the
case of positive test: Alabama, California, Maine, Mississippi, New Jersey,
New York, Oklahoma, and Washington (Figure 4A). For the case of deaths
we selected: Maine, Michigan, New Jersey, and New York (Figure 2). Some
of USA states, have high CI values than the ones selected, either at the
beginning, at the end or in a middle period, but GP (s, t) − LP (s, r, t) was
fluctuating around zero, indicating that on average they follow the global
trend. The other USA states have CI(r, p) near to zero along with nearly
zero or positive GP (s, t)−LP (s, r, t) values through the duration of the pan-
demic. These USA states were also not selected for further analysis. To
rationalize our findings with factors that may be critical for the increase of
the concentration of infected people and deaths in each USA state. Here we
consider: the economic accessibility to test and treatment (measured as per-
centage of people in poverty and without health care insurance), the hospital
capacity response to treat infected people and prevent deaths (ICU beads per
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10000 people), the propensity of people to get infected (measured as popu-
lation density, and people’s mobility), and people in high risk (percentage of
people of 65 years older and above).

From our results (Figure 4), the following observations are pointed out:

1. Only three states are the ones that contribute negatively to the global
trend of positive test (infected people) and deaths. They are New
Jersey, New York, and Maine (Figure 2C, 2D). For these USA states,
the local dynamic of the covid19 pandemic is worsening in New Jersey
and Maine whereas New York seems to approach to the global trend
(Figure 2C, 2D). Then, our model suggest that a more drastic reduction
of people’s mobility are needed to further contain the pandemic in these
states. Remarkably, this prediction is consistent with the fact both
New York and New Jersey together account for around 42% of the
total infected people and deaths in USA according to the CDC.

2. Note that the state of Michigan is following the global trend of infected
people, indicating that public measures are taking effect (Figure 2C).
However, the fatally rate is significantly higher than the global trend
and also seem to be worsening (Figure 2D). Consistently, Michigan is al-
ready ranked third in number of deaths in USA, thus authorities should
be alert and investigate the leading cause of this high and increasing
fatality rate.

3. There are five USA states whose fatality rate follows the global trend
but the local percentage of infected people seem to worsen. They are
Alabama, California, Mississippi, Oklahoma, and Washington. Thus,
more severe public measures are needed in this case to limit people’s
mobility.

It is not clear wether the earlier the measures were taken, the population
density, the lack of health care insurance, poverty, (Figure 3A-C) or the
relative magnitude of reduction of people’s mobility (Figure 2B) contribute
significantly to the relative reduction in the spreading of the virus in USA
states. For example, California achieved earlier (since March 11) and more
dramatic reduction of people’s mobility (down to -35%) whereas Michigan
reduced people mobility around 4 days later and only down to 30% (Figure
2B). However, Michigan was more successful to contain the spreading of
the virus. We mention earlier that reduction of people’s mobility aims to
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minimize people’s contact to stop the spreading of the virus [18]. Therefore, if
the local percentage of infected people increases or it is still higher compared
to the global trend, then more severe public measures are needed to limit
people’s contact even further.

Risk factors such as older age is associated with higher in-hospital mor-
tality [10], [11]. Also, the lack of infrastructure such ICU beads contribute
to the increase of the fatality rate [12]. Then, the fatality rate in New York
and New Jersey can be explained as follows i) both have 53% more of a
the percentage of adult population above 65 years than the average in USA,
and ii) 115 and 340% more of the percentage of adult population above 65
years in poverty than the average in USA (Figure 3E-F). Only for the case
of New York, this high fatality rate can also be associated by the 13% less
ICU bead per 1000 than the average (Figure 3C). For the case of Michigan
and Maine, the high mortality can be explain only by the higher percent-
age of adult population above 65 years than the average in USA, around 24
and 56% respectively (Figure 3E-F). Only for the case of Maine, the high
mortality can also be associated by the 16% less ICU bead per 1000 than
the average (Figure 3C). Overall, we conclude that a USA state with high
mortality can be associated to a higher percentage of adult population above
65 years relative to the average in the country. Other factors such the lack
of ICU beads and the poverty of this high risk population can also explain
the high mortality relative to the global trend. Nonetheless, these factors do
not necessarily imply that a particular USA state will have a high fatality
rate. For example, Florida have 66 and 307% more than the country average
of the global percentage of adult population above 65 years and in poverty,
respectively; and yet the mortality rate in this case follows the trend of the
global percentage. On the other hand, a very low percentage of these high
risk population does necessary implies a low fatality rate, which is the case
for all USA states that follow or have a lower fatality rate than the global
trend (Figure 3E).

To the best of our knowledge, epidemiologist lack of a non-parametric
model to study the dynamic of diseases or pandemics. In a broader view,
parametric models ”force the data” to fit into a particular model with nu-
merous assumptions that are unrealistic, since processes such a diseases (e.g.
HIV or tuberculosis) and pandemics are influenced by biological, economical,
environmental, social, and cultural factors. In this line, our non-parametric
model offer a new perspective since it deals directly with the experimental
data, and thus potentially provide more information that can be used as a
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background to take preventive and critical measures to reduce the world-wide
negative impact of diseases such HIV or tuberculosis.
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Figure 1: The global behavior of the covid19 pandemic: (A) Daily behav-
ior of Global percentages of tests {GP (1, t)}. (B) Total quantities of tests
AXS(1, t) daily. (C) Daily behavior of Global percentages of positives test
{GP (2, t)}. (D) Total quantities of positives test AXS(2, t). (E) Daily be-
havior of Global percentages of deaths {GP (3, t)}. (F) Total quantities of
daily deaths AXS(3, t). Note here that at any given time t, {GP (1, t)} +
{GP (2, t)} + {GP (3, t)} = 1. Continuous black lines refer to experimen-
tal temporal dynamic of {GP (1, t)}, {GP (2, t)}, and {GP (3, t)} values from
March 05 to April 16. Discontinuous black line refers to people’s mobil-
ity from March 05 to April 11. The horizontal black line depicts the average
value (dot) and the standard deviation (bar) of the distribution of USA states
start public measures, 15 - 16 +/− 5 days.
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Figure 2: The local dynamic of the covid19 pandemic. (A) Dynamic be-
havior of CI ¿ 1 values for 7 states in the 35 periods: Alabama (black),
California (dark blue), Maine (purple), Michigan (stone blue), Mississippi
(yellow), New Jersey (sky blue), New York (red), Oklahoma (green), and
Washington (orange). (B) Comparative analysis of people’s mobility pro-
file. (C) GP (s, t) − LP (s, r, t) profile of positive test (infected people). (D)
GP (s, t)−LP (s, r, t) profile of deaths. For the case of (B), (C) and (D), the
dynamic is depicted from March 05 to April 11 for the seven USA states.
The grey background is the GP (s, t)− LP (s, r, t) profile of the rest of USA
states not considered in the analysis in (B) and (C), since they follow the
global trend GP (s, t) = LP (s, r, t) or contribute positively to the global trend
GP (s, t) > LP (s, r, t)
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Figure 3: Factors that may contribute to the dynamic of the pandemic in all
USA states: (A) Population density, (B) % of people in without insurance,
(C) % of people in poverty, (D) Number of ICU beads per 10000 people, (E)
% of population with 65 years old and above, and (F) % of population with
65 years old and above in poverty. The states highlighted in red (bottom)
refer to the ones found in Figure 2D. The states highlighted in green (top)
refer to the ones found in Figure 2C. Green and red arrows help to the eyes
to indicates the corresponding value of a particular USA state in the graphs.
Average values are depicted by the horizontal line in each graph. Note that
all USA states with high mortality can be explained by their higher % of
population with 65 years old and above (highlighted in red) than the average.
Above the average, USA states have either CI > 1 or CI < 1, whereas above
the line, they have necessarily CI < 1 (right of Figure 3E)
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