Models for Dependent Risks Using Copulas

First Banco de Santander Financial Engineering School

Alexander J. McNeil, University of York

9th March 2021

- Fundamentals of Copulas
 - Definition and properties
 - Examples and simulation
 - Estimation with maximum likelihood
 - Estimation with rank correlations
- Attainability of Kendall Rank Correlations
 - Motivation of attainability problem
 - Extremal copulas and correlation matrices
 - Attainable Kendall correlation matrices
 - Testing for attainability
- Copulas for Time Series
 - Introduction
 - ARMA copulas
 - D-vine copulas
 - V-transforms

- Fundamentals of Copulas
- 2 Attainability of Kendall Rank Correlations
- Copulas for Time Series

- Fundamentals of Copulas
 - Definition and properties
 - Examples and simulation
 - Estimation with maximum likelihood
 - Estimation with rank correlations
- 2 Attainability of Kendall Rank Correlations
- Copulas for Time Series

4/58

Definition and Sklar's Theorem

A copula is a multivariate distribution function with standard uniform marginal distributions.

Theorem

• Let F be a joint distribution function with margins F_1, \ldots, F_d . There exists a copula C such that for all x_1, \ldots, x_d in $[-\infty, \infty]$

$$F(x_1,...,x_d) = C(F_1(x_1),...,F_d(x_d)).$$

If the margins are continuous then C is unique.

• And conversely, if C is a copula and F_1, \ldots, F_d are univariate distribution functions, then F defined above is a multivariate df with margins F_1, \ldots, F_d .

4 ≥ > < ≥ >

Probability and Quantile Transforms

 $F(X) \sim U(0,1)$ (standard uniform).

Recall the following facts concerning stochastic simulation:

Probability Transform.
 Let X be a random variable with continuous distribution function F. Then

$$\mathbb{P}(F(X) \leq u) = u.$$

Quantile Transform.
 Let U be uniform and F the distribution function of any rv X. Then

$$\mathbb{P}(F^{\leftarrow}(U) \leq x) = F(x).$$

These facts are essential in dealing with copulas.

Note, in general, we need generalized inverse $F^{\leftarrow}(u) = \inf\{x : F(x) \ge u\}$.

-∢≣⊁,∢≣⊁

Basic Properties

• Extracting the copula. Given F the copula C is given by

$$C(u_1,\ldots,u_d)=F\left(F_1^{\leftarrow}(u_1),\ldots,F_d^{\leftarrow}(u_d)\right),$$

where F_1, \ldots, F_d are the marginal distributions of F.

- Invariance. The copula C of a random vector is invariant under strictly increasing transformations of the variables.
- Independence copula. The copula representing independence is

$$C(u_1,\ldots,u_d)=\prod_{i=1}^d u_i.$$

- Comonotonicity copula. The copula representing perfect positive dependence (all variables increasing functions of a single variable) is $M(\mathbf{u}) = \min \{u_1, \dots, u_d\}.$
- Countermonotonicity copula. For two variables, the copula representing perect negative dependence is $W(u_1, u_2) = \max\{u_1 + u_2 1, 0\}$.

- Fundamentals of Copulas
 - Definition and properties
 - Examples and simulation
 - Estimation with maximum likelihood
 - Estimation with rank correlations
- Attainability of Kendall Rank Correlations
- Copulas for Time Series

8 / 58

Parametric Copulas

There are basically two possibilities:

• Copulas implicit in well-known parametric distributions. Sklar's Theorem states that we can always find a copula in a parametric distribution function. Denoting the df by F and assuming the margins F_1, \ldots, F_d are continuous, the implied copula is

$$C(u_1,\ldots,u_d)=F\left(F_1^{\leftarrow}(u_1),\ldots,F_d^{\leftarrow}(u_d)\right).$$

Such a copula may not have a simple closed form.

Closed form parametric copula families generated by some explicit construction that is known to yield copulas. The best example is the well-known Archimedean copula family. These generally have limited numbers of parameters and limited flexibility; the standard Archimedean copulas are dfs of exchangeable random vectors (distribution invariant under permutations).

∢ 差 医 ∢ 差 医

Examples of Implicit Copulas

Gaussian Copula

$$C_P^{\mathsf{Ga}}(\mathbf{u}) = \Phi_P\left(\Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_d)\right)$$

- Φ denotes the standard univariate normal df.
- Φ_P denotes the joint df of $\mathbf{X} \sim N_d(\mathbf{0}, P)$ and P is a correlation matrix.
- Write C_o^{Ga} when d=2.
- $P = I_d$ gives independence.
- $P = J_d$ (matrix of 1's) gives comonotonicity.

t Copula

$$C_{\nu,P}^{\mathsf{t}}(\mathbf{u}) = \mathbf{t}_{\nu,P}\left(t_{\nu}^{-1}(u_1),\ldots,t_{\nu}^{-1}(u_d)\right)$$

- t_{ν} is the df of a standard univariate t distribution.
- t_{ν,P} is the joint df of a multivariate Student t distribution with correlation matrix P and degree of freedom ν.

∢ 惠 区 ∢ 惠 区

Archimedean Copulas

Gumbel Copula

$$C_{\theta}^{\mathsf{Gu}}(u_1,\ldots,u_d) = \exp\left(-\left(\left(-\log u_1\right)^{\theta} + \cdots + \left(-\log u_d\right)^{\theta}\right)^{1/\theta}\right).$$

 $\theta \geq 1$: $\theta = 1$ gives independence; $\theta \rightarrow \infty$ gives comonotonicity.

Clayton Copula

$$C_{\theta}^{\text{CI}}(u_1,\ldots,u_d) = \left(u_1^{-\theta} + \cdots + u_d^{-\theta} - d + 1\right)^{-1/\theta}.$$

 $\theta >$ 0: $\theta \to$ 0 gives independence ; $\theta \to \infty$ gives comonotonicity.

Other common examples include the Frank and Joe copulas.

-∢≣⊁,∢≣⊁

Simulating Copulas

Simulating Gaussian copula C_P^{Ga}

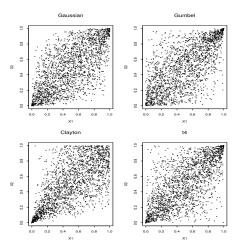
- Simulate $\mathbf{X} \sim N_d(\mathbf{0}, P)$
- Set $\mathbf{U} = (\Phi(X_1), \dots, \Phi(X_d))'$ (probability transformation)

The other three copulas are also straightforward to simulate but we do not go into details.

How do you simulate a normal vector $\mathbf{X} \sim N_d(\mathbf{0}, P)$?

- Simulate *d* independent standard normals Z_1, \ldots, Z_d .
- ② Compute Cholesky decomposition P = AA' for lower-triangular matrix A.
- **3** Return $\boldsymbol{X} = A\boldsymbol{Z}$ where $\boldsymbol{Z} = (Z_1, \dots, Z_d)'$.

Simulating Copulas II



Gauss: $\rho = 0.7$, Gumbel: $\theta = 2$, Clayton: $\theta = 2.2$, t: $\rho = 0.71$, $\nu = 4$

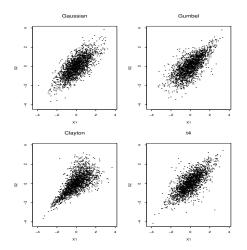
Meta-Distributions and Their Simulation

- By the converse of Sklar's Theorem we know that if C is a copula and F_1, \ldots, F_d are univariate dfs, then $F(\mathbf{x}) = C(F_1(x_1), \ldots, F_d(x_d))$ is a multivariate df with margins F_1, \ldots, F_d .
- We refer to F as a meta-distribution with the dependence structure represented by C. For example, if C is a Gaussian copula we get a meta-Gaussian distribution and if C is a t copula we get a meta-t distribution.
- If we can sample from the copula C, then it is easy to sample from F.
- Generate a vector (U_1, \ldots, U_d) with df C.
- 2 Return $(F_1^{\leftarrow}(U_1), \dots, F_d^{\leftarrow}(U_d))$.

14 / 58

© 2021 (QRM Tutorial) CRM Barcelona 2021 A.J. McNeil

Simulating Meta Distributions



Linear correlation $\rho(X_1, X_2) \approx 0.7$ in all cases.

- Fundamentals of Copulas
 - Definition and properties
 - Examples and simulation
 - Estimation with maximum likelihood
 - Estimation with rank correlations
- Attainability of Kendall Rank Correlations
- Copulas for Time Series

16 / 58

The Set-Up

- We have data vectors $\mathbf{X}_1, \dots, \mathbf{X}_n$ with identical distribution function F.
- We assume that this distribution function F has continuous marginal distributions F_1, \ldots, F_d and thus by Sklar's theorem a unique representation $F(x) = C(F_1(x_1), \ldots, F_d(x_d))$.
- We assume that C belongs to a parametric copula family $C(\cdot; \theta)$.
- In order to estimate $C(\cdot; \theta)$ we first need to estimate F_1, \dots, F_d . There are two main approaches:

```
Inference functions for margins (IFM) -
```

margins estimated with parametric distributions. (Joe, 1997)

Pseudo-maximum likelihood -

margins estimated using version of empirical distribution function, e.g. $\widehat{F}_j(x) = \frac{1}{n+1} \sum_{i=1}^n \mathbf{1}_{\left\{X_{i,j} \leq x\right\}}$. (Genest and Rivest, 1993)

Stage 2: estimating the copula

Having estimated the margins, we form a pseudo-sample from copula

$$\widehat{\boldsymbol{U}}_i = \left(\widehat{U}_{i,1}, \dots, \widehat{U}_{i,d}\right)' = \left(\widehat{F}_1(X_{i,1}), \dots, \widehat{F}_d(X_{i,d})\right)', \quad i = 1, \dots, n.$$

and fit parametric copula C by maximum likelihood.

- Copula density is $c(u_1, \ldots, u_d; \theta) = \frac{\partial}{\partial u_1} \cdots \frac{\partial}{\partial u_d} C(u_1, \ldots, u_d; \theta)$.
- The log-likelihood is

$$I(\boldsymbol{\theta}; \widehat{\mathbf{U}}_1, \dots, \widehat{\mathbf{U}}_n) = \sum_{i=1}^n \log c(\widehat{U}_{i,1}, \dots, \widehat{U}_{i,d}; \boldsymbol{\theta}).$$

Independence of vector observations is assumed here for simplicity.

CRM Barcelona 2021 © 2021 (QRM Tutorial) A.J. McNeil

- Fundamentals of Copulas
 - Definition and properties
 - Examples and simulation
 - Estimation with maximum likelihood
 - Estimation with rank correlations
- 2 Attainability of Kendall Rank Correlations
- Copulas for Time Series

19 / 58

Why rank correlation?

Why not ordinary (Pearson/linear) correlation?

- The correlation of a bivariate distribution F depends on both copula C and margins F₁ and F₂.
- Thus the correlation is not necessarily invariant under one-to-one transformations of the margins.
- For given margins, the range of attainable correlation need not be equal to [-1,1] and can be quite limited.

In contrast:

- Rank correlations depend only on copula C.
- They are thus invariant under one-to-one transformations of the margins
- For given margins, the range of attainable rank correlations is [-1, 1].

This is important for Monte Carlo scenario generation under specification of margins and correlations (e.g. @RISK software).

20/58

Rank Correlation

Spearman's rho

$$\rho_{S}(X_{1}, X_{2}) = \rho(F_{1}(X_{1}), F_{2}(X_{2}))
\rho_{S}(X_{1}, X_{2}) = 12 \int_{0}^{1} \int_{0}^{1} \{C(u_{1}, u_{2}) - u_{1}u_{2}\} du_{1} du_{2}.$$

Kendall's tau

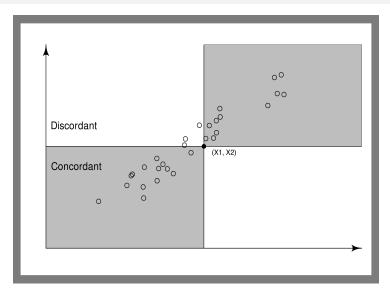
Take an independent copy of (X_1, X_2) denoted (X_1^*, X_2^*) .

$$\begin{split} \tau(X_1,X_2) &= & \mathbb{P}((X_1-X_1^*)(X_2-X_2^*)>0) - \mathbb{P}((X_1-X_1^*)(X_2-X_2^*)<0) \\ &= & \mathbb{P}\{\text{points concordant}\} - \mathbb{P}\{\text{points discordant}\} \\ &= & 2\mathbb{P}\{\text{points concordant}\} - 1 \\ \tau(X_1,X_2) &= & 4\int_0^1 \int_0^1 C(u_1,u_2) dC(u_1,u_2) - 1. \end{split}$$

∢≣⊁,∢≣⊁

21 / 58

Concordance



Retodomax, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

Rank correlations for certain copulas

• Let (X_1, X_2) be a bivariate random vector with copula C_ρ^{Ga} and continuous margins. Then the rank correlations are

$$\tau(X_1, X_2) = \frac{2}{\pi} \arcsin \rho,$$

$$\rho_S(X_1, X_2) = \frac{6}{\pi} \arcsin \frac{\rho}{2}.$$

- The first formula also holds when (X_1, X_2) has the t copula $C_{\nu,\rho}^t$ or indeed the copula of a bivariate elliptical distribution with correlation ρ .
- ullet Explicit formulas in terms of parameter heta available for many Archimedean copulas.
- Kendall's tau tends to be more widely available than Spearman's rho,
- This permits method-of-moments estimation by equating theoretical values of rank correlation with sample values.

∢ 惠 医 ∢ 惠 医

Sample Rank Correlations

Consider iid bivariate data $\{(X_{1,1}, X_{1,2}), \dots, (X_{n,1}, X_{n,2})\}$. The standard estimator of $\tau(X_1, X_2)$ is

$$\frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} \operatorname{sgn} \left[(X_{i,1} - X_{j,1}) (X_{i,2} - X_{j,2}) \right],$$

and the standard estimator of $\rho_S(X_1, X_2)$ is

$$\frac{12}{n(n^2-1)} \sum_{i=1}^n \left(\text{rank}(X_{i,1}) - \frac{n+1}{2} \right) \left(\text{rank}(X_{i,2}) - \frac{n+1}{2} \right).$$

- Fundamentals of Copulas
- Attainability of Kendall Rank Correlations
- Copulas for Time Series

25 / 58

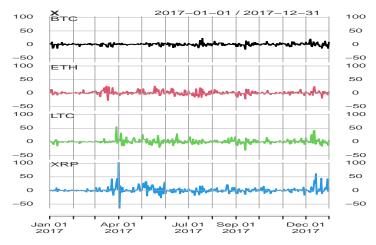
- Fundamentals of Copulas
- Attainability of Kendall Rank Correlations
 - Motivation of attainability problem
 - Extremal copulas and correlation matrices
 - Attainable Kendall correlation matrices
 - Testing for attainability
- Copulas for Time Series

When only partial information is available

- In a risk analysis or stress test, we often need to generate scenarios from a model with prescribed rank correlations between variables.
- To obtain these rank correlations, we may have limited or non-existent data and may need to incorporate expert knowledge.
- To fix ideas, suppose we want to find the Kendall correlation matrix for returns on the cryptocurrencies Bitcoin, Ethereum, Litecoin and Ripple.
- Suppose we only have data on the first three and an expert opinion on the correlation between Bitcoin and Ripple.
- In a recent paper McNeil et al. (2020) have developed methods for determining the attainability of supposed Kendall correlation matrices and for completing missing values.

< ≥ > < ≥ >

Illustration with crypto currencies



Log-returns on Bitcoin, Ethereum, Litecoin and Ripple prices in USD.

28 / 58

The attainability problem

Consider a continuous random vector $\mathbf{X} = (X_1, \dots, X_d)$. The $d \times d$ Kendall rank correlation matrix P_{τ} is given by

$$(P_{\tau})_{ij} = \tau(X_i, X_j).$$

What properties characterize P_{τ} ?

 P_{τ} is (1) symmetric and (2) its diagonal entries equal 1 and off-diagonal entries are elements of [-1, 1].

It is also (3) positive semi-definite (no negative eigenvalues). These three properties are necessary and sufficient for Pearson correlation matrices.

However these properties are necessary but NOT sufficient for Kendall correlation matrices.

434434

29 / 58

- Fundamentals of Copulas
- Attainability of Kendall Rank Correlations
 - Motivation of attainability problem
 - Extremal copulas and correlation matrices
 - Attainable Kendall correlation matrices
 - Testing for attainability
- Copulas for Time Series

30 / 58

Extremal copulas

Consider an index set $J \subseteq \mathcal{D} = \{1, \dots, d\}$ and a random vector \boldsymbol{U} with

$$U_j = \begin{cases} U & \text{if } j \in J, \\ 1 - U & \text{if } j \notin J, \end{cases}$$

where U is uniform on [0, 1].

The vector \mathbf{U} has uniform margins and spreads its mass uniformly along a main diagonal of the unit hypercube $[0,1]^d$. Its cdf is the extremal copula

$$C(u_1,\ldots,u_d)=\left(\min_{j\in J}u_j+\min_{j\in J^0}u_j-1\right)^+.$$

When $J = \mathcal{D}$ we get the comonotonicity copula, as encountered earlier.

← 差 → ← 差 →

31/58

Why extremal?

The Kendall rank correlation matrix P_{τ} of the copula C with index set $J \subseteq \{1, \dots, d\}$ satisfies

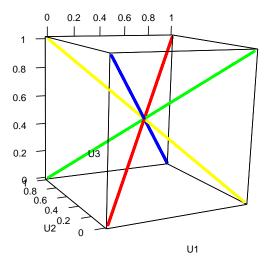
$$(P_{\tau})_{ij} = egin{cases} 1 & ext{if } i,j \in J ext{ or } i,j \in J^{\complement}, \ -1 & ext{otherwise}. \end{cases}$$

- In other words, P_{τ} is an extremal correlation matrix consisting exclusively of entries 1 and -1.
- Pairs of variables are either perfectly positive dependent or perfectly negative dependent.
- In fact, P_{τ} is also the Spearman and Pearson correlation matrix of C.
- In dimension d there are 2^{d-1} extremal copulas, each associated with a diagonal of the d-dimensional unit cube.
- There are various ways of developing a unique enumeration $C^{(1)}, \ldots, C^{(2^{d-1})}$ of these copulas.

4 3 4 4 3 4

32 / 58

Illustration in 3D



Samples of size 2000 from extremal copulas $C^{(1)}$, $C^{(2)}$, $C^{(3)}$ and $C^{(4)}$ in d=3.

© 2021 (QRM Tutorial) A.J. McNeil CRM Barcelona 2021 33 / 58

- Fundamentals of Copulas
- Attainability of Kendall Rank Correlations
 - Motivation of attainability problem
 - Extremal copulas and correlation matrices
 - Attainable Kendall correlation matrices
 - Testing for attainability
 - Copulas for Time Series

34 / 58

Attainability of Kendall rank correlation matrices

Let $P^{(k)}$ be the extremal correlation matrix of the kth extremal copula $C^{(k)}$ for $k \in \{1, \dots, 2^{d-1}\}$.

Characterization of Kendall's tau matrices

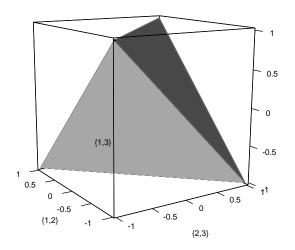
The $d \times d$ correlation matrix P is a Kendall's tau rank correlation matrix if and only if P can be represented as a convex combination of the extremal correlation matrices in dimension d, i.e.,

$$P = \sum_{k=1}^{2^{d-1}} w_k P^{(k)} \quad w_k \geq 0, \forall k, \quad \sum_{k=1}^{2^{d-1}} w_k = 1.$$

The convex hull of the matrices $P^{(k)}$ is called the cut-polytope.

∢ ≣ ⊁ | **∢** ≣ ⊁

Illustration in 3D



The cut-polytope of $(\tau_{\{1,2\}},\tau_{\{1,3\}},\tau_{\{2,3\}}).$

36 / 58

Not all correlation matrices are attainable

Consider the matrix

$$\frac{1}{12} \left(\begin{array}{ccc} 12 & -5 & -5 \\ -5 & 12 & -5 \\ -5 & -5 & 12 \end{array} \right).$$

This matrix is symmetric and positive definite and therefore a Pearson correlation matrix.

However, it is **not** a Kendall rank correlation matrix. The only possible weights would be

$$(w_1, w_2, w_3, w_4) = \frac{1}{24} \times (-27, 17, 17, 17)$$

Good news: when Kendall rank correlations are estimated from data without ties using the standard estimator, the resulting matrix is always attainable.

< ≣ ≻ j <

37 / 58

- Fundamentals of Copulas
- Attainability of Kendall Rank Correlations
 - Motivation of attainability problem
 - Extremal copulas and correlation matrices
 - Attainable Kendall correlation matrices
 - Testing for attainability
- 3 Copulas for Time Series

Linear programming problem

• The theory of testing for attainability of a $d \times d$ Kendall correlation matrix involves looking for a vector of non-negative weights $\mathbf{w} = (w_1, \dots, w_{2^{d-1}})$ to solve a linear system of the form

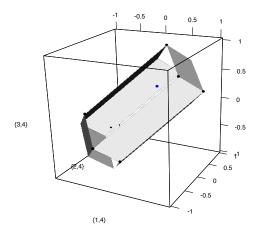
$$Aw = \begin{pmatrix} 1 \\ (1 + \tau_{\{1,2\}})/2 \\ \vdots \\ (1 + \tau_{\{d-1,d\}})/2 \end{pmatrix}$$

- A is a known matrix with 1 + d(d-1)/2 rows and 2^{d-1} columns. The first row consist of 1's because of the sum constraint on the weights.
- For $d \le 3$ there is either a unique solution or no solution.
- For $d \ge 4$ there may be multiple solutions or no solution.
- When there are multiple solutions, they form a convex set.
- When Kendall's tau values are missing, the corresponding rows of A are deleted.

- 4 ≣ Þ, 4

Range of unobserved correlations

Imagine we have not observed Ripple prices and we only know Kendall's tau between Bitcoin, Ethereum and Litecoin: (0.278, 0.333, 0.361).

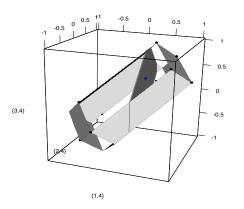


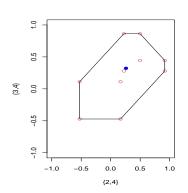
Range of attainable correlations with Ripple.

40 / 58

Adding more information

Now we are told that the correlation between Ripple and Bitcoin is 0.196.





Range of attainable correlations with Ripple.

41 / 58

Finding a copula to match an attainable matrix

Suppose P_{τ} has been found to be an attainable Kendall rank correlation matrix. How do we find a copula C that has Kendall matrix P_{τ} ?

lacktriangledown For some matrices $P_{ au}$ we can choose an elliptical copula like the Gauss copula or the t copula. Let P be the matrix given by the componentwise transformation

$$P = \sin(\frac{\pi}{2}P_{\tau}).$$

If P is positive semi-definite, then the Gauss copula C_P^{Ga} or the t copula C_{ν}^{t} have Kendall correlation matrix P_{τ} .

② For all matrices P_{τ} we can use a mixture of extremal copulas. If $P_{\tau} = \sum_{i=1}^{2^{d-1}} w_k P^{(k)}$ then the copula

$$C = \sum_{i=1}^{2^{d-1}} w_k C^{(k)}$$

has Kendall correlation matrix P_{τ} .

42 / 58

- Fundamentals of Copulas
- 2 Attainability of Kendall Rank Correlations
- Copulas for Time Series

43 / 58

- Fundamentals of Copulas
- Attainability of Kendall Rank Correlations
- Copulas for Time Series
 - Introduction
 - ARMA copulas
 - D-vine copulas
 - V-transforms

44 / 58

Aim of section

- In this section we consider strictly stationary time series models for modelling financial time series.
- There is a growing literature on copulas and time series; see survey article by Fan and Patton (2014).
- The main emphasis has been on cross-sectional dependencies between series; however, we are interested in serial dependence.
- The idea is to build strictly stationary copula processes (U_t) and to combine these with arbitrary, continuous marginal distributions F_x to create processes (X_t) such that $U_t = F_X(X_t)$ for all t.
- We will concentrate on two core classes for (U_t):
 - ARMA copula processes as proposed in McNeil (2021).
 - D-vine copula processes as developed in Chen and Fan (2006) (first-order) and Smith et al. (2010); these are based on the vine copula concept (Joe, 1997; Bedford and Cooke, 2002; Aas et al., 2009).
- To capture stochastic volatility we combine these models with v-transforms as proposed in McNeil (2021) and Bladt and McNeil (2020).

© 2021 (QRM Tutorial) CRM Barcelona 2021 A.J. McNeil 45 / 58

- Fundamentals of Copulas
- 2 Attainability of Kendall Rank Correlations
- Copulas for Time Series
 - Introduction
 - ARMA copulas
 - D-vine copulas
 - V-transforms

46 / 58

ARMA copula process

Definition

Let $(Z_t)_{t\in\mathbb{Z}}$ be a causal and invertible Gaussian ARMA(p,q) process such that $\mathbb{E}(Z_t)=0$ and $\text{var}(Z_t)=1$ for all t. Then the process $(U_t)_{t\in\mathbb{Z}}$ such that $U_t=\Phi(Z_t)$ for all t is an ARMA(p,q) copula process.

- The distribution of any finite-dimensional random vector $(U_{t_1}, \ldots, U_{t_d})$ is a Gaussian copula with correlation matrix P depending on acf $\rho(k)$ of (Z_t) .
- For example, $(U_1, \ldots, U_d) \sim C_P^{\text{Ga}}$ where $P_{ij} = \rho(|i-j|)$.
- The process has p + q parameters.
- It is possible to estimate a model combining an ARMA copula process with a continuous parametric marginal distribution using the method of maximum likelihood.
- The finite-dimensional marginal distributions of the resulting model are meta-Gaussian.

4 ≥ F | 4 ≥ F

47 / 58

- Fundamentals of Copulas
- 2 Attainability of Kendall Rank Correlations
- Copulas for Time Series
 - Introduction
 - ARMA copulas
 - D-vine copulas
 - V-transforms

48 / 58

Generalizing the AR copula process

- The d-vine copula process can be thought of as a generalization of the ARMA(p,0) or AR(p) copula process.
- The AR(p) copula process can be fully described by p bivariate Gaussian copulas C_1, \ldots, C_p .
- For all t,
 - C_1 is the copula of (U_t, U_{t+1}) ;
 - C_2 is the copula of (U_t, U_{t+2}) given U_{t+1} ;
 - C_3 is the copula of (U_t, U_{t+3}) given U_{t+1} and U_{t+2} ;
 - and so on.
- The copula C_i could be called the *i*th partial copula.
- Its parameter ρ_i satisfies $\rho_i = \alpha(i)$ where $\alpha(\cdot)$ is the partial autocorrelation function of the underlying AR process (Z_t) .
- What would happen if we swapped these bivariate Gaussian copulas for non-Gaussian copulas?

49 / 58

D-vine copula process

Definition

A strictly stationary copula process $(U_t)_{t\in\mathbb{Z}}$ is a d-vine(p) process if, for any $t\in\mathbb{Z}$ and $d\geq 2$, the joint density of (U_{t+1},\ldots,U_{t+d}) is given by

$$\prod_{i=1}^{\max(p,d-1)} \prod_{j=1+i}^{d} c_i (R_i^*(u_{j-i},(u_{j-1},\ldots,u_{j-i+1})), R_i(u_j,(u_{j-1},\ldots,u_{j-i+1})))$$

where c_1, \ldots, c_p are bivariate copula densities and

$$R_i(x,(u_1,\ldots,u_{i-1})) = \mathbb{P}(U_t \leq x \mid U_{t-1} = u_1,\ldots,U_{t-i+1} = u_{i-1})$$

 $R_i^*(x,(u_1,\ldots,u_{i-1})) = \mathbb{P}(U_{t-i} \leq x \mid U_{t-1} = u_1,\ldots,U_{t-i+1} = u_{i-1}).$

and where by convention $R_1(x,\cdot) = R_1^*(x,\cdot) = x$.

431431

50 / 58

Remarks on d-vine copula process

- Such processes do exist and can be constructed and simulated.
- If c_1, \ldots, c_p are bivariate Gaussian copula densities, the joint density of the d-vine copula process is identical to that of an AR(p) copula process.
- The joint density is easier to evaluate than it first appears; the functions
 R_i and R_i* can be evaluated recursively.
- This means that maximum likelihood inference is possible.
- We generally use a mixture of Archimedean, Gauss and t copulas for the pair copula densities.
- Combined with non-Gaussian marginal distributions, these models can improve the fit in many situations where AR and ARMA processes are standard models.
- However, they cannot capture stochastic volatility (at least using common copula choices).

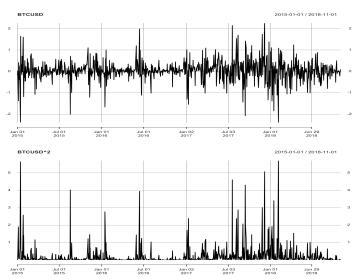
51/58

- Fundamentals of Copulas
- 2 Attainability of Kendall Rank Correlations
- Copulas for Time Series
 - Introduction
 - ARMA copulas
 - D-vine copulas
 - V-transforms

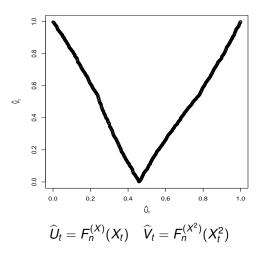
52 / 58

Bitcoin log return data

U and V scales:



Empirical v-transform



434434

Volatility-revealing transformations

- Volatile financial return series (X_t) seldom show serial correlation, but the series of absolute vales $(|X_t|)$ or squared values (X_t^2) do.
- If we attempt to transform the raw data and the squared data to uniform (e.g. with the empirical distribution function) then the latter show a v-shaped relationship to the former.
- This is not suprising: if X has cdf F_X symmetric around 0 and we define $U = F_X(X)$ and $V = F_{X^2}(X^2)$ then $V = \mathcal{V}(U)$ where $\mathcal{V}(u) = |2u 1|$.
- V(u) = |2u 1| belongs to a class of v-shaped, uniformity-preserving transformations that we call v-transforms.
- To model the serial dependence in real data we construct copula processes (U_t) such that, under some componentwise v-transform $V_t = \mathcal{V}(U_t)$, the copula process (V_t) follows one of our models for serial dependence (ARMA copula or d-vine copula).
- The model for (U_t) is called a vt-ARMA or vt-d-vine copula process.
- They are alternatives to GARCH models.

Summary

- Copulas are particularly useful for scenario analyses or stress tests where we consider risk factors with different marginal distributions.
- When full data are available, they can be estimated.
- When data are sparse or missing, they can be elicited from expert opinion. Rank correlations are particularly helpful in this case.
- There have been recent advances in understanding the conditions for matrices of rank correlations to be attainable (McNeil et al., 2020; Wang et al., 2019).
- Copula models for time series is also an area of contemporary research interest (Bladt and McNeil, 2020; Nagler et al., 2020).

For Further Reading

- Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence. *Insurance: Mathematics and Economics*, 44(2):182–198.
- Bedford, T. and Cooke, R. M. (2002). Vines—a new graphical model for dependent random variables. *Annals of Statistics*, 30(4):1031–1068.
- Bladt, M. and McNeil, A. (2020). Time series copula models using d-vines and v-transforms: an alternative to GARCH modelling. arXiv:2006.11088.
- Chen, X. and Fan, Y. (2006). Estimation of copula-based semiparametric time series models. *Journal of Econometrics*, 130(2):307–335.
- Fan, Y. and Patton, A. (2014). Copulas in econometrics. *Annual Review of Economics*, 6:179–200.
- Genest, C. and Rivest, L. (1993). Statistical inference procedures for bivariate Archimedean copulas. *Journal of the American Statistical Association*, 88:1034–1043.
- Joe, H. (1997). *Multivariate Models and Dependence Concepts*. Chapman & Hall, London.

(©) 2021 (QRM Tutorial) A.J. McNeil CRM Barcelona 2021 57 / 58

For Further Reading (cont.)

- McNeil, A. (2021). Modelling volatility with v-transforms and copulas. *Risks*, 9(1):14.
- McNeil, A., Nešlehová, J., and Smith, A. (2020). On attainability of kendall's tau matrices and concordance signatures. arXiv preprint 2009.08130.
- Nagler, T., Krüger, D., and Min, A. (2020). Stationary vine copula models for multivariate series. Preprint.
- Smith, M., Min, A., Almeida, C., and Czado, C. (2010). Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence. *Journal of the American Statistical Association*, 105(492):1467–1479.
- Wang, B., Wang, R., and Wang, Y. (2019). Compatible matrices of Spearman's rank correlation. *Statistics & Probability Letters*, 151:67–72.

58 / 58