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Definition and Sklar's Theorem

A copula is a multivariate distribution function with standard uniform marginal
distributions.

Theorem
@ Let F be a joint distribution function with margins F1, ..., Fq. There exists
a copula C such that for all x1, . .., Xg in [—o0, 0]

F(X1, 000 7Xd) = C(F1 (X1), 0oy Fd(Xd)).

If the margins are continuous then C is unique.

@ And conversely, if C is a copula and Fy, . .., F4 are univariate distribution
functions, then F defined above is a multivariate df with margins
Fi,..., Fg.
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. LTI R | ofiition and propertes
Probability and Quantile Transforms

Recall the following facts concerning stochastic simulation:

@ Probability Transform.
Let X be a random variable with continuous distribution function F. Then
F(X) ~ U(0, 1) (standard uniform).

P(F(X) < u) = u.

@ Quantile Transform.
Let U be uniform and F the distribution function of any rv X. Then

P(F—(U) < x) = F(x).
These facts are essential in dealing with copulas.

Note, in general, we need generalized inverse F(u) = inf{x : F(x) > u}.
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Basic Properties

@ Extracting the copula. Given F the copula C is given by
C(U1 Sy Ud) = F(F1<_(U1)7 ey F;(Ud)),

where F4, ..., Fy are the marginal distributions of F.

@ Invariance. The copula C of a random vector is invariant under strictly
increasing transformations of the variables.

@ Independence copula. The copula representing independence is

C(u1,...,ud):]:[u,-.

@ Comonotonicity copula. The copula representing perfect positive
dependence (all variables increasing functions of a single variable) is
M(u) = min{uy,...,uq}.

@ Countermonotonicity copula. For two variables, the copula representing
perect negative dependence is W(uy, tz) = max{uy + ts — 1,0}.
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Parametric Copulas

There are basically two possibilities:

@ Copulas implicit in well-known parametric distributions. Sklar’s Theorem
states that we can always find a copula in a parametric distribution
function. Denoting the df by F and assuming the margins F4, ..., F4 are
continuous, the implied copula is

Clut,...,ug) = F(F(u),...,Fi(ug)) -

Such a copula may not have a simple closed form.

@ Closed form parametric copula families generated by some explicit
construction that is known to yield copulas. The best example is the
well-known Archimedean copula family. These generally have limited
numbers of parameters and limited flexibility; the standard Archimedean
copulas are dfs of exchangeable random vectors (distribution invariant
under permutations).
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Examples of Implicit Copulas

@ Gaussian Copula

CE3(u) = ®p (¢ "(t1),..., 9 " (ua))

® denotes the standard univariate normal df.

®p denotes the joint df of X ~ Ny (0, P)and P is a correlation matrix.
Write C$® when d = 2.

P = Iy gives independence.

P = Jy (matrix of 1’s) gives comonotonicity.

@ t Copula

C},’P(U) =t.pr (t1/_1 (), ..., tu_1 (Ud))

o t, is the df of a standard univariate t distribution.
e t, pis the joint df of a multivariate Student t distribution with correlation
matrix P and degree of freedom v.
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Archimedean Copulas

@ Gumbel Copula

CQGU(U1,...,Ud) = exp (_ ((—logu1)9 T (—|Ogud)9)1/0) .

0 > 1: 0 =1 gives independence; § — oo gives comonotonicity.
@ Clayton Copula

—-1/0
Cour,... ug) = (U ++uz —d+1)"".

6 > 0: 8 — 0 gives independence ; § — oo gives comonotonicity.
@ Other common examples include the Frank and Joe copulas.
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Simulating Copulas

Simulating Gaussian copula Cg*
@ Simulate X ~ Ny (0, P)
@ SetU=(d(Xq),...,d(Xy)) (probability transformation)

The other three copulas are also straightforward to simulate but we do not go
into details.

How do you simulate a normal vector X ~ N4(0, P)?
@ Simulate d independent standard normals Z, . .., Zy.

@ Compute Cholesky decomposition P = AA’ for lower-triangular matrix A.
©Q Return X = AZ where Z = (Z4,...,2Zy) .
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Simulating Copulas |l

Gaussian Gumbel

Gauss: p = 0.7, Gumbel: § = 2, Clayton: § =2.2,t: p=0.71,v =4
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Meta-Distributions and Their Simulation

@ By the converse of Sklar’s Theorem we know that if C is a copula and
Fi,..., F4 are univariate dfs, then F(x) = C(F1(x1),..., F4(xg)) is a
multivariate df with margins F, ..., F4.

@ We refer to F as a meta-distribution with the dependence structure
represented by C. For example, if C is a Gaussian copula we get a
meta-Gaussian distribution and if C is a t copula we get a meta-t
distribution.

@ If we can sample from the copula C, then it is easy to sample from F.

@ Generate a vector (U, ..., Uy) with df C.
Q Return (F{ (U1), ..., F§ (Uqg)).
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Simulating Meta Distributions

Gaussian Gumbel

Clayton 14

3 2 4 a 2 o
x1 x1

Linear correlation p(Xj, X2) ~ 0.7 in all cases.
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Fundamentals of Copulas Estimation with maximum likelihood

@ We have data vectors X4, ..., X, with identical distribution function F.
@ We assume that this distribution function F has continuous marginal
distributions Fy, ..., Fy and thus by Sklar’s theorem a unique
representation F(x) = C(Fi(x1),..., Fa(Xq)).
@ We assume that C belongs to a parametric copula family C(-; 6).
@ In order to estimate C(-; 8) we first need to estimate F, ..., Fy. There are
two main approaches:
Inference functions for margins (IFM) -
margins estimated with parametric distributions.
(Joe, 1997)
Pseudo-maximum likelihood -
margins estimated using version of empirical distribution
function, e.g. Fj(x) = 715 1L, 10,20}
(Genest and Rivest, 1993)
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Estimation with maximum likelihood
Stage 2: estimating the copula

m Having estimated the margins, we form a pseudo-sample from copula

~ ~ ~ / ~ ~ /
U,‘Z(U,'_’1,...7U,'7d) :(F1()(i,1),-~-7Fd()(i,d)) s i:1,...,n.
and fit parametric copula C by maximum likelihood.
m Copula density is c(uy, ..., Ug; 0) = 5o - %C(uh...,ud; 0).
m The log-likelihood is

n
1(0; 01,~~,Gn) = Z log C(Ui,hm, Ui,d; 0).
P

m Independence of vector observations is assumed here for simplicity.
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Overview

0 Fundamentals of Copulas

@ Estimation with rank correlations
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Estimation with rank correlations
Why rank correlation?

Why not ordinary (Pearson/linear) correlation?

@ The correlation of a bivariate distribution F depends on both copula C
and margins F; and F».

@ Thus the correlation is not necessarily invariant under one-to-one
transformations of the margins.

@ For given margins, the range of attainable correlation need not be equal
to [-1, 1] and can be quite limited.

In contrast:
@ Rank correlations depend only on copula C.
@ They are thus invariant under one-to-one transformations of the margins
@ For given margins, the range of attainable rank correlations is [—1, 1].

This is important for Monte Carlo scenario generation under specification of
margins and correlations (e.g. @RISK software).
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Rank Correlation

Spearman’s rho
ps(X1,X2) = p(Fi(X1), F2(X2))

1 1
ps(Xi, Xz) = 12/ /{C(u1,u2)—u1uz}du1du2.
o Jo

Kendall’s tau
Take an independent copy of (Xi, Xz) denoted (X7, X5).

(X1, Xe) = P((X1 = X{)(Xe = X5) > 0) = P((Xi — X{)(Xe — X3) < 0)
P{points concordant} — P{points discordant}
= 2P{points concordant} — 1

1 1
T(X1,X2) = 4/ / C(U1,U2)dC(U1,U2) —-1.
0 Jo
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Concordance

Discordant

Concordant

Retodomax, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons
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Estimation with rank correlations
Rank correlations for certain copulas

@ Let (X1, X2) be a bivariate random vector with copula C$? and continuous
margins. Then the rank correlations are

(X1, X2) = 2 arcsin p,
T

6 P

X1, X2) = = -

ps(X1, X2) —arcsin 5

@ The first formula also holds when (X, X,) has the t copula C}, , or indeed
the copula of a bivariate elliptical distribution with correlation p.

@ Explicit formulas in terms of parameter 6 available for many Archimedean
copulas.

@ Kendall’s tau tends to be more widely available than Spearman’s rho,

@ This permits method-of-moments estimation by equating theoretical
values of rank correlation with sample values.
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Estimation with rank correlations
Sample Rank Correlations

Consider iid bivariate data {(X1 1, X1 2),. .., (Xn,1, Xn2)}. The standard
estimator of 7( Xy, X2) is

1
Y san[(Xir — X;1) (Xi2 — X2)],
(2 1<i<j<n

and the standard estimator of pg(Xi, X2) is

n

n(n;2—1) Z <rank(X,-71) - er— ! ) (rank(Xi,z) - n;— 1 ) :

i=1
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Overview

e Attainability of Kendall Rank Correlations
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Attainability of Kendall Rank Correlations Motivation of attainability problem

e Attainability of Kendall Rank Correlations
@ Motivation of attainability problem
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Motivation of attainability problem
When only partial information is available

@ In arisk analysis or stress test, we often need to generate scenarios from
a model with prescribed rank correlations between variables.

@ To obtain these rank correlations, we may have limited or non-existent
data and may need to incorporate expert knowledge.

@ To fix ideas, suppose we want to find the Kendall correlation matrix for
returns on the cryptocurrencies Bitcoin, Ethereum, Litecoin and Ripple.

@ Suppose we only have data on the first three and an expert opinion on
the correlation between Bitcoin and Ripple.

@ In a recent paper McNeil et al. (2020) have developed methods for
determining the attainability of supposed Kendall correlation matrices and
for completing missing values.
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Motivation of attainability problem
lllustration with crypto currencies
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Log-returns on Bitcoin, Ethereum, Litecoin and Ripple prices in USD.
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Motivation of attainability problem
The attainability problem

Consider a continuous random vector X = (X, ..., Xy). The d x d Kendall
rank correlation matrix P, is given by

(Pr)j = 7(Xi, X)).

What properties characterize P, ? J

P, is (1) symmetric and (2) its diagonal entries equal 1 and off-diagonal
entries are elements of [—1, 1].

It is also (3) positive semi-definite (no negative eigenvalues). These three
properties are necessary and sufficient for Pearson correlation matrices.

However these properties are necessary but NOT sufficient for Kendall
correlation matrices.
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Attainability of Kendall Rank Correlations Extremal copulas and correlation matrices

e Attainability of Kendall Rank Correlations

@ Extremal copulas and correlation matrices
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Extremal copulas

Consider an index set J C D = {1,...,d} and a random vector U with
U if jed,
U' P
! {1 —U ifj¢d,

where U is uniform on [0, 1].

The vector U has uniform margins and spreads its mass uniformly along a
main diagonal of the unit hypercube [0, 1]9. Its cdf is the extremal copula

+
C(uy,...,ug) = (minuj+minu;— 1| .
( ) ) ) jed J jeJUl

When J = D we get the comonotonicity copula, as encountered earlier.
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Attainability of Kendall Rank Correlations Extremal copulas and correlation matrices

The Kendall rank correlation matrix P, of the copula C with index set
J C{1,...,d} satisfies

Py = 1 ifijjedorijeJC
) —1 otherwise.

@ In other words, P, is an extremal correlation matrix consisting exclusively
of entries 1 and -1.

@ Pairs of variables are either perfectly positive dependent or perfectly
negative dependent.

@ In fact, P, is also the Spearman and Pearson correlation matrix of C.

@ In dimension d there are 29— extremal copulas, each associated with a
diagonal of the d-dimensional unit cube.

@ There are various ways of developing a unique enumeration
c),...,c" of these copulas.
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lllustration in 3D
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Samples of size 2000 from extremal copulas ", C®, C®) and ind = 3.
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Attainability of Kendall Rank Correlations Attainable Kendall correlation matrices

e Attainability of Kendall Rank Correlations

@ Attainable Kendall correlation matrices
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Attainable Kendall correlation matrices
Attainability of Kendall rank correlation matrices

Let P() be the extremal correlation matrix of the kth extremal copula C*) for
ke{1,...,2971},

Characterization of Kendall’s tau matrices

The d x d correlation matrix P is a Kendall’s tau rank correlation matrix if and
only if P can be represented as a convex combination of the extremal
correlation matrices in dimension d, i.e.,

2d—1 2d—1

PZZWkP(k) wi > 0, VK, ZWk=1.
k=1 k=1

The convex hull of the matrices P9 is called the cut-polytope.
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[llustration in 3D
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Attainable Kendall correlation matrices
Not all correlation matrices are attainable

Consider the matrix

;[ 12 -5 -5
S| -5 12 -5
5 -5 12

This matrix is symmetric and positive definite and therefore a Pearson
correlation matrix.

However, it is not a Kendall rank correlation matrix. The only possible weights
would be

1
(W1, Wa, W3, W4) = ﬂ x (7277 177 17a 17)

Good news: when Kendall rank correlations are estimated from data without
ties using the standard estimator, the resulting matrix is always attainable.
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Overview

e Attainability of Kendall Rank Correlations

@ Testing for attainability
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Linear programming problem

@ The theory of testing for attainability of a d x d Kendall correlation matrix
involves looking for a vector of non-negative weights w = (wy, ..., Wos—1)
to solve a linear system of the form

1

(1+712)/2
Aw {.1 2}

(1+7qa-1,0y)/2

A’is a known matrix with 1 + d(d — 1)/2 rows and 29~ columns. The first
row consist of 1’s because of the sum constraint on the weights.

For d < 3 there is either a unique solution or no solution.
For d > 4 there may be multiple solutions or no solution.
When there are multiple solutions, they form a convex set.

When Kendall’s tau values are missing, the corresponding rows of A are
deleted.
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Attainability of Kendall Rank Correlations Testing for attainability

Range of unobserved correlations

Imagine we have not observed Ripple prices and we only know Kendall’s tau
between Bitcoin, Ethereum and Litecoin: (0.278,0.333,0.361).

-1 05 0 05

{3.4}

.4

Range of attainable correlations with Ripple.
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Attainability of Kendall Rank Correlations Testing for attainability

Adding more information

Now we are told that the correlation between Ripple and Bitcoin is 0.196.

o
s
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o
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e
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S
! T T T T T
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1,4} {2.4}

Range of attainable correlations with Ripple.
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Finding a copula to match an attainable matrix

Suppose P, has been found to be an attainable Kendall rank correlation
matrix. How do we find a copula C that has Kendall matrix P,?

@ For some matrices P, we can choose an elliptical copula like the Gauss
copula or the t copula. Let P be the matrix given by the componentwise
transformation

P =sin(ZP;).

If P is positive semi-definite, then the Gauss copula C$2 or the t copula
C!, p have Kendall correlation matrix P,.

@ For all matrices P, we can use a mixture of extremal copulas. If
d—1
P, =2, wiP® then the copula

2L1—1

c=> wch

i=1

has Kendall correlation matrix P;.
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e Copulas for Time Series
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Overview

e Copulas for Time Series
@ Introduction
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Aim of section

@ In this section we consider strictly stationary time series models for
modelling financial time series.

@ There is a growing literature on copulas and time series; see survey
article by Fan and Patton (2014).

@ The main emphasis has been on cross-sectional dependencies between
series; however, we are interested in serial dependence.

@ The idea is to build strictly stationary copula processes (U;) and to
combine these with arbitrary, continuous marginal distributions F; to
create processes (X;) such that U; = Fx(X;) for all t.

@ We will concentrate on two core classes for (U;):

@ ARMA copula processes as proposed in McNeil (2021).

@ D-vine copula processes as developed in Chen and Fan (2006) (first-order)
and Smith et al. (2010); these are based on the vine copula concept (Joe,
1997; Bedford and Cooke, 2002; Aas et al., 2009).

@ To capture stochastic volatility we combine these models with
v-transforms as proposed in McNeil (2021) and Bladt and McNeil (2020).
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Overview

e Copulas for Time Series

@ ARMA copulas
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ARMA copula process

Definition
Let (Z;):ez be a causal and invertible Gaussian ARMA(p,q) process such that

E(Z;) = 0 and var(Z;) = 1 for all t. Then the process (U;)tcz such that
U; = ®(Z) for all tis an ARMA(p,q) copula process.

@ The distribution of any finite-dimensional random vector (U, ..., Uy,) is a
Gaussian copula with correlation matrix P depending on acf p(k) of (Z;).
@ For example, (Uy, ..., Uy) ~ CS2 where P = p(|i — j|).

@ The process has p + q parameters.

@ It is possible to estimate a model combining an ARMA copula process
with a continuous parametric marginal distribution using the method of
maximum likelihood.

@ The finite-dimensional marginal distributions of the resulting model are
meta-Gaussian.
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Overview

e Copulas for Time Series

@ D-vine copulas
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Generalizing the AR copula process

@ The d-vine copula process can be thought of as a generalization of the
ARMA(p,0) or AR(p) copula process.

@ The AR(p) copula process can be fully described by p bivariate Gaussian
copulas Cy, ..., Cp.
@ Forall t,

e C; is the copula of (U, Urt1);

o C; is the copula of (U, Uri2) given Uit

o Cjis the copula of (U, Uits) given Uiy and Urpo;
@ and so on.

@ The copula C; could be called the ith partial copula.

@ lts parameter p; satisfies p; = a(i) where «(-) is the partial autocorrelation
function of the underlying AR process (Z;).

@ What would happen if we swapped these bivariate Gaussian copulas for
non-Gaussian copulas?
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D-vine copula process

Definition

A strictly stationary copula process (U;):ez is a d-vine(p) process if, for any
t € Z and d > 2, the joint density of (U1, .., Urrq) is given by

max(p,d—1 d
H H (R (Ujmis (U1, - Uj—i1)), Bis (Ui, -5 Ujmie1))
=1 j=1+
where ¢, . . ., ¢p are bivariate copula densities and

Ri(x,(u1,...,Ui—1)) = P(Ut<x| U1 =uy,...,U_it1 = Ui_1)
Ri(x,(u1,...,Ui—1)) = PU—i < x| Ui =y, ..., U—jp1 = Uj_q).

and where by convention Ri(x,-) = R{(x,-) = x.
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Remarks on d-vine copula process

@ Such processes do exist and can be constructed and simulated.

@ If c1,. .., cp are bivariate Gaussian copula densities, the joint density of
the d-vine copula process is identical to that of an AR(p) copula process.

@ The joint density is easier to evaluate than it first appears; the functions
R; and R} can be evaluated recursively.

@ This means that maximum likelihood inference is possible.

@ We generally use a mixture of Archimedean, Gauss and t copulas for the
pair copula densities.

@ Combined with non-Gaussian marginal distributions, these models can
improve the fit in many situations where AR and ARMA processes are
standard models.

@ However, they cannot capture stochastic volatility (at least using common
copula choices).
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Overview

e Copulas for Time Series

@ V-transforms
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Bitcoin log return data

U and V scales:
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Empirical v-transform
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Volatility-revealing transformations

@ Volatile financial return series (X;) seldom show serial correlation, but the
series of absolute vales (| X;|) or squared values (X?) do.

@ If we attempt to transform the raw data and the squared data to uniform
(e.g. with the empirical distribution function) then the latter show a
v-shaped relationship to the former.

@ This is not suprising: if X has cdf Fx symmetric around 0 and we define
U = Fx(X) and V = Fx2(X?) then V = V(U) where V(u) = |2u — 1|.

@ V(u) = |2u — 1] belongs to a class of v-shaped, uniformity-preserving
transformations that we call v-transforms.

@ To model the serial dependence in real data we construct copula
processes (U;) such that, under some componentwise v-transform
Vi = V(U;), the copula process ( V;) follows one of our models for serial
dependence (ARMA copula or d-vine copula).

@ The model for (U;) is called a vi-ARMA or vt-d-vine copula process.
@ They are alternatives to GARCH models.
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Summary

@ Copulas are particularly useful for scenario analyses or stress tests
where we consider risk factors with different marginal distributions.

@ When full data are available, they can be estimated.

@ When data are sparse or missing, they can be elicited from expert
opinion. Rank correlations are particularly helpful in this case.

@ There have been recent advances in understanding the conditions for
matrices of rank correlations to be attainable (McNeil et al., 2020; Wang
et al., 2019).

@ Copula models for time series is also an area of contemporary research
interest (Bladt and McNeil, 2020; Nagler et al., 2020).
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