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MATHEMATICAL MODEL FOR THE MELTING OF
NANOPARTICLES WITH A DENSITY JUMP

F. FONT, T. G. MYERS, AND S.L. MITCHELL

Abstract. The melting process of spherical nanoparticles is analyzed in this
paper using a mathematical model based in continuum theory. For the first
time the density change between phases is taken into account in a model de-
scribing the melting of nanoparticles. This alters the standard governing equa-
tions and the effect is clearly reflected in the results. The system consists of
heat equations in the solid and the liquid, and a Stefan condition providing an
equation for the evolution of the melt boundary. The Gibbs-Thomson effect
describing the depression of the melting temperature is included in the model
as a boundary condition. Approximate analytical solutions and numerical sim-
ulations are provided. The frequent assumption of equal densities in models
of this kind is found to be very inaccurate when compared to the general so-
lution for particles with radii ranging from 10 to 100 nm. Phase change and
Nanoparticle and Expansion and Melting

1. Introduction

There is a large body of work concerning the mathematical modelling of phase
change. The original Stefan problem concerned the formation of sea ice. Since
then the model has been applied to many different forms of phase change and
geometries as well as topics in porous media flow and finance [1]. An analogous
problem occurs in growth of material from a saturated liquid, where concentra-
tion rather than temperature gradients drive the growth [2]. In the context of
phase change the vast majority of studies incorporate a number of restrictive
assumptions, which are often made for mathematical convenience and limit the
applicability of the results to highly idealised situations. Alexiades and Solomon
[3, Chap. 1] provide a list of standard assumptions including constant latent
heat, constant phase change temperature, a sharp phase change interface, con-
stant thermal properties in each phase and a constant density which is equal
in both phases. They state that this final assumption is perhaps the most un-
reasonable, indeed anyone with experience of burst water pipes will be aware
of the true importance of density change. Consequently, in this paper we will
focus on the effect of density change. Our work is motivated by the melting of
spherical nanoparticles however the model could be applied to more general situ-
ations of practical interest, such as pipe bursting, cryopreservation, phase change
microvalves and metal casting, see [3, 4, 5, 6, 7].
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2 F. FONT, T. G. MYERS, AND S.L. MITCHELL

[3] discuss freezing and melting with the incorporation of a density change.
They state that most physical properties vary to some extent with temperature,
but that at the phase change temperature there is often a sudden change. Al-
though the value of the density may not change as much as other variables, its
variation may lead to the most pronounced effects. They subsequently analyse
phase change in Cartesian co-ordinates to show that the density jump introduces
a non-standard term, proportional to the cube of the phase change velocity, into
the Stefan condition. They discuss how neglecting this term can lead to over or
under estimation of the front velocity depending on the physical situation. How-
ever, they later neglect this term to permit exact similarity solutions. [7] take
a similar approach, again to find similarity solutions. [8] neglect the cubic term
altogether and seek small time and similarity solutions for the freezing of a liquid
layer and phase change in a porous half-space. In the following work we will
demonstrate the importance of the cubic term, particularly near the beginning
and end of the process.
At the nano-scale an important effect is that of melting point depression, which

can lead to rapid melting as the particle size tends to zero. This may explain
the sudden disappearance of particles discussed in [9]. The variation of the melt
temperature with size is often represented by the Gibbs-Thomson equation, al-
though there exist a number of other forms with the common feature that the
temperature change is proportional to curvature [10, 9, 11, 12]. In the following
work we will employ the classical Gibbs-Thomson relation

(1) Tm = T ∗
m

(
1− 2σslκ

ρsLf

)
where T ∗

m is the bulk melting temperature, σsl the surface energy between the
solid and the liquid, Lf the latent heat and ρs the density. The curvature for
spheres is κ = 1/R, where R is the particle radius. [13] look for small time
and large Stefan number solutions to a two-phase problem describing the melting
of spherical nanoparticles subject to (1). [14] focus on the situation where the
specific heats vary through the phase change. To account for this they apply
a more general form of the Gibbs-Thomson relation. Their results show that
melting point depression is extremely important in predicting the melt time of
nanoparticles. They also investigate the effect of using the generalised Gibbs-
Thomson as opposed to the above classical version. [15] had previously concluded
that melting point depression could explain the rapid melting of nanoparticles. To
simplify the mathematics their work used an approximation where the variation
of specific heat was neglected in the Gibbs-Thomson relation but retained in the
remaining governing equations. In [14] it was shown that, when compared to
using the generalised Gibbs-Thomson relation, this approach leads to differences
on the order of 10% in melt times for 10 nm particles, whilst for 100 nm particles
the difference is around 1%. In the following study we will see that allowing the
density to vary can more than double the melt time of a 10 nm particle. Thus,
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in order to keep the analysis simple and focus on the density variation, we will
assume the specific heats to be equal for both phases and model the melting point
depression with (1).
The mathematical model to be developed in the following section will be based

on continuum theory. Since our focus is on nanoscale phase change it is worth
considering the validity of this theory. This issue is discussed in detail in [14].
To summarise, they state that comparison of molecular dynamics simulations,
experiment and continuum theory have led to the conclusion that for fluid flow
continuum theory may be accurate down to around 3 nm, for heat transfer and
phase change 2 nm appears to be the lower limit, see [16, 17]. Consequently, we
do not expect our model to be valid below this value.
In section 2 of this paper we set a mathematical model that appropriately

describes the melting of spherical nanoparticles. The model includes the charac-
teristic melting point depression of nanoparticles and the effect of density change
between phases. In section 3 we seek asymptotic solutions for large Stefan num-
ber by means of the perturbation method. Then, we pinpoint the small time
behaviour of the system and use it later on to initialize the numerical scheme
described in section 4. Results are presented in section 5, comparing the nu-
merical and approximate solutions. Finally, in section 6 we highlight the main
conclusions of this study.

2. Mathematical model

We consider a solid sphere with radius R0, initially at the melting temperature
Tm(R0), given by the Gibbs-Thomson equation (1). The surface of the sphere is
suddenly raised to TH > Tm(R0) which starts the melting process: a liquid phase
grows from the surface of the particle inwards until the whole solid disappears.
We denote the moving solid-liquid interface by R(t). The liquid phase moves due
to the density change between phases. Therefore, the outer surface of the sphere
also moves, and it is designated as Rb(t), where Rb(0) = Rb(0). A sketch of the
model is presented in figure 1.
To describe the melting process of the nanoparticle requires solving heat equa-

tions in the solid and liquid phases over the moving domains 0 < r < R(t) and
R(t) < r < Rb(t), respectively. The heat equation in the liquid is given by

(2) ρlcl

(
∂T

∂t
+∇T · v

)
= kl∇2T ,

where T is the temperature, v is the velocity of the fluid, kl the thermal conductiv-
ity and cl the specific heat. Since the geometry is spherical and the temperature
applied on the surface Rb(t) is constant we may assume spherical symmetry. The
velocity may be written as v = (v(r), 0, 0) and the heat equation becomes

(3) ρlcl

(
∂T

∂t
+ v

∂T

∂r

)
= kl

1

r2
∂

∂r

(
r2
∂T

∂r

)
on R(t) < r < Rb(t).
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Rb(t)

R(t)

Solid

Liquid

TH

T (r, t)

Tm(t)

θ(r, t)

Figure 1. Sketch of the model, showing a solid sphere of radius
R(t) surrounded by a liquid layer with radius Rb(t).

We find this equation widely used in the literature when dealing with phase
change problems that include either shrinkage or expansion of one of the phases,
see [3, 7, 18] for example.
Under the assumption of incompressible flow the velocity v can be determined

from the continuity equation ∇ · v = 0. In the present case,

(4)
1

r2
∂

∂r

(
r2v

)
= 0

leading to

(5) v =
h

r2

where h is a constant of integration. Mass conservation requires

(6)
d

dt

[
ρs
4

3
πR3 + ρl

4

3
π
(
R3

b −R3
)]

= 0

this provides an equation for the velocity of the outer surface

(7)
dRb

dt
= −R2

R2
b

(
ρs
ρl

− 1

)
dR

dt
.

Noting that v(Rb) = dRb/dt provides an expression for h in (5),

(8) v = −R2

r2

(
ρs
ρl

− 1

)
dR

dt
.

The temperature in the solid phase, θ, will be given by the one dimensional heat
equation

(9) ρscs
∂θ

∂t
= ks

1

r2
∂

∂r

(
r2
∂θ

∂r

)
on 0 < r < R(t).
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NANOPARTICLE MELTING WITH DENSITY CHANGE 5

The appropriate boundary conditions for equations (3) and (9) are

(10) T (Rb, t) = TH , T (R, t) = θ(R, t) = Tm(t),
∂θ

∂r

∣∣∣∣
r=0

= 0,

where Tm(t) is given by equation (1). Energy conservation across the surface R(t)
gives the Stefan condition

(11)

ρs
[
Lf + (cl − cs)(Tm − T ∗

m)
]dR
dt

+

ρs
2

(
1− ρs

ρl

)2 (
dR

dt

)3

= ks
∂θ

∂r

∣∣∣∣
r=R

− kl
∂T

∂r

∣∣∣∣
r=R

.

This provides a differential equation for R(t) subject to the initial condition
R(0) = R0 (a detailed derivation of the Cartesian version with ∆c = 0 is given
in [3]). Note, in the standard Stefan problem with a fixed temperature boundary
condition Rt → ∞ as t → 0 (we will observe the vertical slope in the results
presented later). In the idealised situation where ρs = ρl the term involving
R3

t disappears from the governing equation and the standard Stefan condition is
retrieved. However, if we try to reproduce the results of this case by decreasing
the factor 1 − ρs/ρl in the above equation we do not approach the standard
solution. This is because as t → 0, Rt → ∞ and the product (1− ρs/ρl)R

3
t ̸→ 0.

That is, we have a classic example of a singular perturbation where the results
obtained by approaching a limit (1− ρs/ρl) → 0 do not coincide with the actual
limit (1− ρs/ρl) = 0. In order to focus on the density difference we will now set
cl = cs and the first term in (11) subsequently reduces to ρsLfRt.
Finally, we assume that initially the nanoparticle is at the melting temperature,

θ(r, 0) = Tm(0), given by (1). Considering lower initial temperatures (θ(r, 0) <
Tm(0)) would require solving a thermal problem previous to the melting process.
The problem may be nondimensionalized introducing the variables

(12) T̂ =
T − T ∗

m

TH − T ∗
m

, θ̂ =
θ − T ∗

m

TH − T ∗
m

, r̂ =
r

R0

, t̂ =
kl

ρlclR2
0

t.

Similarly, the nondimensional moving boundaries are R̂ = R/R0 and R̂b = Rb/R0.
Dropping the hats, the governing equations (3) and (9) become

(13)
∂T

∂t
− (ρ− 1)

R2

r2
dR

dt

∂T

∂r
=

1

r2
∂

∂r

(
r2
∂T

∂r

)
, R < r < Rb

(14)
∂θ

∂t
=

k

ρ

1

r2
∂

∂r

(
r2
∂θ

∂r

)
, 0 < r < R.

The Stefan condition is

(15) ρβ
dR

dt
+ γ

(
dR

dt

)3

= k
∂θ

∂r

∣∣∣∣
r=R

− ∂T

∂r

∣∣∣∣
r=R

,
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6 F. FONT, T. G. MYERS, AND S.L. MITCHELL

Table 1. Approximate thermodynamical parameter values for gold.
The value of σsl is taken from [10].

Substance T ∗
m Lf cl, cs ρl, ρs kl, ks σsl

(K) (J/Kg) (J/Kg·K) (kg/m3) (W/m·K) (N/m)

Gold 1337 6.37×104 163/129 1.73×104/1.93×104 106/317 0.27

and the boundary conditions (10) are

(16) T (Rb, t) = 1, T (R, t) = θ(R, t) = −Γ

R
,

∂θ

∂r

∣∣∣∣
r=0

= 0, T (r, 0) = −Γ.

The dimensionless parameters are defined by
(17)

ρ =
ρs
ρl
, k =

ks
kl
, β =

Lf

cl∆T
, Γ =

2σslT
∗
m

R0ρsLf∆T
, γ =

α3
l ρs

2R2
0kl∆T

(ρ− 1)2

where ∆T = TH − T ∗
m and αl = kl/ρlcl is the thermal diffusivity. Note that Rb

and R are related by R3
b = ρ− (ρ− 1)R3, obtained by integrating the expression

(7).
An extra parameter c = cs/cl describing the difference in specific heats between

phases often appears in the literature. In the present study we assume c = 1 (see
from table 1 that c = 0.79, for gold). By doing this we can make use of the
classical Gibbs-Thomson equation (1) instead of the extended nonlinear version
form given in [14]. In addition, the term ρ(1−c)TmRt would have to be included in
left hand side of (15). Thus, as letting c ̸= 1 would only increase the mathematical
complexity of the model and would not contribute with relevant information to
the results, we consider the assumption c = 1 valid for our purposes. The effect
of assuming c ̸= 1 versus c = 1 concerning the melting of nanoparticles is studied
in detail in [14].
The present model differs from previous models concerning the melting of

nanoparticles by the fact that includes the density variation between phases
(ρ ̸= 1). This results in an advection term in the heat equation for the liq-
uid, accounting for the temperature variation due to the bulk movement of the
liquid, and in a cubic term of the melt front velocity in the Stefan condition. If
we constrain the densities to be equal by setting ρ = 1 (so γ = 0), both terms
vanish and the standard form of the two-phase Stefan problem is retrieved. As
we will see, this standard reduction significantly overestimates the speed of the
melting process.
The parameter γ gives an idea of how relevant will be the cubic term for the

solution. As γ ∝ 1/R2
0, the term will gain importance as the particle radius

decreases. For instance, using values from table 1, assuming a temperature varia-
tion ∆T = 50 K and an initial particle radius R0 = 100 nm, one obtains γ = 0.13.
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NANOPARTICLE MELTING WITH DENSITY CHANGE 7

But, assuming R0 = 10 nm we yet see that γ = 13.26. In [3] is stated that, in
general, the cubic term in the Stefan condition is expected to be ignorably small
compared to the linear. In our study we show, in fact, that the term is dominant
for particles below 100 nm radius, and therefore, cannot be ignored if one wishes
to accurately describe the melting process of nanoparticles.
Another remarkable characteristic of the model is the variation of the melting

temperature due to the large curvature of spherical nanoparticles. The parameter
that describes the importance of this phenomena is Γ. For gold, if ∆T = 50 K
and R0 = 10 nm then Γ = 1.17, if R0 = 50 nm then Γ = 0.12. As the radius
increases above 100 nm, Γ quickly decreases and the curvature effect becomes
negligible.
The parameter β, known as Stefan number, is frequently used in the literature

to generate approximate solutions to Stefan problems in the form of series expan-
sions. For instance, for increases in the temperature ranging from ∆T = 10 K to
∆T = 100 K we will have values from β = 40 to β = 4, respectively. Working
in a large Stefan number regime is a sensible assumption. Note that, due to the
small volume of nanoparticles, any small increase above the melting temperature,
∆T , at the surface of the particle will be enough to almost instantaneous melt
it. This permits us to find perturbation solutions making use of β−1 as the small
perturbation parameter, as will be shown in the next section.
Finally, the parameter k does not play an important role in our analysis. Nev-

ertheless, if one wishes to reduce the two-phase model with variable phase change
temperature to a one-phase model (keeping one of the phases at the phase change
temperature and studying the evolution of the other phase) [14, 19] the parameter
k is crucial in order to derive appropriate energy conserving forms of the Stefan
condition [20].

3. Perturbation solution

The system (13)-(15) presents the global structure of a two-phase Stefan prob-
lem: a heat equation for the liquid phase (13), a heat equation for the solid phase
(14) and an equation for the position of the solid-liquid interface (15), all subject
to appropriate boundary conditions (16).
To analyze the problem we make use of a standard perturbation technique. As

in [14], we consider β to be large for our system (for gold heated 10K above the
bulk melt temperature β ≈ 40) and define a new time scale t = βτ . This permits
us to assume expansions for the temperatures θ = θ0 + θ1/β + O(1/β2) and
T = T0 + T1/β +O(1/β2). Then, equations (13) and (14) can be expressed as a
sequence of problems. The leading order problem is represented by the equations

(18) 0 =
1

r2
∂

∂r

(
r2
∂T0

∂r

)
, 0 =

1

r2
∂

∂r

(
r2
∂θ0
∂r

)
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with boundary conditions T0(Rb, τ) = 1, T0(R, τ) = θ0(R, τ) = −Γ/R, and
θ0r(0, τ) = 0. The subsequent solutions are

(19) θ0 = −Γ

R
, T0 = −Γ

R
+

Rb

R

(r −R)

r

(
R + Γ

Rb −R

)
.

The O(1/β) problem has equations

(20)
∂T0

∂τ
− (ρ− 1)

R2

r2
dR

dτ

∂T0

∂r
=

1

r2
∂

∂r

(
r2
∂T1

∂r

)

(21)
∂θ0
∂τ

=
k

ρ

1

r2
∂

∂r

(
r2
∂θ1
∂r

)
with boundary conditions T1(Rb, τ) = T1(R, τ) = θ1(R, τ) = θ1r(0, τ) = 0. The
solutions become

T1 =
(Γ +Rb)(Rb − r)(r −R)

6(Rb −R)2r

{
3(ρ− 1)R(Γ +R)(Rb −R)

(Γ +Rb)r
(22)

+
(ρ− 1)R(Γ +R)[3−R(Rb + r +R)]

R2
b(Γ +Rb)

− r + 2Rb −R

}
Rτ ,(23)

θ1 =− ρ

6k

Γ

R2
(R2 − r2)Rτ .(24)

Now, substituting θ ≈ θ0 + θ1/β and T ≈ T0 + T1/β into (15) within the new
time scale, we obtain the following equation for the melting front
(25)

γ

β3

(
dR

dτ

)3

+

{
ρ− ρΓ

β3R
+

(R + Γ)

β6R

[
(ρ− 1)(3Rb −R2Rb − 2R3)

(Rb −R)

+
2(Γ +Rb)

(Γ +R)

]}
dR

dτ
+

Rb

R2

(R + Γ)

(Rb −R)
= 0

subject to the initial condition R(0) = 1. To solve equation (25) we first set
z = dR/dτ so that it can be expressed as a cubic polynomial of the form z3 +
k1z + k2 = 0, which has one real root, say z1 = f(R). Finally, dR/dτ = z1 is
solved numerically. So, the original problem specified by two partial differential
equations and a first order ordinary differential equation has been reduced to a
cubic first order ordinary differential equation.
To obtain the solution of the model when the density jump is not taken into

account, it is enough to set ρ = 1 in (25). Note, by doing this we are also saying
that γ = 0 and Rb = 1. Then, (25) becomes

(26)

(
1 +

1

3βR

)
dR

dτ
+

Γ +R

R2(1−R)
= 0, R(0) = 1
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NANOPARTICLE MELTING WITH DENSITY CHANGE 9

with solution

(27) −β(1−R3) + a(1−R2)− b(1−R) + bΓ ln

(
Γ + 1

Γ +R

)
= 3βτ

where a = [3β(Γ + 1) − 1]/2 and b = (Γ + 1)(3βΓ − 1). In section 5 we will
compare the solutions of (25) with (27) for different parameter values and see
how the melting times are affected by neglecting the density jump between phases.
Initial conditions are often an issue when solving Stefan problems [21]. There-

fore, it is convenient to analyze the behavior of R(t) for small times. This can
be done by studying the limit t → 0 in the Stefan condition (15). We rescale the
space variable r as η = (r − R)/(Rb − R) on R < r < Rb and as ξ = r/R on
0 < r < R, transforming (15) into

(28) (Rb −R)

[
ρβ

(
dR

dt

)
+ γ

(
dR

dt

)3
]
= k

(Rb −R)

R

∂θ

∂ξ

∣∣∣∣
ξ=1

− ∂T

∂η

∣∣∣∣
η=0

As we are interested in the limit t → 0 we rescale time as t = ϵτ̂ , where ϵ ≪ 1.
Then, as we want to satisfy the initial condition, R(0) = 1, we propose R(t) to
be of the form

(29) R = 1− λ(ϵτ̂)p,

where p, λ are constant and p < 1. By substituting (29) in (28) we obtain

(30) −λ(ϵτ̂)p
[
ρβλp(ϵτ̂)p−1 + γ(λp)3(ϵτ̂)3p−3

]
= kλ(ϵτ̂)p

∂θ

∂ξ

∣∣∣∣
ξ=1

− ∂T

∂η

∣∣∣∣
η=0

where we have used the definition of Rb to show (Rb − R) → λ(ϵτ̂)p as t → 0.
In (30) there are a number of possibilities for the leading order balance. The
melting is driven by the temperature gradient in the liquid Tr so we expect this
to cause one of the terms (ϵτ)2p−1 or (ϵτ)4p−3 indicating p = 1/2 or p = 3/4.
When γ ̸= 0 (ρ ̸= 1) the largest term has p = 3/4, when γ = 0 then the power
must be p = 1/2 for equation (30) to balance. Hence for small times we will have

(31) R ≈

{
1− λ1t

3/4 if γ ̸= 0

1− λ2t
1/2 if γ = 0.

In the next section we will determine λ1, λ2. Note, as discussed earlier both of
these solutions indicate Rt → ∞ as t → 0.

4. Numerical solution method

The approximate solutions found for T , θ and R, are compared with the nu-
merical solution of (13)-(16) by finite differences. The equations (13)-(14) are
transformed by applying the change v = rθ and u = rT . This converts (14)
into a planar heat equation and (13) in somewhat more complicated but easy to
switch from ρ ̸= 1 to ρ = 1 when comparing the two cases. Then, the variables
η = (r − R)/(Rb − R) and ξ = r/R employed in (28) are used to immobilize
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10 F. FONT, T. G. MYERS, AND S.L. MITCHELL

the boundaries of u and v, respectively. Hence, we are left with the following
governing equations

(32)
∂v

∂t
=

Rt

R
ξ
∂v

∂ξ
+ k

1

R2

∂2v

∂ξ2
on 0 < ξ < 1

and

(33)

(Rb −R)2
∂u

∂t
=
∂2u

∂η2
− (ρ− 1)(Rb −R)2R2

[R + η(Rb −R)]3
Rtu

+ (Rb −R)

{[
1 +

(ρ− 1)R2

[R + η(Rb −R)]2
− η

]
Rt + ηRbt

}
∂u

∂η

on 0 < η < 1. The Stefan condition becomes

(34) ρβR2dR

dt
+ γR2

(
dR

dt

)3

= k
∂v

∂ξ

∣∣∣∣
ξ=1

− R

(Rb −R)

∂u

∂η

∣∣∣∣
η=0

+ (k − 1)Γ

where R(0) = 1, and the boundary conditions for the temperatures are v(0, t) = 0,
v(1, t) = u(0, t) = −Γ and u(1, t) = 1. Then, a semi-implicit scheme is employed,
discretizing implicitly for u, v and explicitly for R, Rt in (32)-(33). The discrete
forms of the partial derivatives are

(35)
∂v

∂t
=

vn+1
i − vni
∆t

,
∂v

∂ξ
=

vn+1
i+1 − vn+1

i−1

2∆ξ
,

∂2v

∂ξ2
=

vn+1
i+1 − 2vn+1

i + vn+1
i−1

∆ξ2

where i = 1, . . . , I and n = 1, . . . , N , and analogously for u. By means of (35)
equations (32)-(33) can be expressed as a matrix system and are solved at each
time step n. The position of the melting front is obtained from (34) using the
time derivative

(36)
dR

dt
=

Rn+1 −Rn

∆t

and a three point backward difference for the partial derivatives.
The liquid phase does not exist at t = 0. Note, there is a jump in the tem-

perature introduced by the boundary conditions u(0, t) = −Γ and u(1, t) = 1 as
t → 0. In order to avoid this discontinuity and initialize the numerical scheme,
consistent initial conditions have to be found. This can be achieved by substitut-
ing (31) in (33) and (34), and studying the limit t → 0. In the case where γ ̸= 0
the limiting case gives the problem

(37)
d2u

dη2
= 0, u(0) = −Γ, u(1) = 1,

(
3

4

)3

λ4
1ρ =

∂u

∂η

∣∣∣∣
η=0

which leads to

(38) u = (Γ + 1)η − Γ, λ1 =

(
4

3

)3/4(
Γ + 1

ρ

)1/4

.
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For the case γ = 0 we obtain

(39)
d2u

dη2
− λ2

2

2
(1− η)

du

dη
= 0, u(0) = −Γ, u(1) = 1, β

λ2
2

2
=

du

dη

∣∣∣∣
η=0

leading to

(40) u = 1− (1 + Γ)
erf (λ2(1− η)/2)

erf (λ2/2)

where λ2 is the solution of the transcendental equation

(41)
1

2

√
π β λ2 e

λ2
2/4 erf (λ2/2) = 1 + Γ.

Expressions (38) and (40)-(41) are used as initial conditions to start the codes.

5. Results and discussion

In this section we present a set of results for the melting of a spherical nanopar-
ticle. We use data appropriate for gold (as shown in Table 1) since this is a very
common material for nanoparticles. The density change between solid and liquid
gold is within the range of many materials, so it provides typical results.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3
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0.6
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0.8

0.9

1

t

R
(t

)

ρ = 1

ρ ≠ 1

Figure 2. Evolution of the nondimensional melting front R(t) for
the two cases of study ρ=1 and ρ ̸=1, for β=100 and R0=10 nm.

In Figure 2 we plot the evolution of the solid-liquid interface, R(t), for a
nanoparticle with initial dimensional radius 10 nm and β = 10 (which corre-
sponds to relatively slow melting). Two pairs of curves are shown, one for the



C
R
M

P
re
p
ri
nt

S
er
ie
s
nu
m
b
er

11
85

12 F. FONT, T. G. MYERS, AND S.L. MITCHELL

case ρ = 1, the other for ρ ≈ 1.116. The solid lines represent the solution of
the equations derived from the perturbation analysis, i.e. the solution for ρ = 1
given by (27), the other for ρ ̸= 1 given by (25), the dashed line is the numerical
solution. In both cases the perturbation solution is very close to the numerical
solution, indicating a full numerical analysis is not necessary. It is quite clear
that the two sets of solutions lead to very different melt times. When ρ = 1
the melt process takes approximately half the time of that obtained with the
correct change in density, ρ ≈ 1.116. Both sets of curves show a melt velocity
Rt → −∞ at the final stages of melting. We associate this with the sudden
melting of nanoparticles as R → 0, observed experimentally in [9] and already
discussed and analyzed in previous theoretical studies [13, 14].
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

R
(t

)

ρ = 1
ρ ≠ 1

Figure 3. Evolution of the nondimensional melting front R(t) for
the two cases of study ρ = 1 and ρ ̸= 1, for β = 10 and R0 = 10 nm.

In Figure 3 we present two sets of results for the same initial radius, but now
β = 10. Since β ∝ 1/∆T we expect faster melting than in the previous example
and this is obviously the case. However, the results are qualitatively similar to the
β = 100 example and specifically there is a factor of greater than two difference
in melt times for the two density cases. The perturbation solution, which is based
on an expansion in the small parameter 1/β still shows excellent agreement with
the numerical solution.
In Tables 2 and 3 we present dimensional melting times for particle radii 10,

50, 100 nm and β = 5, 10, 100 for ρ = 1 and ρ ̸= 1 respectively. The dimensional
times are obtained by multiplying the nondimensional melting time by the time
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scale ρlclR
2
0/kl. By comparing the two tables we see that for a particle with

R0 = 10 nm, the computed melting times for the case ρ = 1 are between 56%
(for β = 100) and 65% (for β = 5) faster than for the ones corresponding to
ρ ̸= 1. In the second column (R0 = 50 nm), the melting times for the case ρ = 1
are between the 16% and 23% faster than those for ρ ̸= 1. Finally, the third
column (R0 = 100 nm) present differences between the two cases of 15% and the
16%. Results for larger particles show that the difference settles at approximately
15%. This difference in melt times carries through to the macro-scale, indicating
the importance of incorporating density variation within more standard Stefan
problems.

Table 2. Melting times for the case ρ = 1. Results for gold.

Melting times (s)

R0 = 10 nm R0 = 50 nm R0 = 100 nm

β = 100 (TH ≈ 1341 K) 1.38·10−12 1.55·10−10 1.07·10−9

β = 10 (TH ≈ 1376 K) 1.08·10−12 0.69·10−10 0.34·10−9

β = 5 (TH ≈ 1415 K) 0.89·10−12 0.45·10−10 0.21·10−9

Table 3. Melting times for the case ρ ̸= 1. Results for gold.

Melting times (s)

R0 = 10 nm R0 = 50 nm R0 = 100 nm

β = 100 (TH ≈ 1341 K) 3.12·10−12 1.84·10−10 1.26·10−9

β = 10 (TH ≈ 1376 K) 2.75·10−12 0.85·10−10 0.41·10−9

β = 5 (TH ≈ 1415 K) 2.49·10−12 0.58·10−10 0.25·10−9

The physical mechanism behind the slower melting when ρ ̸= 1 is easily ex-
plained by considering the energy in the system. Melting occurs due to heat
being input at the boundary Rb. When ρ = 1 this energy goes to heating up
the material and driving the phase change. However, when ρ ̸= 1 the fluid must
move due to the expansion (or contraction depending on the material) caused
by the phase change. This provides another energy sink, namely kinetic energy,
which then results in less energy available to melt the material. Mathematically
we can see from equation (31) that when ρ = 1 the initial melt rate Rt ∝ t−1/2 is
much greater than when ρ ̸= 1, Rt ∝ t−1/4.
To understand why the two sets of results remain different even for large par-

ticles we may consider the Stefan condition (15). When ρ = 1 the second term
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Figure 4. Evolution of the nondimensional melting front R(t) for
the two cases of study ρ = 1 and ρ ̸= 1, for β = 100 and R0 =
100 nm.

on the left hand side is zero (since the parameter γ ∝ ρ − 1 = 0). When ρ ̸= 1
then γ ̸= 0 and the term R3

t plays a role. The importance of the particle size
also comes through γ ∝ 1/R2

0, hence the cubic term plays a greater role as R0

decreases (which is why Figures 2, 3, with R0 = 10 nm, show much greater dif-
ferences than those in Figures 4, 5 where R0 = 100). But then why does the
difference not disappear as R0 → ∞? The reason is that, as mentioned in §2,
the model with γ → 0 does not tend to the model with γ = 0. When γ ̸= 0
the Stefan condition is cubic in Rt (and so has three roots), when γ = 0 the
equation is linear in Rt and has only one root so there is a fundamental dif-
ference in models. In fact, this is a classic example of a singular perturbation
[22, Chap. 1]. The problem may also be viewed in the light that as t → 0+

or t → t−e the melt velocity Rt → −∞, hence even though γ → 0 it is multi-
plying a term that tends to infinity which in this case leads to a non-negligible
contribution. In Figure 6 we demonstrate the relative strength of the two terms
constituting the left hand side of equation (15) for the cases where R0 = 10, 100
nm and β = 10. The dashed line shows the result for R0 = 10 nm. Since its
value is close to or greater than unity throughout the melt process this signifies
the cubic term is generally dominant. When R0 = 100 nm the cubic term is
negligible for most of the process, but the peaks at the beginning and end mean
that it still plays an important role there. Increasing γ further will push the
position of the peaks towards the initial and final times, but will never remove
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Figure 5. Evolution of the nondimensional melting front R(t) for
the two cases of study ρ = 1 and ρ ̸= 1, for β = 10 and R0 =
100 nm.

them. This is what leads to the 15% difference in results and means that even
for macro-scale problems we should expect a significant error if the difference in
densities between phases is ignored.
With no experimental results which exactly describe our theoretical models

we must rely on similar studies to provide estimates and at least quantitative
agreement. For instance, in [23] the melting of gold nanoparticles is studied
experimentally by time resolved x-ray scattering when heated up by a laser beam.
They find that the time to complete melting is less than 100 ps for nanoparticles
with R0 = 50 nm. In [24] the melting of 2 and 20 nm gold nanoparticles is
studied, finding melting times on the picosecond scale. Our results show indeed
the right order of magnitude, however we are not aware of the existence of any
experimental studies that could further validate the accuracy of our results.

6. Conclusions

The main aim of this paper was to determine whether the standard modelling
assumption, that the density remains constant throughout the phase change, is
valid in the context of nanoparticle melting. Our results clearly showed that as
the particle radius decreases the effect of the density change becomes increasingly
important. We presented results for the melting of gold and found that melt times
for a particle with initial radius 10 nm were more than doubled when the density
ratio was changed from ρ = 1 to ρ ≈ 1.116. This increase in melt time may be
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Figure 6. Relative importance of the term γR3
t against ρβRt for

β = 10, for nanoparticles with radius R0 = 100 nm (solid line) and
R0 = 10 nm (dashed line).

attributed to the fact than with ρ = 1 the liquid phase remains stationary so all
energy input into the system is converted to heat or to drive the phase change. If
ρ ̸= 1 then the liquid is forced to move which requires kinetic energy and means
less energy is available for the phase change.
We therefore conclude that any mathematical model of nanoparticle melting

should incorporate density variation. In fact our results show an even stronger
conclusion, namely that in general the density variation should be included in
phase change models. In the case studied in the present paper the difference
in melt times (neglecting or including density variation) tended to a limit of
approximately 15% as the particle size increased.
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