PEAKS AND JUMPS RECONSTRUCTION WITH B-SPLINES
SCALING FUNCTIONS

LUIS ORTIZ-GRACIA AND JOSEP J. MASDEMONT

Abstract. We consider a methodology based in B-splines scaling functions to numerically invert Fourier or Laplace transforms. The methodology is particularly well suited when the original function or its derivatives present peaks or jumps due to discontinuities in the domain.

1. Introduction

Fourier and Laplace transforms are useful in a wide number of applications in science and engineering. As it is well known, the Fourier transform is closely related to the Laplace transform for zero value functions on the negative time axis. There is a strong interest in the efficient numerical inversion of Laplace transforms ([Aba96],[Aba00]) and Fourier transforms, due to the fact that the solutions to some problems are known in the transform domain rather than in the original domain. An increasing number of works have recently appeared to invert Fourier transforms with wavelets, like [Gao03] and [Gao05] with coiflets wavelets and [Gre08] with Mexican, Morlet, Poisson and Battle-Lemarié wavelets. In particular in the Financial Engineering context, [Hav09] inverts a Laplace transform by means of B-splines wavelets of order 1.

Recently, a new method called the COS method developed in [Fan08] for solving the inverse Fourier integral is capable to accurately recover a function from its Fourier transform in a short CPU time being as well of very easy implementation. However, when the function to be recovered presents discontinuities or it is highly peaked, a lot of terms in the expansion must be considered to reduce the approximation error.

In this paper we present a novel approximation based on B-splines scaling functions to numerically invert Fourier transforms that it is particularly suited for functions that exhibit peaks and/or jumps in its domain. There are some properties that, at first glance, make these basis functions particularly appropriated to approximate such non-smooth functions. B-splines are the most regular scaling functions with the shortest support for a given polynomial degree. Another important fact is the explicit formulation in the time (or space) domain as well as in the frequency domain. However a small drawback of these basis functions is that the system that they form is semi-orthogonal, i.e., the scaling

Date: September 2012.
functions are orthogonal among different scales but not necessarily at the same scale.

In the previous work [Mas11] the authors numerically invert the Laplace transform of a distribution function in the interval \([0, 1]\) making use of the Haar scaling functions. Now we consider the problem of inverting the Fourier transform to recover an \(L^2(\mathbb{R})\) function by approximating it by a finite sum of B-splines scaling functions of order \(j\) (where \(j = 0\) is the particular case of the Haar system). We also provide a list of the different errors accumulated during the numerical procedure. This is the first time that the Fourier inversion is carried out with B-splines scaling functions rather than with wavelet functions ([Gre08]) or a combination of both ([Gao03],[Gao05]). We fix the scale parameter and the only remaining one is the translation parameter, facilitating this way the inversion procedure. Furthermore, we provide an analytical expresion for the coefficients of the approximation.

As it will be shown in the section devoted to numerical examples, the Wavelet Approximation (WA) that we present is highly capable to detect jumps or peaks produced by discontinuities in the function itself or in the first derivatives. On the contrary, the COS method is better to approximate analytical functions.

The paper is organized as follows. Section 2 gives a brief introduction concerning multiresolution analysis and B-splines. In Section 3 we present the Wavelet Approximation method to recover functions from its Fourier transform by means of B-splines scaling functions. Section 4 is devoted to numerical experiments, while Section 5 concludes.

2. Multiresolution Analysis and Cardinal B-Splines

A natural and convenient way to introduce wavelets is following the notion of multiresolution analysis (MRA). Here we provide the basic definitions and properties regarding MRA and B-spline wavelets, for further information see [Mal89, Chu92].

Definition 1. A countable set \(\{f_n\}\) of a Hilbert space is a Riesz basis if every element \(f\) of the space can be uniquely written as \(f = \sum c_n f_n\), and there exist positive constants \(A\) and \(B\) such that,

\[
A \|f\|^2 \leq \sum_n |c_n|^2 \leq B \|f\|^2.
\]

Definition 2. A function \(\phi \in L^2(\mathbb{R})\) is called a scaling function, if the subspaces \(V_m\) of \(L^2(\mathbb{R})\), defined by,

\[V_m = \text{clos}_{L^2(\mathbb{R})} \{\phi_{m,k} : k \in \mathbb{Z}\}, \quad m \in \mathbb{Z},\]

where \(\phi_{m,k} = 2^{m/2} \phi(2^m x - k)\), satisfy the properties,

(i) \(\cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots\),

(ii) \(\text{clos}_{L^2} \left(\bigcup_{m \in \mathbb{Z}} V_m \right) = L^2(\mathbb{R})\).
(iii) \(\bigcap_{m \in \mathbb{Z}} V_m = \{0\} \).
(iv) for each \(m \), \(\{ \phi_{m,k} : k \in \mathbb{Z} \} \) is a Riesz (or unconditional) basis of \(V_m \).

We also say that the scaling function \(\phi \) generates a multiresolution analysis \(\{ V_m \} \) of \(L^2(\mathbb{R}) \).

The \(j \)th order cardinal B-spline function \(N_j(x) \) is defined recursively by convolution:

\[
N_j(x) = \int_{-\infty}^{\infty} N_{j-1}(x-t)N_0(t)dt = \int_0^1 N_{j-1}(x-t)dt, \quad j \geq 1,
\]

where,

\[
N_0(x) = \chi_{[0,1)}(x) = \begin{cases}
1 & \text{if } x \in [0,1) \\
0 & \text{otherwise.}
\end{cases}
\]

Alternatively,

\[
N_j(x) = \frac{x}{j} N_{j-1}(x) + \frac{j + 1 - x}{j} N_{j-1}(x - 1), \quad j \geq 1.
\]

We note that cardinal B-spline functions are compactly supported, since the support of the \(j \)th order B-spline function \(N_j \) is \([0, j+1]\), and they have Fourier transform,

\[
\hat{N}_j(w) = \left(\frac{1 - e^{-iw}}{iw} \right)^{j+1}.
\]

In this paper we consider \(\phi^j = N_j \) as the scaling function which generates a MRA. Clearly, for \(j = 0 \) we have the scaling function of the Haar wavelet system.

We also remark that from the previous discussions, for every function \(f_m \in V_m \), there exists a unique sequence \(\{ c_{m,k} \}_{k \in \mathbb{Z}} \in l^2(\mathbb{Z}) \), such that,

\[
f_m(x) = \sum_{k \in \mathbb{Z}} c_{m,k} \phi_{m,k}(2^m x - k).
\]

3. The Wavelet Approximation Method

Let us now consider a function \(f \in L^2(\mathbb{R}) \) and its Fourier transform whenever it exists:

\[
\hat{f}(w) = \int_{-\infty}^{+\infty} e^{-iwx} f(x) dx.
\]

Since \(f \in L^2(\mathbb{R}) \) we can expect that \(f \) decays to zero, so it can be well approximated in a finite interval \([a, b]\) by,

\[
f^c(x) = \begin{cases}
f(x) & \text{if } x \in [a, b], \\
0 & \text{otherwise.}
\end{cases}
\]
Now let us approximate $f^c(x) \simeq f^c_{m,j}(x)$ for all $x \in [a, b]$ where,

$$f^c_{m,j}(x) = \sum_{k=0}^{(j+1)(2^m-1)} c_{m,k}^j \phi^j_{m,k} \left((j+1) \cdot \frac{x-a}{b-a} \right), \quad j \geq 0,$$

with convergence in L^2-norm. Note that we are not considering the left and right boundary scaling functions.

The main idea behind the Wavelet Approximation method is to approximate \hat{f} by $\hat{f}^c_{m,j}$ and then to compute the coefficients $c_{m,k}^j$ by inverting the Fourier Transform. Proceeding this way,

$$\hat{f}(w) = \int_{-\infty}^{+\infty} e^{-iwx} f(x)dx \simeq \int_{-\infty}^{+\infty} e^{-iwx} f^c_{m,j}(x)dx$$

$$= \sum_{k=0}^{(j+1)(2^m-1)} c_{m,k}^j \left(\int_{-\infty}^{+\infty} e^{-iwx} \phi^j_{m,k} \left((j+1) \cdot \frac{x-a}{b-a} \right) dx \right).$$

Introducing the change of variable $y = (j+1) \cdot \frac{x-a}{b-a}$,

$$\hat{f}(w) \simeq \frac{b-a}{j+1} \cdot e^{-iaw} \sum_{k=0}^{(j+1)(2^m-1)} c_{m,k}^j \int_{-\infty}^{+\infty} e^{-iwy} \phi^j_{m,k}(y)dy$$

$$= \frac{b-a}{j+1} \cdot e^{-iaw} \sum_{k=0}^{(j+1)(2^m-1)} c_{m,k}^j \hat{\phi}^j_{m,k} \left(\frac{b-a}{j+1} \cdot w \right).$$
Finally, taking into account that
\[\hat{\phi}_{m,k}(\xi) = 2 \pi \hat{\phi}(\frac{\xi}{2m}) e^{-i \frac{k}{2m} \xi} \]
and doing the change of variable
\[z = e^{-i \frac{b-a}{2m(j+1)} w} \]
we have,
\[\hat{f}\left(\frac{2^m(j+1)}{b-a} i \cdot \log(z) \right) \simeq 2^{-m} \frac{b-a}{j+1} \cdot z^{2^m(j+1)a} \hat{\phi}(i \cdot \log(z)) \sum_{k=0}^{(j+1)(2m-1)} c_m^j z^k. \]

Now if we consider,
\[P_{m,j}(z) = \sum_{k=0}^{(j+1)(2m-1)} c_m^j z^k \quad \text{and} \]
\[Q_{m,j}(z) = \frac{2^m(j+1)z^{2^m(j+1)a} \hat{f}\left(\frac{2^m(j+1)}{b-a} i \cdot \log(z) \right)}{(b-a)\hat{\phi}(i \cdot \log(z))}, \]
than, according to the previous formula, we have,
\[P_{m,j}(z) \simeq Q_{m,j}(z). \]

Since \[P_{m,j}(z) \] is a polynomial, it is (in particular) analytic inside the disc of the complex plane \(\{ z \in \mathbb{C} : |z| < r \} \) for \(r > 0 \). Then, we can obtain expressions for the coefficients \(c_m^j \) by means of the Cauchy’s integral formula. This is,
\[c_m^j = \frac{1}{2\pi i} \int_{\gamma} P_{m,j}(\frac{z}{z^{k+1}}) dz, \quad k = 0, \ldots, (j+1) \cdot (2m-1), \]
where \(\gamma \) denotes a circle of radius \(r, r > 0 \), about the origin.

Considering now the change of variable \(z = re^{iu}, r > 0 \) we have,
\[c_m^j = \frac{1}{2\pi r} \int_0^{2\pi} P_{m,j}(re^{iu}) e^{iku} du \]
\[= \frac{1}{2\pi r} \int_0^{2\pi} [\Re(P_{m,j}(re^{iu})) \cos(ku) + \Im(P_{m,j}(re^{iu})) \sin(ku)] du, \]
where \(k = 0, \ldots, (j+1) \cdot (2m-1) \) and \(\Re(z) \) and \(\Im(z) \) stand for the real and imaginary part of \(z \) respectively.

Note that if \(k \neq 0 \) then we can further expand the expression above by considering,
\[c_m^j = \frac{2}{\pi r k} \int_0^{\pi} \Re(P_{m,j}(re^{iu})) \cos(ku) du. \]

On the other side, since \(\hat{\phi}(i \cdot \log(z)) = \left(\frac{z-1}{\log(z)} \right)^{j+1} \]
then,
\[Q_{m,j}(z) = \frac{2^m(j+1)z^{2^m(j+1)a} \hat{f}\left(\frac{2^m(j+1)}{b-a} i \cdot \log(z) \right)}{(b-a)(z-1)^{j+1}}, \]
and it has a pole at \(z = 1 \). Finally, making use of (3) and taking into account the former observation, we can exchange \(P_{m,j} \) by \(Q_{m,j} \) in (4) and (5) to obtain respectively,

\[
(7) \quad c_{m,0}^j \simeq \frac{1}{2\pi} \int_0^{2\pi} \Re(Q_{m,j}(re^{iu}))du,
\]

and,

\[
(8) \quad c_{m,k}^j \simeq \frac{2}{\pi rk} \int_0^{\pi} \Re(Q_{m,j}(re^{iu}))\cos(ku)du, \quad k = 1, ..., (j + 1) \cdot (2^m - 1),
\]

where \(r \neq 1 \) is a positive real number.

In practice, both integrals in (7) and (8) are computed by means of the trapezoidal rule. So we can define,

\[
I(k) = \int_0^{\pi} \Re(Q_{m,j}(re^{iu}))\cos(ku)du,
\]

\[
I(k; h) = \frac{h}{2} \left(Q_{m,j}(r) + (-1)^k Q_{m,j}(-r) + 2 \sum_{j=1}^{M-1} \Re(Q_{m,j}(re^{ih})\cos(kh_s)) \right),
\]

where \(h = \frac{\pi}{M} \) and \(h_s = sh \) for all \(s = 0, \ldots, M \). Proceeding this way we have,

\[
(9) \quad c_{m,k}^j \simeq \frac{2}{\pi rk} I(k) \simeq \frac{2}{\pi rk} I(k; h)
\]

where \(k = 1, ..., (j + 1) \cdot (2^m - 1) \).

Let us summarize the four sources of errors in our procedure to compute the numerical Fourier transform inversion using cardinal B-splines wavelets. These are:

(A) truncation of the integration range.

\[
\mathcal{E}_1(x) := f(x) - f^c(x), \quad x \in \mathbb{R} \setminus [a, b],
\]

(B) the approximation error at scale \(m \).

\[
\mathcal{E}_2(x) := f^c(x) - f^c_{m,j}(x), \quad x \in [a, b],
\]

(C) the discretization error, which is produced when approximating the integral \(I(k) \) with \(I(k; h) \) using the trapezoidal rule. We can apply the formula for the error of the compound trapezoidal rule considering,

\[
q_{m,k}^j(u) = \Re(Q_{m,j}(re^{iu}))\cos(ku), \quad \mathcal{E}_3 := I(k) - I(k; h),
\]

and assuming that \(q_{m,k}^j \in C^2([0, \pi]) \). Then,

\[
(10) \quad |\mathcal{E}_3| = \frac{\pi^3}{12M^2} \left| (q_{m,k}^j(\mu))'' \right|, \quad \mu \in (0, \pi).
\]
(D) the roundoff error. If we can calculate the sum in expression (9) with a precision of about $10^{-\eta}$, then the roundoff error after multiplying by the factor $\frac{1}{Mr_r}$ is approximately $E_4 := \frac{1}{Mr_r} \cdot 10^{-\eta}$. Then, the roundoff error becomes larger when r approaches to 0.

4. Numerical Examples

The aim of the paper is to show the accuracy of B-splines to invert Fourier transforms of extremely peaked or discontinuous functions with finite support. We will consider the B-splines scaling functions of orders $j = 0, 1, 2$. For this purpose, we consider the following examples:

Example 1. The exponential function, $f_1(x) = e^{-\alpha |x|}, \alpha > 0$ and its Fourier transform \(\hat{f}_1(w) = \frac{2\alpha}{\alpha^2 + w^2} \).

Observe that this function becomes extremely peaked when $\alpha >> 1$. We will test the inversion with $\alpha = 50$ and $\alpha = 500$. In addition, we consider the following representative examples,

Example 2. Let $f_2(x) = \chi_{[1/2,1]}(x)$ be a step function defined in $[0, 1]$ and its Fourier transform \(\hat{f}_2(w) = \frac{e^{-iw/2} - e^{-iw}}{iw} \).

Example 3. We consider the function $f_3(x) = 2\phi_{1,0}(x)$ in the interval $[a, b] = [0, 2]$.

Example 4. We consider the function $f_4(x) = \sum_{k=0}^{6} e^{-k\phi_{1,k}(x+1)}$ in the interval $[a, b] = [-1, 1]$.

To compute the coefficients of the Fourier inversion in expression (9), we must establish the set of parameters. For this purpose we consider $M = (j + 1) \cdot 2^m$, where j is the order of the B-spline considered and m is the scale parameter. Observe that if we take $M = 2k$ instead of $M = (j + 1) \cdot 2^m$ in (9) this leads to the following expression,

\[
(11) \quad c_{m,k} \simeq \frac{1}{2kr_k^k} \left(Q_{m,j}(r) + (-1)^k Q_{m,j}(-r) + 2 \sum_{s=1}^{2k-1} \Re(Q_{m,j}(re^{is\pi})) \cos \left(ks \frac{\pi}{2k} \right) \right)
\]

for $k = 1, ..., (j + 1) \cdot (2^m - 1)$, so the computation time reduces for large scale approximations.

Finally, we consider $r = 0.9995$. Although we know that $r > 0$ and $r \neq 1$, we must take into account the two types of errors (C) (discretization) and (D) (roundoff) listed previously, which may have influence in the computation of the coefficients. Due to the fact that the function $\Re(Q_{m,j}(re^{iu}))$ is in general
intractable from an analytical point of view, in general we carried out intensive simulations in order to know better the performance of the parameter r. We did these simulations considering the test functions f_1 and f_2 at different scale levels and using B-splines scaling functions of orders $j = 0, 1, 2$. To show just an example, we have plotted the results for $f_1, \alpha = 50$ and B-splines of order 1 at scale $m = 5$ (Figure 2) and $m = 9$ (Figure 3). The colors represent the magnitude of the logarithm of the absolute errors. As we can observe, the absolute error remains more constant for values $|r - 1| \leq \epsilon$. When $|r - 1| > \epsilon$, the error becomes larger for high values of x (i.e. high values of the translation parameter k) and smaller for low values of x (i.e. low values of the translation parameter k). It is worth to mention that for high scales, the error grows up very quickly when $|r - 1| > \epsilon$ (empirical findings demonstrate that $\epsilon \simeq 0.05$, for this reason we take approximately the midpoint of the interval avoiding $r = 1$), while this effect diminishes for shorter scales. In fact, as we will see later in Example 2 roundoff error almost disappear at very low scales (for instance $m = 1$) and the discretization error tends to zero when r tends to zero. These facts confirm the high impact of the roundoff error at high scale levels and only the impact of the discretization error at very low scales.

Figure 2. Logarithm of the absolute error for the approximation of the function $f_1 (\alpha = 50)$ with B-splines of order 1 at scale $m = 5$.

For comparison, we present in Appendix A a brief overview of the COS method developed by Fang and Oosterlee ([Fan08]) that is based on a Fourier-cosine series...
expansion and which usually gives optimal approximations of functions with finite support ([Boy89]). The COS method is state of the art and has been applied to efficiently recover density functions from their Fourier transforms in order to solve important problems arising in Computational Finance.

Let us start with Example 1. We consider the interval \([a,b] = [-1,1]\) and \(\alpha = 50, 500\). We denote by WAi-j the Wavelet Approximation method with B-splines of order \(i\) at scale \(j\), which involves \(2^j(i + 1) - i\) coefficients and COS-N the COS approximation method with \(N\) terms. We carry out the comparison between both methods using approximately the same number of terms in the approximation. It is worth to say that the computation of wavelet coefficients is more time consuming than the calculation of COS coefficients. Moreover, COS method is easier to implement. Results are reported in Table 1 and plotted in Figure 4. We observe that linear B-splines are the most suitable basis functions to approximate highly peaked functions like the exponential we are considering. While adding many more terms in the COS expansion improves only a bit the approximation, when we consider B-splines of order 1 at higher scales the approximation error decays much more faster. The WA method with B-splines of order 1 performs better than the WA method with B-splines of orders 0 and 2.

Now let us consider Example 2. Due to the shape of \(f_2\) it seems that the best B-splines basis to perform the approximation are Haar scaling functions (B-splines}
where u since,

Now, we must choose an appropriate r of order 0). In this particular case $\Re(Q_{m,j}(r e^{iu}))$ and its derivatives up to order 2 can be computed relatively straightforward, so that we will be able to calculate the optimum value of the parameter r in order to minimize the discretization and the roundoff errors. We also demonstrate that the approximation error (type (B)) is 0. To do so, we consider,

$$Q_{m,0}(r e^{iu}) = \frac{r^{2m} (\cos(2^m u) + i \sin(2^m u)) - r^{2m-1} (\cos(2^{m-1} u) + i \sin(2^{m-1} u))}{2^{m/2} (r \cos(u) + ir \sin(u) - 1)},$$

where $u \in [0, \pi]$, and,

$$\Re(Q_{m,0}(r e^{iu})) = \frac{r^{2m+1} \cos(2^m u) - r^m \cos(2^m u) - r^{2m-1+1} \cos(2^{m-1} u - u) + r^{2m-1} \cos(2^{m-1} u)}{2^{m/2} (r^2 - 2 r \cos(u) + 1)}.$$

Now, we must choose an appropriate r in order to control both the discretization and the roundoff errors. First of all, we consider the discretization error which can be estimated by means of expression (10). We note that $q_{m,k}^0 \in C^2([0, \pi])$ since,

$$0 < (r - 1)^2 \leq r^2 - 2r \cos(u) + 1 \leq (r + 1)^2, \quad \forall u \in [0, \pi], r \neq 1.$$

So we have,

$$\frac{d}{du} q_{m,k}^0(u) = \frac{d}{du} \Re(Q_{m,0}(r e^{iu})) \cos(ku) - k \Re(Q_{m,0}(r e^{iu})) \sin(ku),$$

$$\frac{d^2}{du^2} q_{m,k}^0(u) = \frac{d^2}{du^2} \Re(Q_{m,0}(r e^{iu})) \cos(ku) - 2k \frac{d}{du} \Re(Q_{m,0}(r e^{iu})) \sin(ku) - k^2 \Re(Q_{m,0}(r e^{iu})) \cos(ku).$$

<table>
<thead>
<tr>
<th>Method</th>
<th>$\alpha = 50$</th>
<th>$\alpha = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\min \log</td>
<td>\text{error}</td>
</tr>
<tr>
<td>WA0-6</td>
<td>-2.928931</td>
<td>-0.374819</td>
</tr>
<tr>
<td>WA1-5</td>
<td>-7.719564</td>
<td>-0.857977</td>
</tr>
<tr>
<td>WA1-9</td>
<td>-12.704332</td>
<td>-3.107169</td>
</tr>
<tr>
<td>WA2-4</td>
<td>-5.129268</td>
<td>-0.367390</td>
</tr>
<tr>
<td>COS-64</td>
<td>-5.673413</td>
<td>-0.526046</td>
</tr>
<tr>
<td>COS-128</td>
<td>-5.483920</td>
<td>-0.805937</td>
</tr>
<tr>
<td>COS-256</td>
<td>-6.093322</td>
<td>-1.102053</td>
</tr>
<tr>
<td>COS-512</td>
<td>-7.488787</td>
<td>-1.402252</td>
</tr>
<tr>
<td>COS-1024</td>
<td>-7.454768</td>
<td>-1.703285</td>
</tr>
</tbody>
</table>

Table 1. Approximation errors to the function f_1 in the interval $[-1, 1]$. Of order 0. In this particular case $\Re(Q_{m,j}(r e^{iu}))$ and its derivatives up to order 2 can be computed relatively straightforward, so that we will be able to calculate the optimum value of the parameter r in order to minimize the discretization and the roundoff errors. We also demonstrate that the approximation error (type (B)) is 0. To do so, we consider,

$$Q_{m,0}(r e^{iu}) = \frac{r^{2m} (\cos(2^m u) + i \sin(2^m u)) - r^{2m-1} (\cos(2^{m-1} u) + i \sin(2^{m-1} u))}{2^{m/2} (r \cos(u) + ir \sin(u) - 1)},$$

where $u \in [0, \pi]$, and,

$$\Re(Q_{m,0}(r e^{iu})) = \frac{r^{2m+1} \cos(2^m u) - r^m \cos(2^m u) - r^{2m-1+1} \cos(2^{m-1} u - u) + r^{2m-1} \cos(2^{m-1} u)}{2^{m/2} (r^2 - 2 r \cos(u) + 1)}.$$
Figure 4. Absolute error of the approximation to the function f_1 with $\alpha = 50$ (top) and $\alpha = 500$ (bottom).

and,

$$
\left| \Re(Q_{m,0}(re^{iu})) \right| \leq \frac{r^{2m+1} + r^{2m} + r^{2m-1} + r^{2m-1}}{2^{m/2}(r - 1)^2} \simeq r^{2m-1} + o(r^{2m-1}),
$$

where the last approximation holds for suitably small values of the parameter r. For sake of simplicity, we consider only the terms with smaller exponents in the parameter r for the expressions $\frac{d}{du} \Re(Q_{m,0}(re^{iu}))$ and $\frac{d^2}{du^2} \Re(Q_{m,0}(re^{iu}))$. Then,

$$
\left| \frac{d}{du} \Re(Q_{m,0}(re^{iu})) \right| \leq \frac{2^{(m-2)/2} r^{2m-1} + A(r)}{(r - 1)^4} \simeq r^{2m-1} + o(r^{2m-1}),
$$

and,

$$
\left| \frac{d^2}{du^2} \Re(Q_{m,0}(re^{iu})) \right| \leq \frac{2^{(3m-4)/2} r^{2m-1} + B(r)}{(r - 1)^8} \simeq r^{2m-1} + o(r^{2m-1}),
$$

where $A(r)$ and $B(r)$ are polynomials in r with degree greater than 2^{m-1}, and the approximations in (13) and (14) hold for suitably small values of the parameter.
Finally, taking into account expressions (10),(12),(13) and (14) we have,

\[|E_3| \leq \frac{\pi^3}{12M^2} \left(r^{2m-1} + 2kr^{2m-1} + k^2r^{2m-1} \right) + o(r^{2m-1}) \]

\[= \frac{\pi^3}{12M^2} (k^2 + 2k + 1) r^{2m-1} + o(r^{2m-1}). \]

We note that \(|E_3| \to 0\) as \(r \searrow 0\) while the round-off error is increasing in \(r\) as \(r\) approaches to zero. Then, the total error should be approximately minimized when the two estimates are equal. This leads to the equation,

\[\frac{1}{Mr^k} \cdot 10^{-\eta} = \frac{\pi^3}{12M^2} (k^2 + 2k + 1) r^{2m-1}. \]

After algebraic manipulation,

\[r_{m,k} = \left(\frac{12M \cdot 10^{-\eta}}{\pi^3(k^2 + 2k + 1)} \right)^{\frac{1}{2m-1+k}}, \quad k = 0, \ldots, 2^m - 1. \]

Recall that we are considering \(M = 2^m\). Since \(f_2\) is compactly supported, then \(E_1 = 0\).

Note that in the case that \(j = 0\),

\[f_c(x) = \sum_{k=0}^{2^{m-1}} c_{m,k}^0 \phi_{m,k}^0 \left(\frac{x - a}{b - a} \right) + \sum_{l=m}^{+\infty} \sum_{k=0}^{2^{l-1}} d_{l,k}^0 \psi_{l,k}^0 \left(\frac{x - a}{b - a} \right), \]

where, \{\phi_{m,k}^0\}_{k=0,\ldots,2^m-1} \cup \{\psi_{l,k}^0\}_{l=m,\ldots,2^l-1} is the Haar basis (orthonormal) system in \(L^2([0,1])\). Then,

\[\|E_2\|_{L^2([a,b])}^2 = \|f_c^m - f_m^c\|_{L^2([a,b])}^2 \]

\[= \left\| \sum_{l=m}^{+\infty} \sum_{k=0}^{2^{l-1}} d_{l,k}^0 \psi_{l,k} \left(\frac{x - a}{b - a} \right) \right\|_{L^2([a,b])}^2 = (b - a) \cdot \sum_{l=m}^{+\infty} \sum_{k=0}^{2^{l-1}} |d_{l,k}^0|^2, \]

since \(\|\psi_{l,k}^0 \left(\frac{x - a}{b - a} \right)\|_{L^2([a,b])}^2 = (b - a) \cdot \|\psi_{l,k}^0 \|_{L^2([0,1])}^2 = b - a. \) Then, the approximation error depends on the length of the interval \([a,b]\) and the detail coefficients,

\[d_{l,k}^0 = \int_{\mathbb{R}} f_c(x) \cdot \psi_{l,k}(x) dx. \]

Furthermore, since the detail coefficients (17) are zero, then we have also that \(E_2 = 0\) and the approximation is exact at any scale level \(m\).

Observe that if we take \(m = 1\), there is almost no roundoff error and the only remaining error is the discretization error \(E_3\). If we assume that \(\eta = 16\), then according to (15) \(r_{1,0} = 7.740368 \cdot 10^{-17}\), \(r_{1,1} = 4.398968 \cdot 10^{-9}\). The left plot of Figure 5 shows the approximation to the step function \(f_2\) with the COS and the WA method with \(r = 0.9995\). The right plot of Figure 5 represents the absolute error of the approximation with the COS and the WA method with
Let us consider the B-spline basis function in Example 3. We aim to recover the original function through the Wavelet Approximation inversion method. We apply also the COS method. Like in the previous example, the errors of type (A) and (B) do not have to be considered for this function, since f_3 is compactly supported and we carry out the approximation by means of B-splines of order 1. However, errors of type (C) and (D) remain.

As before, we consider $r = 0.9995$. The recovered coefficients are $c_{1,0}^1 = 2$, $c_{1,1}^1 = -5.605010 \cdot 10^{-8}$ and $c_{1,2}^1 = 4.645665 \cdot 10^{-8}$, showing high accuracy in the approximation.

Figure 6 shows a zoom of the approximation with COS method to the function f_3 in a neighborhood of 0.5 with 64 and 128 terms, while the absolute error is plotted in the right part of the figure. As expected, the error grows up at the non-smooth part of the function, that is, near the points $x = 0$, $x = 0.5$ and $x = 1$.

Let us now consider in Example 4 a finite sum of basis B-splines of order one with coefficients which exhibit exponential decay. Again, the coefficients can be accurately recovered by the Wavelet Approximation method with B-splines of order one at scale 2. The maximum absolute error is,

$$
\max_{k=0} |e^k - c_{2,k}^1| = 2.681058 \cdot 10^{-8}.
$$
Figure 6. Zoom of the approximation (left) and absolute error of the approximation (right) to the function f_3.

Left plot in Figure 7 represents the approximation to the function with the COS method, while right plot shows the absolute error of the approximation in log scale. As before, the conflictive points for the approximation are the points of non differentiability.

Figure 7. Approximation (left) and absolute error of the approximation (right) to the function f_4.

5. Conclusions

We have investigated a numerical procedure, the Wavelet Approximation method, to invert the Fourier transform of functions with finite support by means of the B-splines scaling functions. First of all, we truncate the function in a sufficiently wide interval and then we approximate it by a finite combination of B-splines wavelets up to order 2. Finally the function is recovered from its Fourier transform.
We have tested and compared the accuracy of this method versus the COS method for a set of heterogeneous functions in terms of the continuity and smoothness. We have considered a continuous function with a jump discontinuity in its first derivative and a function with a jump discontinuity in its domain of definition. Additionally, combinations of B-splines of order one have been also considered as the functions to be recovered. With these last two examples we are able to assess the discretization and roundoff errors of the Wavelet Approximation method, since no errors of type (A) and (B) take place. COS method performs better with infinitely differentiable functions, like the Gaussian, due to the fact that the coefficients of the expansion decay exponentially fast. On the contrary, WA method is more suitable for functions that exhibit peaks or discontinuities along its domain. For the function with a jump discontinuity, B-splines of order 0 (Haar) are better, while B-splines of order 1 fit accurately the continuous function with a jump discontinuity in its first derivative. Furthermore, little improvement is achieved for these two last functions, when adding a lot of terms in the COS expansion.

Due to the fact that COS coefficients are easier to compute in terms of CPU time, hybrid methods involving COS and WA, or simply combinations of the WA method at different scales and/or with different orders of the B-splines, could be investigated in the future. B-splines are a semi-orthogonal system, so it would be also advisable to explore the orthogonal Daubechies or Battle-Lemarié scaling functions. Furthermore, it is well known that standardized B-splines tend to the Gaussian function when the order tends to infinity, so they could be very useful to recover Gaussian functions from its Fourier transform.

APPENDIX A. THE COS METHOD

For completeness, we present here the methodology developed in [Fan08] for solving the inverse Fourier integral\(^1\). The main idea is to reconstruct the whole integral from its Fourier-cosine series expansion extracting the series coefficients directly from the integrand. Fourier-cosine series expansions usually give an optimal approximation of functions with a finite support [Boy89]. In fact, the cosine expansion of \(f(x)\) in \(x\) equals the Chebyshev series expansion of \(f(\cos^{-1}(t))\) in \(t\).

For a function supported on \([0, \pi]\), the cosine expansion reads,

\[
f(\theta) = \frac{A_0}{2} + \sum_{k=1}^{+\infty} A_k \cos(k\theta),
\]

\(^1\)In order to maintain the notation used by the authors, here

\[
\phi(w) = \int f(x) e^{iwx} dx,
\]

represents the characteristic function, and hence the Fourier transform of a density function \(f(x)\).
with $A_k = \frac{2}{\pi} \int_0^\pi f(\theta) \cos(k\theta) d\theta$. For functions supported on any other finite interval $[a, b] \subseteq \mathbb{R}$, the Fourier-cosine series expansion can easily be obtained via a change of variables,

$$\theta := \frac{x - a}{b - a} \pi, \quad x = \frac{b - a}{\pi} \theta + a.$$

It then reads,

$$f(x) = \frac{A_0}{2} + \sum_{k=1}^{+\infty} A_k \cos\left(k\pi \frac{x - a}{b - a}\right),$$

with,

$$A_k = \frac{2}{b - a} \int_a^b f(x) \cos\left(k\pi \frac{x - a}{b - a}\right) dx.$$

Since any real function has a cosine expansion when it is finitely supported, the derivation starts with a truncation of the infinite integration range in (18). Due to the conditions for the existence of a Fourier transform, the integrands in (18) have to decay to zero at $\pm \infty$ and we can truncate the integration range in a proper way without losing accuracy.

Suppose $[a, b] \subseteq \mathbb{R}$ is chosen such that the truncated integral approximates the infinite counterpart very well, i.e.,

$$\phi_1(w) := \int_a^b e^{iwx} f(x) dx \simeq \int_{\mathbb{R}} e^{iwx} f(x) dx = \phi(w).$$

Here, subscripts for variables, like i in ϕ_i, denote successive numerical approximations (not to be confused with subscript series coefficients like in A_k and F_k).

Comparing equation (20) with the cosine series coefficients of $f(x)$ on $[a, b]$ in (19), we find that,

$$A_k \equiv 2 \frac{b - a}{b - a} \Re \left(\phi_1 \left(\frac{k\pi}{b - a} \right) e^{-i\frac{k\pi}{b-a}} \right),$$

where \Re denotes the real part of the argument. It then follows from (20) that $A_k \simeq F_k$ with,

$$F_k \equiv 2 \frac{b - a}{b - a} \Re \left(\phi \left(\frac{k\pi}{b - a} \right) e^{-i\frac{k\pi}{b-a}} \right).$$

We now replace A_k by F_k in the series expansion of $f(x)$ on $[a, b]$, i.e.,

$$f_1(x) = \frac{A_0}{2} + \sum_{k=1}^{+\infty} F_k \cos\left(k\pi \frac{x - a}{b - a}\right),$$

and truncate the series summation such that,

$$f_2(x) = \frac{A_0}{2} + \sum_{k=1}^{N-1} F_k \cos\left(k\pi \frac{x - a}{b - a}\right).$$
The resulting error in $f_2(x)$ consists of two parts, a series truncation error from (21) to (22) and an error originated from the approximation of A_k by F_k. An error analysis that takes these different approximations into account is presented in [Fan08].

REFERENCES

Luis Ortiz-Gracia
Centre de Recerca Matem`atica
Campus de Bellaterra, Edifici C
08193 Bellaterra (Barcelona), Spain
E-mail address: lortiz@crm.cat

Josep J. Masdemont
Departament de Matem`atica Aplicada I
Universitat Polit`ecnica de Catalunya
Diagonal 647
08028 Barcelona, Spain
E-mail address: josep@barquins.upc.edu