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Abstract: We introduce a class of CW-complezes, called dynamical CW-complex-
es. They are essentially special polyhedra as defined by Matveev, together with an
orientation on their 1-cells satisfying two simple combinatorial properties. These
complezes are called dynamical because all the complezes in a natural subclass
carry some non-singular semi-flow. We give a necessary and sufficient criterion
for these complezes to be foliated by compact leaves, and we study the implications
for the topology and the fundamental group of the complex.

Introduction

At the origin of this work, there was the question of how to associate a notion
of dynamics (symbolic or combinatorial) to a finitely presented-group. Since
any such group is the fundamental group of a finite 2-complex, I was first
interested in introducing a dynamic on a finite 2-complex. Non-singular
semi-flows appeared then to be quite natural dynamical objects for this
purpose. Indeed, several classes of 2-dimensional complexes carrying non-
singular semi-flows had already been studied. These were the templates
of Williams (see [Wi2] or [BW] for instance) and the dynamic branched
surfaces of Christy (see [Chl1,3]). Both have their roots in the notion of
branched surface introduced by Williams in [Wil]. However, on one hand,
the fundamental groups of templates are only free groups. On the other
hand, because these semi-flows come from hyperbolic flows, these authors
always assume the existence of a differentiable structure on the complexes.



The first step of my work was to substitute to this condition of smoothness,
not natural from an algebraic point of view, some combinatorial properties
in order that a given complex in the class considered carries a non-singular
semi-flow.

This paper presents some of the results in this direction obtained during
the preparation of my thesis. One of its aspects is thus to introduce a new
class of dynamical system (K, o), where K is a n-dimensional CW-complex
(n >2) and (0¢),cg+ a non-singular semi-flow on K, whose definition is in
some sense combinatorial.

The CW-complexes we consider here have their origins in a particu-
lar class introduced by Casler, Ikeda or Matveev (see [Cal, [I], [Mal,2]),
called standard complexes, closed fake surfaces (in dimension 2) or special
polyhedra. The difference between a standard complex and a closed fake
surface is essentially the assumption, for a standard complex, to admit an
embedding in some compact 3-manifold. A 2-dimensional special polyhe-
dron “is” a standard complex. Special polyhedra were introduced by Casler
and Matveev for the study of compact 3-manifolds with boundary for the
first, and more generally of any piecewise-linear compact n-manifolds with
boundary (n > 2) for the second. The importance of these special polyhedra
is stressed by the fact that any piecewise-linear compact n-manifold with
boundary is the “thickening” of a special (n—1)-polyhedron. Moreover, any
finitely generated group is the fundamental group of a closed fake surface
(see [Wr]).

Definitions and basic results about dynamical CW-complexes are stated
in section 1.2. Roughly speaking, a dynamical CW-complex is combinato-
rially a special polyhedron, but is moreover equipped with an orientation
on certain of its 1-cells, which satisfies two simple combinatorial proper-
ties. This orientation allows to define a non-singular semi-flow by giving, in
some sense, the direction of this semi-flow (see section 4). Let us observe
that our n-dimensional complexes do not necessarily embed in compact
(n + 1)-manifolds. However, if such an embedding exists, one obtains a
classical dynamical system (M"t! ¢;), where ¢; is a non-singular flow on
the (n + 1)-manifold M ™!, which is semi-conjugated to a semi-flow on the
dynamical complex (section 4).

From what precedes, asides their intrinsic interest as a dynamical system,
the dynamical CW-complexes stand at the cross-roads of different branches
of mathematics such as combinatorial group theory or 3-dimensional topol-
ogy. Since the introduction of the dynamic on these complexes only depends
of their combinatorics, a lot of questions arise naturally, which can be sum-
marized in the following formulation:



What are the relationships between the combinatorics of the complex,
the properties of the dynamical systems (K, o0¢), the fundamental group of
the complex and the topology of the underlying manifold, if any?

Many well-known results motivate this kind of question. It is related
to one of the trends in dynamical systems which is to try to understand,
for a given dynamical system (X, ), what are the relationship between the
properties of the underlying space X and the dynamical behaviour of .

Considering a dynamical sytem (M™, ¢;) where M™ is a n-manifold and
(#¢);cr @ non-singular flow on M"™, an important case where such a re-
lationship appears, and has been studied under different aspects, is when
the flow (¢t),cg admits a cross-section S, that is a hypersurface embed-
ded in M™ which intersects all the orbits of the flow transversely, in the
same direction and in finite time. A topological consequence of this dy-
namical property is that the manifold M™ fibers over the circle with fiber
S or, in other words, admits a transversely orientable non-singular codim
1-foliation with compact leaves all homeomorphic to S. Conversely, if M"™
admits a foliation as above, then there is a non-singular flow on M"™ with a
cross-section. One says that (M™, ¢;) is the suspension or mapping-torus of
(S, h), h being the return-homeomorphism on S of the flow (¢¢),.g on M™.
Also, a theorem of Thurston (see [Th3]) illustrates, in the case of compact
3-manifolds with boundary which fiber over the circle, the deep intercon-
nection between geometry and dynamics: the interior of such a manifold
admits a hyperbolic metric if and only if the monodromy of the fibration is
pseudo-Anosov. Many authors have been interested in caracterizing flows
admitting cross-sections or manifolds which fiber over the circle (see for
instance [Fr] or [Ti]).

In section 3, we study a similar situation in our CW-complex context.
We first adapt the notion of foliation to our complexes (see section 2.3).
We then give a necessary and sufficient criterion, of both combinatorial and
cohomological nature, for the complex considered to admit a transversely
orientable codim 1-foliation whose leaves are compact and have all the same
Euler characteristic. This Euler characteristic condition is substituted to
the requirement that all the leaves are homeomorphic, which would be a
too strong restriction. We so caracterize, by a finite and effective criterion
depending only on the combinatorics of the complex (see remark 6.3) the
existence on a given simple n-complex of a dynamical system (K, o;) which
is the “suspension” of a dynamical system (K', h) where K' is a standard
(n — 1)-complex and h a continuous map of K' (the return-map of the
semi-flow o4 on K').



In the classical case of a compact manifold M™ admitting a non-singular
transversely oriented codim 1-foliation with compact leaves, the group m (M ™)
is the semi-direct product of the fundamental group of any of the leaves
S with Z over an automorphism O. This automorphism is induced by
the return-homeomorphism on S of some non-singular flow transverse to
the leaves of the foliation. If < zy,---,z, ; Ry,---,Rr > is a presen-
tation of m1(S), the group m (M,) admits a presentation of the form <
Ty, Tyt s Ry, Ry teit™t = O(zy),i = 1,--- ,n > and m(M,) is
called the suspension, or mapping-torus of the automorphism O of 71 (S).
More generally, we will speak of the suspension or mapping-torus of an
endomorphism of a group.

We show that, when considering regular foliations, the above result re-
mains true, that is some semi-flow (0¢),.g+ transverse to the leaves of the
foliation induces an automorphism on the fundamental group of a leaf K.
Moreover, this automorphism appears as a composition of elementary moves
which we call generalized WM-moves (see section 2.4). This name is moti-
vated by the fact that they are a generalization of the Whitehead moves in
dimension 1 and of the Matveev moves (see [Ma2], [BP], [Pi]) in dimension 2.
One states below a weak version of our result on regular foliations.

Theorem 0.1. A dynamical n-complex K, n > 2, admits a transversely
orientable codim 1-reqular foliation F, whose all leaves are compact and have
the same Euler characteristic, if and only if K admits a positive cocycle
u € CYK;Z).

In addition, if such a foliation F ezists, then all its leaves are homo-
topically equivalent. If L is some leaf of F, the complex K is homotopically
equivalent to the suspension of a continuous map ¢ : L — L, which is a
homotopy equivalence. In particular, the fundamental group of K is the
suspension of an automorphism of the fundamental group of this leaf.

Conversely, for any continuous map » of a standard (n — 1)-complez,
given as a composition of generalized WM-moves and of a homeomorphism
(in particular v induces an automorphism on the fundamental group of the
complex), there is a dynamical n-complex K homotopically equivalent to the
suspension of 1, and which admits a positive cocycle.

Let us observe that the proof of the last assertion of the above theorem
is constructive.

Regular foliations are not the whole story. In proposition 5.6, we car-
acterize the existence, on dynamical 2-complexes, of more degenerate folia-
tions, called special. The existence of such a foliation with compact leaves
on a dynamical 2-complex, which is also related to the existence of certain



integer cocycles, implies that the fundamental group of the complex is the
suspension of an injective, non-surjective free group-endomorphism.

Theorem 0.1 above can be considered as an analog, in our CW-complex
setting, of the already mentioned result of Tischler on the existence of fo-
liations with compact leaves on manifolds (see [Ti]). Further analogy with
the manifold-context, and more precisely with the Thurston norm on the
homology of 3-manifolds (see [Th2]), can be found in the fact that the whole
set of non-negative cocycles form a cone (see remark 6.3), in the same way
that the set of cohomology classes in H'(M?;Z) form cones over some faces
of a well-defined convex polyhedron. This last analogy perhaps deserves to
be examined in detail.

The last assertion of theorem 0.1 allows in particular to prove that the
suspension of any free group-automorphism is the fundamental group of a
“suspended” dynamical 2-complex (see proposition 3.13 and corollary 3.14).
One so obtains a class of topological 2-dimensional objects which represents
all the free group-automorphisms. In [G2], we give another proof by means
of a different construction. We obtain there in particular a combinatorial
construction for the suspension of any pseudo-Anosov homeomorphism of
a compact surface with boundary. Finally, an other paper is to come, in
which one considers more closely the problem of finding cross-sections to
semi-flows on dynamical 2-complexes.
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1 Simple and dynamical CW-complexes

1.1 Preliminaries

We introduce here the various objects and concepts used in the next sec-
tions. The main point is the definition of a dynamical CW-complezx (see
definition 1.7).

If U is an open or closed subset of a topological space X, the boundary

of U is the set U— [j', where U (resp. [j') denotes the closure (resp. the



interior) of U in X. A path (resp. loop) in X is a locally injective continuous
map from the interval (resp. circle) to X.

We assume that the reader is familiar with basic notions about CW-
complezes (see for instance [Mu]). All our complexes are piecewise-linear
and, unless otherwise stated, connected, finite and compact.

The 0-cells (resp. 1-cells) of a CW-complex are called the vertices (resp.
edges) of the complex. If e is an oriented edge, then e is said to be an
incoming edge at its terminal vertex t(e) and an outgoing edge at its initial
vertex i(e). Observe that an oriented edge e can be both incoming and
outgoing at a same vertex, in the case where this edge is a loop.

A graph is a 1-dimensional CW-complex. A path or loop in a graph T’
is positive (resp. negative) if it is oriented such that its orientation agrees
(resp. disagrees) at any point with the orientation of the edges that it
intersects.

The j-skeleton K of a n-dimensional CW-complex K (0 < j < n) is
the union of all the cells in K whose dimension is less or equal to j. Clearly
K" =K.

The boundary of a n-dimensional CW-complex K is the closure in K of
the union of all the (n — 1)-cells of K which are contained in the closure of
exactly one open n-cell. The points which do not belong to the boundary

of K form the interior IO( of K.

In what follows, we will need to distinguish among the points of a n-
dimensional CW-complex K different kinds of singular points. A point
in the interior of a n-dimensional CW-complex K is singular if it has no
neighborhood in K homeomorphic to R".

Assume that K has an empty boundary. We denote by K™D the set

sing
of singular points in K1, One defines the sets Ks(zZLg: i=n-—2,---,0,
by a descending induction as follows:

The set K is the set of points in K (¢ )NK D whose no neighborhood

sing sing
in K S:gl ) is homeomorphic to R,
By convention, we set Kggzg = K. In the case where K has a non-empty
boundary, we define the singular sets Kggw, 1 =0,---,n, to be the closure
o (4)
in K of the singular sets K ;,,,-

(0)

sing are

The set K'Y is called the singular graph. The vertices in K

sing
called crossings. The connected components of KS(Z.Z;I) ng)g, 0<m<
n — 1, are called the (m + 1)-components of the complex (the 0-components

are the crossings).



These singular sets K g%g’ and specially the singular graph K s(;r)w will
play an important role in the sequel of this paper. Observe that they are
subcomplexes of the complex K, which are not necessarily connected. Al-
though they might be very complicated in the general case, they will appear
to have a particularly simple structure for the class of CW-complexes we

will consider later.

Let C be any open j-cell or j-component in K, 1 < j < n. Let N(z)
be any small neighborhood of any point x in K. A germ of C' at x is the
closure in K of a connected component of C N N(z).

Let g, (C) be a germ of an open k-cell (or component) C' at a point z in
K. This germ g, (C) is incident to a germ g, (C") of a j-cell (or component)
C' k> j,if g.(C") C g.(C). We will also say that the k-cell (or compo-
nent) C' is incident at x to the j-cell C'.

We will denote by Con(X) the cone over a space X, that is the space
X %[0, 1], where X x {1} is identified to a single point. Let us recall that the
closed n-simplex A™, n > 0, is defined inductively as follows: The 0-simplex
is a point, the closed i-simplex A’ is the cone over the closed (i — 1)-simplex
A1 for § = 1,2,--+,n. The symbol D™ will mean the open unit-ball in
R".

Let K be a n-dimensional CW-complex and let ¢ : K — K be a con-
tinuous map. We denote by Suspy(K) the (n + 1)-dimensional complex
K x [0,1]/((z,1) ~ (¢(z),0)). This (n 4+ 1)-dimensional complex is called
the suspension, or mapping-torus, of the map ¢ of K.

If K is a n-manifold and v is a homeomorphism of K, then this construc-
tion gives rise to a (n + 1)-manifold. Whereas the i*"-homotopy groups, i >
2, of a suspended manifold Suspy(K) are isomorphic to the it"-homotopy
groups m; (K'), the fundamental group m (Suspy(K)) of K is the semi-direct
product of m (K) with Z over an automorphism ¢4 of 1 (K) induced by

¢ (for more details see [S] for instance). If < xy,--- ,z, ; RE,--- | RE >
is a presentation of 1 (K), this implies that the fundamental group of the
mapping-torus Suspy (K) admits a presentation of the form < z1,-- -, z,, t;

RE ... RE toit=' =¢pu(z;),i=1,-++,n>.

More generally, if¢ : K — K is any continuous map of any CW-complex
K and ¢4 : K — K is an endomorphism induced by ¢ on 71 (K), then the
fundamental group of Suspy(K) admits a presentation of the form above.
One says that the group m (Suspy (K)) is the suspension, or mapping-torus,
of the endomorphism O of w1 (K).



1.2 Basic definitions

The following definition is derived from the notion of standard complez in-
troduced by Casler (see [Cal), in the 2-dimensional case (see also [Mal,2],
[BP], [Pi], [Wr]). In [Mal], Matveev generalized, under the name of spe-
cial polyhedra, the notion of standard complexes to the n-dimensional case.
These special polyhedra are n-dimensional CW-complexes satisfying the
following local property: each point of the polyhedron has a neighbor-
hood homeomorphic to a neighborhood of some point in the interior of
Con((dA™1)(n=1) i e  the cone over the (n — 1)-skeleton of the bound-
ary of the (n + 1)-dimensional simplex. Our simple n-complexes satisfy, in
addition of this local property, a global topological condition.

Definition 1.1. A simple n-complex (n > 1) is a n-dimensional CW-
complex K such that:

e For any point # € K, there is a neighborhood N(z) of z in K, a
neighborhood N (y) of a point y in the interior of Con((dA™+1)(= 1)),
and a homeomorphism h : N(z) — N(y) such that h(z) = y.

e For any integer 1 < j < n — 1, the (j + 1)-components are either
(j + 1)-cells or are homeomorphic to one of the two (j + 1)-manifolds
Suspra(D?) (= DI x S') and Suspu,(D?), where Hg : D/ — D7 is
the reflexion relative to a diameter D=1 C D7 (D is a single point).

A standard n-complex is a simple n-complex whose all j-components are
j-cells, for any j < n.

Remark 1.2. Let us observe that the definition of a simple or standard
n-complex implies that it has an empty boundary. If one had allowed
the point y in item (1) of definition 1.1 to belong to the boundary of
Con((8A™T1)(»=1) one would have obtained a notion of simple n-complex
with boundary. The j-components, 2 < j < n, of a simple n-complex with
boundary are required to be cells.

Example: A simple 1-complex is a trivalent graph, that is a graph such that
exactly three (possibly not distinct) edges are incident to each crossing. Such
a graph is also a standard 1-complex. The number three above is due to the
fact that a 2-dimensional simplex, i.e. a triangle, has three vertices.

As illustrated by figure 1, there are three types of points in a simple
2-complex. Two are the types of singular points. The 2-components of
such a complex are discs, annuli and Moebius-bands. For a more detailed
description of simple 2-complexes, see remark 5.1.



n=1 n=2 n=3

Figure 1: Non-singular and singular points in simple n-complexes

The following two lemmas are about the structure of the singular sets
of a simple n-complex. The first one (lemma 1.3) is easy to check.

Lemma 1.3. Let K be a simple n-complex (n > 1).

1. The sets nglg, i=0,---,n, do not depend on the structure of CW-

complex of K. Moreover: K9 ckW® c...c gW = K, and,

sing sing sing
- (@) '
foranyi=0,---,n, Kszng C KO,

2. For any point x € K, there is a smallest integer 0 < j < n such
that x € Kgglg. The point x is non-singular in K if and only if this
smallest integer equals n.

If n, p are two non-negative integers, we pose C? = ﬁip)! if n > pand

C? = 0 otherwise.

Lemma 1.4. Let K be a simple n-complex (n > 1).

1. Let x be any point in K, distinct from a crossing. Letn > j > 1
be the smallest integer such that x belongs to Kgglg. Then there is a
neighborhood N (z) of x in K, a pointy in a (j —1)-cell in the interior
of Ko = Con((c’)A”)(nﬂ)) and a neighborhood N (y) of y in Ky such
that N (z) is homeomorphic to N(y) x [0,1] (see figure 1).



2. The number of germs of k-components at a crossing v which are in-
cident to a given germ of j-component (k > j) is equal to CZ:]’”ig
The number of germs of j-components at v which are contained in
a germ of a k-component at v is C’,’:_]. Each set of C,]:_] distinct
germs of j-components at v is contained in a germ of k-component

(h—1>j>0,n>k>1)

3. In particular, the singular graph of a simple n-complex, n > 2, is a
compact graph, possibly not connected, with (n + 2) edges incident to
each crossing.

Proof of lemma 1.4: By definition of a simple n-complex, each crossing is
the vertex of a cone over the (n — 1)-skeleton of the boundary of a closed
(n+1)-dimensional simplex A™*!. Thus, a germ of a (i+1)-cell at a crossing
v is the cone over a i-simplex in (9A™1)™ ™) (n—1 > i > 0). This implies
item (1).

From what precedes, each i-simplex in the (n — 1)-skeleton of A" *!
gives rise to a germ of (i 4 1)-cell at the corresponding crossing. Each set of
i distinct vertices, 1 < i < n, among the (n + 2) vertices of OA™*! defines

(=1 Moreover, any j-simplex o/ of

a unique (i — 1)-simplex in (9A™*1)
(8A"+1)(n71) contains any i-simplex, 0 < ¢ < j — 1, whose i + 1 vertices are
among the j + 1 vertices of ¢7. Similarly, any i-simplex o*, 0 < i < n — 2,
is contained in any j-simplex, i < j < n — 1, whose set of vertices contains
the i vertices of o*. Item (2) follows by a counting argument, and item (3)

is then clear. O

We will also need in the course of this article to consider CW-complexes
which are “almost” simple complexes (see sections 2.2 and 2.4). This is the
subject, of definition 1.5 below.

Let us recall that collapsing a closed j-cell (1 < j < n) of a CW-complex
K means identifying this closed j-cell to a single point, the resulting space
being again a CW-complex.

Definition 1.5. A simple degenerate n-complez is a n-dimensional CW-
complex K’ such that there exists some simple n-complex K and a sequence,
possibly empty, of collapses of closed j;-cells A; of K, i = 1,---,m, j; €
{1,---,n}, satisfying the following three properties:

e Each closed cell A; is a closed j;-simplex, i = 1,--- ,m.

e Each closed cell A; is disjoint from any other closed cell Aj, i,5 €

{1)>m})]7éz

10



e The complex obtained by the collapsing of these closed cells A; is
isomorphic to the complex K.

By definition, a simple n-complex is obviously a simple degenerate n-
complex.

Example: A simple degenerate 1-complex is a graph whose each vertex is
contained in at most four germs of edges.

Remark 1.6. A simple degenerate n-complex with boundary is a complex
obtained by collapsing a finite number of closed j-cells A;, j € {1,--- ,n},
in the interior of a simple n-complex with boundary (see remark 1.2), which
are required to satisfy the properties of definition 1.5 above.

Important: Let K be any simple n-complex (n > 2). The singu-
lar graph KST)L!] of K admits a canonical structure of CW-complex
defined as follows: The vertices are the crossings of the complex

K, together with a set of valency 2-vertices, one for each con-

nected component of KS)W which is a loop without any crossing.
The edges are the 1-components of the complex. We will always
assume that the singular graph KST)LQ is equipped with this canoni-
cal structure of CW-complex. One easily proves that there always
exists a structure of CW-complex for K such that the sets of ver-
tices and edges of K contained in KS}LQ are as defined above. We
will always assume K to be equipped with such a structure. This

causes no loss of generality for our purpose.

Let K be a simple n-complex, together with an orientation on the edges
of the singular graph. Let C be any i-component or i-cell of K (2 <14 < n).
We will say that C contains an attractor (resp. a repellor) in its boundary if
there is a crossing v of K and a germ g, (C) of C at v such that all the germs

of edges of K ;17)1 at v contained in g,(C) are incoming (resp. outgoing) at
v. If C is i-dimensional, there are exactly i such germs of edges (see lemma
1.4, item (2)). We will say that the crossing v above is or gives rise to an
attractor (resp. a repellor) for C' (and for the given orientation). Observe
that a same crossing v can give rise to k > 1 attractors or repellors in the

boundary of a same component or cell C.

All the tools needed for the definition of a dynamical n-complex have
been given.

11



Definition 1.7. A simple dynamical n-complez is a simple n-complex K,

n > 2, together with an orientation on the edges of the singular graph K ST)L g
satisfying the following two properties:

1. Each crossing of K is the initial and terminal crossing of at most n
edges of Ks(;r)w.

2. Any j-component, 2 < j < n, which is a j-cell has exactly one attrac-
tor and one repellor for this orientation in its boundary. The other
components have no attractor and no repellor in their boundary.

A standard dynamical n-complez is a simple dynamical n-complex which
is also a standard n-complex (n > 2).

Remark 1.8. The definition of dynamical n-complex above is stated for
n > 2. A dynamical 1-complex would be a circle so that we will consider
only higher dimensional dynamical complexes.

Remark 1.9. Since the number of edges incident to a given crossing is
equal to n + 2 (see lemma 1.4 item (2)), condition (1) in definition 1.7 is
equivalent to the fact that each crossing in a simple dynamical n-complex is
the initial and terminal crossing of at least 2 edges. For n = 2, this condition
is equivalent to require that each crossing is the terminal crossing of exactly
2 edges. For a more detailed description of simple dynamical 2-complexes,
see remark 5.1.

A crossing in a simple n-complex which is the terminal crossing of exactly
j edges, 0 < 7 < n+ 2, will be called a type j-crossing. In a simple
dynamical n-complex, by definition, the only integer j for which there are
type j-crossings belong to the interval [2, n].

Lemma 1.10. Let K be a simple n-complex, together with an orientation
on the edges of its singular graph. For each type j-crossing in K (0 < j <
n + 2), there are exactly C'J’-c attractors (resp. C,’§+27]- repellors) in the set
of the boundaries of the k-components in K (2 <k <n).

Proof of lemma 1.10: Let v be a type j-crossing of K. By definition, a
k-component C' (2 < k < n) contains v as attractor in its boundary if and

only if a germ of C at v contains only germs of incoming edges of K s(;r)w

at v. Thus counting the number of attractors in the boundaries of the k-
components given by the crossing v is equivalent to count the number of
germs of k-components at v which contain only germs of incoming edges of

Ks(;T)Lg at v. By lemma 1.4, item (2), a germ of a k-component at a cross-

ing contains exactly k£ germs of edges of K (1)

sing b this crossing. Moreover,
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from this same lemma, any set of k& germs of 1-components at a crossing is
contained in a germ of k-component (1 < k < n). This implies that there
are C']’.c germs of k-components containing only germs of incoming edges of
K s(llr)L , at v. The counting is similar for the repellors. Lemma 1.10 is proved.
O

It is not true that any simple n-complex admits an orientation which
makes it a dynamical n-complex. The following proposition gives a prop-
erty satisfied by any simple dynamical n-complex. An alternative proof of
this proposition could be given using further results of the paper, namely
corollary 2.17 and lemma 4.3. However, one prefered to state it at this step,
together with a more elementary proof.

Proposition 1.11. The Euler characteristic of a simple dynamical n-com-
plex is zero.

Proof of proposition 1.11: The proof consists of a counting argument,
which relies on the following lemma:

Lemma 1.12. Let K be a simple dynamical n-complex (n > 2). For any
2 < j < n, the number of type j-crossings is the same than the number of
type (n + 2 — j)-crossings.

Proof of lemma 1.12: We proceed by a descending induction on j, starting
from j = n. Assume that there is a type n-crossing in K. By lemma 1.10,
this crossing gives rise to exactly one attractor and no repellor in the set
of boundaries of n-components. Since there must be one attractor and one
repellor in the boundary of each n-component which is a cell, and none in
the boundary of the other n-components, there exists a crossing in K which
gives rise to a repellor in the boundary of some n-component. The only
possible crossing is a crossing which has at least n outgoing edges, thus
the only possible crossing is a type 2-crossing. Therefore, for j = n, the
numbers of type j- and type (n 4+ 2 — j)-crossings in K are the same.

We assume now that, for j =n,n —1,--- ,n —m, m > 0, the numbers
of type j- and type (n + 2 — j)-crossings are the same. One wants to check
this property for j = n —m — 1. Let v be a type (n —m — 1)-crossing in
K. By lemma, 1.10, this crossing gives rise to an attractor in the boundary
of a (n —m — 1)-component. Since K is a simple dynamical n-complex,
there exists a crossing which gives rise to a repellor in the boundary of this
(n—m—1)-component. The only possible crossings are crossings which have
at least n —m — 1 outgoing edges of KST)W these are type k-crossings with
k <m+3. For k < m+2, the hypothesis says that for each type k-crossing,
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there is also a type (n + 2 — k)-crossing. Therefore, the existence of the type
(n —m — 1)-crossing v implies the existence of a type (m + 3)-crossing, that
is a crossing with exactly n —m — 1 outgoing edges of KS)LQ.

Therefore, for each 2 < j < n, there is the same number of type j- and
type (n 4+ 2 — j)-crossing. Lemma 1.12 is proved. O

Let K be a simple dynamical n-complex. One denotes by K' the com-
plex obtained from K by supressing all the i-cells which do not belong to
Ks(zzlg, 0 <i<n—1. We do not supress the n-cells, however the only one
remaining are n-components of K. We denote by IV; the number of i-cells of

n j=n

K', 0<i<nand weset S(K') = Z(—l)iNi. We also pose Ny = ZNg,
i=0 j=2
where NJ is the number of type j-crossings.

Claim: For any 2 < k < n and for each pair (type j-crossing, type (n+2—j)-
crossing), there are C¥ + Ck,, ; k-cells in K'. If n is even, then for each
type "T“—crossing, there are C*,, k-cells in K' (2 <k <n).
2
This claim is a consequence of lemma 1.10 and of the definition of a
dynamical n-complex.

By lemma 1.4, item (2), (n + 2) germs of 1-cells are incident to each
crossing. Thus, V; = ”T“‘QNO. Moreover, lemma 1.12 implies, for any fixed

4, the equality NJ + NJ"">~7 = 2NJ. Therefore:
ntl ;
If nis Odd, N()—N1 :—nzj:22 Ng

and otherwise No—N; =-n Z]'%:Q Nj— 2N, .

Thus, by the claim above, one has:

n+41 nt1

2 n 2
If n is odd, SENY =33 (-nrct+crPTFING - n >N

j=2 k=2 j=2
3 n ) 5 '
If n is even, S(E) =33 (-DH(CE+ RN - n Y N

§=2 k=2 j=2

n . niz n ni2
+ (1) ChpNg™ = N, *
2
k=2
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n
The expression Z (—1)ka is equal to —(x(A?) — i) for any integer
k=2
i > 1. Moreover, x(A?) = 1. This holds in particular fori = j,i =n+2—j
and, if n is even, for = ”T” Therefore, one has

n
. . g
— N+ (-D)F[(CF + PR NG
k=2
=(-n—14+j—-14n+2—-5)Ni =0
for any j, and, if n is even,

k A~k ars n __nt2 n+2 n
Z(_l) CI:L+2N02 —§N02 :—(]__ 5 )_5

n n
=—1+-4+1-—=-=0.
+2+ 2

By substituting these results in the expression above for S(K') in both
cases, one obtains S(K') = 0.

Let us now prove that x(K) is zero. One obtains from K' a structure of
CW-complex for the dynamical n-complex K by:

e subdividing any j-component which is not a cell by a (j — 1)-cell
D' x {1},

e subdividing the complex K’ at D/~ x {1}.

Since the operation of subdividing does not change the alternated sum
S(K'"), one has then, for K a simple dynamical n-complex, x(K) = S(K') =
0 for any integer n > 2. This completes the proof of proposition 1.11. O

2 Cocycles, embeddings and foliations

2.1 Homology of simple complexes

We assume that the reader is familiar with the homology of CW-complexes
(see for instance [Mu]). We just recall and introduce here some notions
which will be needed later.

Let us first remind that the singular graph KS)W of a complex K is
always assumed to be equipped with a structure of CW-complex whose 0-
cells are the crossings of K, together with a set of valency 2-vertices in
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the loops containing no crossing, and whose 1-cells are the 1-components of
1)

K. Furthermore, these edges and vertices of K;,

vertices of K contained in K, S(llr)L .

Let K be a simple n-complex (n > 2). An integer cocycle will denote
a cocycle in C1(K;Z), that is a finite collection of integer weights on the
edges of the complex whose algebraic sum along the boundary circles of the
2-cells of K is zero.

are the only edges and

The following definitions are stated for any simple n-complex (n > 2),
but they will be considered only in the case of dynamical n-complexes. Let
us recall that, in this case, the edges of the singular graph of the complex
are equipped with a well-defined orientation (see definition 1.7).

Definition 2.1. Let K be a simple n-complex (n > 2), together with an
orientation on the edges of its singular graph.

1. A non-negative cocycle in C'(K;Z) is an integer cocycle u such that

u(e) > 0 holds for any edge e in the singular graph Kgr)w and there is
at least one such edge e with u(e) > 0.

2. A positive cocycle is a non-negative cocycle which is positive on all
the positive embedded loops in Ks(;r)w.
3. A cohomology class ¢ € H'(K;Z) is non-negative (resp. positive) if
c(l) > 0 (resp. ¢(I) > 0) for any positive embedded loop [ in Ks(;r)w.
The §,-moves defined below consist of pushing an integer cocycle u
through a crossing v, by removing 1 from the value of u on all the incoming
edges at v and adding 1 to its value on the outgoing one. More precisely:

Definition 2.2. Let K be a simple n-complex. Let u € C'(K;Z) be a
cocycle and let v be any crossing of K.

A 6,-move is the map 6, : C1(K;Z) — C'(K;Z) defined by:

(0, (u))(e;) = u(e;) — 1 for all the incoming, non-outgoing 1-cells e; of K
at v,

(0u(w))(f;) = u(f;) + 1, for all the outgoing, non-incoming 1-cells f; of
K at v,

(6y(w))(x) = u(z) for all the other 1-cells z in K1),

Remark 2.3. One denotes by §,1 : CY(K;Z) - C*(K;Z) an inverse §,-
move, that is 6, 0§, = 8, ! 08, = Idc1(k,z). One denotes d;, (resp. 6,")
a &,-move (resp. a 0, '-move) applied consecutively r times at the same
crossing v.
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Remark 2.4. The image of a cocycle by a 6fl—move is a cocycle. Further-
more, two integer cocycles u’' and u of a simple n-complex K which are
obtained one from the other by a finite sequence of J,-moves are cohomol-
ogous.

Definition 2.5. With the assumptions and notations of definition 2.2,
A non-negative 6,-move on a non-negative cocycle u is a d,-move on u
such that J,(u) is non-negative.

Any non-negative integer cocycle defines a non-negative cohomology
class. The following lemma shows that the converse is true.

Lemma 2.6. Let K be a simple dynamical n-complex (n > 2). Any non-

negative cohomology class in H' (K ;Z) is represented by a non-negative co-
cycle in CY(K;Z).

Proof of lemma 2.6: We need first to introduce some terminology. Let
T be a tree together with an orientation on its edges. T is a rooted tree
if there is exactly one vertex v in 7 whose all incident edges are outgoing
edges. This vertex v is the root of 7. The ends of a rooted tree T are the
vertices with exactly one incident edge. These edges are the terminal edges
of T (since T is a rooted tree, each terminal edge is an incoming edge at
the corresponding end).

Let T = wil(K(l) ) be the universal covering of the singular graph of

sing
K (7 is the associated covering-map). 7 is an infinite tree. The edges of 7

inherit an orientation from the orientation of the edges of K igg.

Let u € C1(K;Z) be any integer cocycle in a non-negative cohomology
class. If u is a non-negative cocycle, there is nothing to prove. Assume
then that u is not a non-negative cocycle. If K ;17)1 , 18 not connected, one
will repeat the process described below for each connected component. Fur-
thermore, any cocycle repre(s%nting a non-negative cohomology-class is non-
1

sing
why, in what follows, one only considers the case where K
and contains at least one crossing.

which do not contain any crossing. This is
(1

sing

negative on the loops of K

is connected

Let e be an edge of the singular graph such that u(e) < 0.

Let vg be a vertex of 7 in m#=1(i(e)) and let e be the edge of 7 incident
to v such that w(eg) = e.

One defines inductively a sequence 79 C 71 C --- C T; C --- of
rooted trees T; C T with root vy, and a sequence of integer cocycles
Ug, U1, - ,ug, - - of C1(K;Z) in the following way:
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76:607UOZU-

ith step: Let vi,---,vi be a maximal (in the sense of the inclusion) set of

ends of T;_; such that:

. 7r(v§-) #m(vl) if j # k.
o If z; is the terminal edge of 7;_; incident to v;:, then

mj = |ui—1 (7 (z;))| = maz{|ui—1 (7 (x))| , x is a terminal edge of T;_1,

m(t(x)) = m(v})}-
ui = (0, 008, ) (uim1).

T; is the union of'7§_1 with the edges x of 7 whose initial vertex is one
of the ends v}, -+, v}, of T;_1 and such that u;(w(z)) < 0.

An easy induction allows to check that each tree in the above sequence
is a rooted tree with root vy (and each is contained in 7).

Claim 1: If there is an integer n > 0 such that for any j > n, 7; = 7, then:

1. The cocycle u,, is in the same cohomology class than w.

2. If z is any edge in T,, then u, is non-negative on the edge 7(z) of

K ST)W. In particular, u, is non-negative on the edge e chosen at the
beginning.

3. If u,(z) < 0 for some edge = of KS)W, then u(z) < 0.

Item (1) of claim 1 comes from remark 2.4. Item (2) comes from the
construction. For proving item (3), let us first observe that, from item (2),
it suffices to look at the edges = of ngg whose no lift under 7~ ! belongs
to T,. Three cases occur, the two last one being not exclusive one from the
other. For each of these cases, we give below the only possible changes which
might have been applied to u with respect to x during the construction of

T, and u,:

Case 1: No vertex of z has a lift under 7—! which belongs to 7,,. Then
un(z) = u(z).

Case 2: 7T, contains a vertex in the lift under 7~ of the initial vertex of

. Then, the value of v on z might have been lowered, remaining
non-negative, at some step(s) of the construction.
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Case 3: 7T, contains a vertex in the lift under 7—! of the terminal vertex
of . Then, the value of u on z might have been increased at some
step(s) of the construction.

Item (3) is then easily deduced. O

Claim 2: There exists an integer n > 0 such that for any j > n, T; = T,.

Assume that some 7; contains a positive path from vy whose length is
strictly greater than the number of crossings of the singular graph. Then
this path contains two vertices v;, v; of 7 such that 7(v;) = m(v;). These
two vertices are connected by a positive path in 7;. This positive path
projects, under 7, to a positive loop in the singular graph. By construction,
this implies that the cohomology class of u is negative on this loop, which
contradicts our assumption. Therefore, the number of crossings of K is a
uniform superior bound M (it does not depend on j) on the length of the
positive paths with initial vertex vo in the trees 7;, j =0,1,---.

Assume now that, for any integer n > 0, there exists j > n such that 7,
is strictly contained in 7;. This implies that one has an infinite subsequence
of rooted trees 7;,,---,Ti,, -+ such that for any k > 1, 7;, is strictly con-
tained in 7;,,,. This is a contradiction with the existence of the uniform
superior bound M proved above. One so proved claim 2. O

Claim 1 and Claim 2 together imply that, by applying the above con-
struction finitely many times, at most one time for each edge e of the singular
graph with u(e) < 0, one obtains a non-negative cocycle in the cohomology
class of u. O

2.2 Embeddings

Important: From now on, we will sometimes consider non-finite,
and non-compact, complexes. In any case, the complexes K con-
sidered will always be required to satisfy the following property:
The closure in K of any component is compact.

We define below a particular class of embeddings of simple degener-
ate (n — 1)-dimensional CW-complexes (see definition 1.5) in simple n-
complexes, which we call r-embeddings (the letter r stands for regular).
The r-embedded simple complexes are natural from a cohomological point
of view, as shown by lemma 2.13, which gives the relationship between
integer cocycles and r-embeddings of simple complexes.
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The conditions we add to the definition of an embedding for defining
these r-embeddings are conditions of position with respect to the singular
set, of the complex.

We will say that a (n — 1)-dimensional CW-complex K; embedded in
a n-dimensional one K is c-transverse to an embedded ¢-dimensional CW-
complex Ky, 1 <i <n—1,if, for any z in K; N K>, for any small neighbor-
hood N(z) of z in K, for any isotopy j; (resp. j?), t € [0,1], of K} (resp.
of K3) in K with support in N(z), j} (K1) N j?(K>) is non-empty.

If K; and K5 are not c-transverse at some point x € K1 N K>, they are
c-tangent (at x).

Before stating the definition of a r-embedding, let us recall that any point
in a simple n-complex K, which is distinct from a crossing of K, admits a
neighborhood in K of the form X %[0, 1], where X is as given by lemma 1.4.

Let us also observe that K(j)

sing 18 embedded in K for any j =0,---,n — 1.
Definition 2.7. Let K be a simple n-complex and let K’ be a possibly non
finite simple degenerate (n — 1)-complex (n > 2).

An embedding p : K' — K is a r-embedding if p(K') is c-transverse to
1)

sing»J =1,---,n—1land satisfies the following properties:

1. Let x be any point in K’ such that p(z) is distinct from a crossing of
K. If X is such that a neighborhood of p(z) in K is homeomorphic
to X x [0,1] (see lemma 1.4), then there is a neighborhood N (z) of x
in K' such that p| , is a homeomorphism from N(z) onto X x {t},
t € [0,1].

2. For any x in K’ such that p(z) is a crossing of K, any germ of j-cell at
p(z) in K contains the image under p of at most 1 germ of (5 — 1)-cell
atzin K',j=2,--- ,n.

A r-embedding p of K’ in K such that p(K') contains a crossing of K
is called a degenerate r-embedding.

Example: Let us recall that a simple degenerate 1-complex I' is a graph
whose no vertex is contained in more than four distinct germs of edges. If T’
is r-embedded in a simple 2-complex K, then the vertices of I' which are in
the interior of the edges of the singular graph of K are contained in exactly
three germs of edges of I'. There is one such germ in each germ of 2-cell of K
at the point considered (item (1) of definition 2.7). Indeed, a neighborhood
of a point interior to an edge of the singular graph of a simple 2-complex is
homeomorphic to the cartesian-product of a triod with the interval.

20



The condition we impose for degenerate embeddings (item (2) of defini-
tion 2.7) avoids to have too degenerate situations at the crossings. It will
be important when defining and studying foliations of simple n-complexes
(see subsection 2.3).

Remark 2.8. We define in the same way the r-embedding of a simple de-
generate (n — 1)-complex in a simple n-complex with boundary, with the
additional restriction that the embedding either is disjoint from the bound-
ary, or is contained in a connected component of this boundary.

Remark 2.9. Definition 2.7 above implies that, if p(K') is a simple degen-
erate (n — 1)-complex which is r-embedded in K in a non-degenerate way,
then K' is a simple (n — 1)-complex.

Remark 2.10. Let K' be a simple degenerate (n — 1)-complex r-embedded
in a simple n-complex K. The assumption on the compactness of the clo-
sure in K’ of its components implies that the components of K’ are properly
embedded in the components of K. This means that their interior is em-
bedded in the interior of the components of K, and their boundary in K’ is
in the boundary in K of these components.

We take some care below in the definition of being 2-sided in a simple
n-complex because one has to deal with degenerate embeddings. Moreover,
this notion of being 2-sided will be important in the sequel of the paper,
when studying foliations of simple complexes or also when constructing
semi-flows on dynamical complexes.

Let K be a simple n-complex and let K’ be a possibly non finite simple
degenerate (n — 1)-complex r-embedded in K under p.

A transversal T, to p(K') in K at y € p(K') is a tree embedded in a
small neighborhood of y in K and c-transverse to p(K') at y. Furthermore,
one requires that there is exactly one edge of 7, in each germ of n-cell of K
at y if y is not a crossing of K, and at most one edge otherwise.

An oriented transversal to p(K') in K at y is a transversal together with
an orientation on its edges so that y has exactly one outgoing edge.

Definition 2.11. Let K be a simple n-complex and let p: K’ — K be
a r-embedding of a possibly non finite simple degenerate (n — 1)-complex
(n > 2).

1. A compact subset U of p(K') is two-sided in K if there is a choice of an
oriented transversal 7, at each point z € U such that a small compact
neighborhood N (U) of U in K satisfies the following property:

NU) = C_uCy, where C_ and C, are two compact subsets of
N(U) with C_ N Cy = U and such that each oriented transversal 7,
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at x € U is oriented from C_ to C,, i.e. the initial points of the
oriented transversal are in C_ and the terminal point is in C,..

2. With the notations above,

e A transverse orientation to a compact subset U C p(K'), which
is 2-sided in K, is a choice of an oriented transversal at each
point x € U, satisfying the above property.

e One will say that U C p(K") is transversely oriented in K if it is
2-sided in K and equipped with some transverse orientation.

e Let U C p(K') be transversely oriented in K. Let x be any point
in KM NU. The transverse orientation of U agrees at x with
the orientation of the edges of K incident to z if any such edge
is oriented either from C_ to U or from U to (.

3. The r-embedded (n — 1)-complex p(K') is two-sided in K if there is a
choice of an oriented transversal at each point z € p(K') which makes
any compact subset of p(K') transversely oriented.

The definitions of a transverse orientation to p(K') and of p(K') being
transversely oriented are then straightforward.

Remark 2.12. With the assumptions and notations of definition 2.11 above,
assume that K' is compact. Then this definition 2.11 implies that p(K') is
2-sided in K if and only if there is a neighborhood N'(p(K")) of p(K') in K
such that:

1. N(p(K')) — p(K') has two connected components C_ and C'; which
are trivial I-bundles respectively over K’ and K,

where K! and K are two simple degenerate (n — 1)-complexes r-
embedded in K (in a non-degenerate way).

2. At each point of p(K'), there is a transversal oriented from C_ to C..

If p is a non-degenerate r-embedding, being 2-sided is equivalent to re-
quire that there is a neighborhood of p(K') in K which is the trivial I-bundle
over p(K'). One thus has the usual notion of being 2-sided for a hypersur-
face in a manifold.

In what follows, we will often omit the embedding map p and speak of
a simple degenerate (n — 1)-complex K' embedded in K.
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Lemma 2.13. Let K be a simple n-complex (n > 2). Any cocycle u €
CY(K;Z) defines a transversely oriented simple (n — 1)-compler K, which
1s r-embedded in K. Furthermore, at each point x € K, Ne, where e is any
1-cell of K, the transverse orientation to K, agrees with the orientation of
e if u(e) > 0 and disagrees otherwise.

Conversely, any transversely oriented simple (n — 1)-complez K, r-
embedded in K in a non-degenerate way defines a unique cocycle in u €

CHK;Z).

Proof of lemma 2.13: Let e be any edge of the 1-skeleton of K with
u(e) = £k, k > 0. Let o1, -,z be k points in e, each with a weight of
+1 or —1 according to whether u(e) = +k or u(e) = —k. Let j be the
smallest integer such that the points z; belong to KS(;)L . By lemma 1.4,
the neighborhood of any z; is homeomorphic to N(y;) x [0, 1], where N (y;)
is a neighborhood of some point y; in a (j — 1)-cell of the cone over the
(n — 2)-skeleton of OA™. One considers now around each z; an embedded
piece N(y;) x {t;}, t; € [0,1]. One does the same thing for any edge in
KM By definition of a cocycle with coefficients in Z, the germs of k-cells
in these N(z;), k=1,--- ,n — 1, can be connected by k-cells embedded in
the corresponding (k + 1)-cells of K and such that:

e The (n — 1)-cells are transversely oriented.

e Their transverse orientation agrees at x; with the orientation of e if
the weights are positive and disagrees otherwise.

If all the (n—1)-cells so embedded in a same n-cell of K are not disjointly
embedded, then classical cut-and-paste technics respecting the transverse
orientation allow to obtain an embedded complex in K. By construction,
this complex is the image in K of a r-embedding of a simple (n— 1)-complex.
It is also transversely oriented, the values u(e) being its intersection numbers
with the oriented edges e of the singular graph. This last remark allows to
prove the converse assertion. O

2.3 Foliations

We introduce here the notion of regular foliation of a simple n-complex and
state the first consequences of the definition.

Definition 2.14. Let K be any simple n-complex with boundary (n > 2).

1. A codim 1-regular foliation F of K is a union of possibly non-finite
simple degenerate (n — 1)-complexes, called the leaves of F, which are
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r-embedded in K such that each point of K belongs to exactly one
leaf.

2. A transversely orientable codim 1-reqular foliation F of K is a codim
1-regular foliation of K whose leaves admit a coherent transverse ori-
entation, that is a transverse orientation such that:

Let U be any compact subset of any leaf £ of F. Let N(U) be a
small neighborhood of U in K. The transverse orientation to U in K
agrees with the transverse orientation to any connected compact set

of FNN(U).

A codim 1-regular foliation F of K is transversely oriented if all its
leaves are equipped with a coherent transverse orientation.

In what follows, we state some generalities on the position of a codim
1-regular foliation of a simple n-complex K (n > 2) with respect to the
components of K. One will need these results in section 3. The “ultimate”
result of this subsection is corollary 2.17.

Since the leaves of a regular foliation F of a simple n-complex K are
r-embedded, item (1) of definition 2.7, together with lemma 1.4, imply the
following assertion:

If £ =p(K') is any leaf of F, then each point # € K’ such that p(z)
belongs to an open j-component of K, 2 < j < n, belongs to the interior of
a (j — 1)-component of K.

One thus has lemma 2.15 below.

Lemma 2.15. Let K be a simple n-complex (n > 2). Let F be a codim
1-regular foliation of K. Then, for any open j-component C (n > j > 2) of
K, FNC is a non-singular foliation (in the usual sense) of C.

We now study the position of a foliation F as given by lemma 2.15 with
respect to the boundary of the cells and components of K.

One needs first to define what means for a codim 1-regular foliation F of
K to have a point of tangency with the boundary of a cell. The assumptions
and notations used are those of lemma 2.15 above.

By definition of a CW-complex, for any j-cell C' (1 < j < n) of K, there
is a continuous map he : Di — K, which is a homeomorphism from D7
onto C' and which sends the boundary of D7 in RJ to the boundary of C' in
K. The non-singular foliation of C' in K given by lemma 2.15 lifts by hal
to a non-singular codim 1-foliation of D7 and the foliation F N C of C to a
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(singular) foliation of DJ. This foliation of D7 might have tangency points
with the boundary, and also some leaves reduced to a single point in this
boundary. Since the Euler characteristic of DJ is positive, this last type of
leaves always exists. The images under h¢ of these tangency and singular
points are called tangency points of F with the boundary of C.

We will call ezxternal points of tangency the points in the boundary of C'
in K, which are the images under h¢c of the singular points of the foliation
of Di. The other points of tangency of F with the boundary of C' are called
internal points of tangency (see figure 2).

The above definitions easily extend to the case where C' is a component

of the complex.
/
7/

/7 Interior of the 2-cell

Figure 2: Internal and external points of tangency

Lemma 2.16. With the assumptions and notations of lemma 2.15,

1. The codim 1-regular foliation F has no point of internal tangency with
the boundaries of the components of K.

2. Any point of external tangency is a crossing of K.

Proof of lemma 2.16: Let y = p(x) be a point of internal tangency of a leaf
L = p(K") of F with the boundary of some component. Assume that y is
not a crossing of K. Then, item (1) of definition 2.7 implies that y is a non-
singular point of this leaf, i.e. = has a neighborhood in K’ homeomorphic to
R"'. Indeed, otherwise the embedding p in restriction to a neighborhood
of  in K’ is not a homeomorphism onto the space X x {t}, where X is as
given by lemma 1.4. This implies that y is a point of c-tangency between
the leaf and the component containing y. This is a contradiction with the
fact that the leaf is r-embedded and thus, by definition, c-transverse to the

sets K gZT)L .
that y is a point of c-tangency of the leaf with K
proof of item (1) of lemma 2.16.

By definition of an external point of tangency, such a point z is a leaf

of LN AC for some leaf £ of F, where OC denotes the boundary of C in K.

Assume now that y is a crossing of K. Then, item (2) implies
(n-1)
sing

. This completes the
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Since the leaves of a regular foliation are c-transverse to 0C and satisfy item
(1) of definition 2.7, this point is a crossing of the complex. This completes
the proof of lemma 2.16. O

Corollary 2.17 below concludes this subsection on foliations of simple
n-complexes.

Corollary 2.17. With the assumptions and notations of lemma 2.16, as-
sume furthermore that F is transversely oriented. If the edges of the singular
graph of K are oriented according to the transverse orientation of F, then:

e There is exactly one attractor and one repellor for this orientation in
the boundary of any j-component of K which is a j-cell (n > j > 2).

e There are no attractors and no repellors in the boundary of the other
components.

Proof of corollary 2.17: By lemma 2.16, the only points of tangency of F
with the boundary of any component occur at the crossings in this boundary,
and they are external points of tangency. By definition of the orientation
of the edges of K, they are attractors and repellors. Each of these points
has index +1/2. The Euler characteristic of a cell component is 1, whereas
the other components have Euler characteristic 0. Moreover, since the in-
tersection of F with any component is a foliation of this component (see
lemma 2.15), and F is transversely oriented, the existence of an attractor
in the boundary of any component forces the existence of a repellor in this
same boundary, and conversely. These three last assertions, together with
the Euler-Poincare relation, imply corollary 2.17. O

Remark 2.18. One easily proves that the non-degenerate leaves of F as
given in corollary 2.17 are (possibly non finite) standard (n — 1)-complexes,
that is all their components are cells. This is not essential for our purpose.

2.4 WDM-moves

The generalized WM-moves we introduce here are a generalization of the
classical Whitehead-moves on graphs and of the Matveev-moves (see [Ma2],
[Pi], [BP]) on special 2-polyhedra. They consist of applying a collapsing,
followed by a splitting, to a simple n-complex. The motivation for defining
these generalized WM-moves is explained by lemma 2.23 below. This lemma
establishes the relationship between the generalized WM-moves and the
non-negative d,-moves on non-negative cocycles of a dynamical n-complex.
The importance of the WM-moves is also stressed by proposition 3.13.
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Definition 2.19. A simple n-complex K; is obtained from a simple n-
complex Ky (n > 1) by a generalized WM-move if there exist:

e a collapsing Ca, of a closed j-cell Ay (n > j > 1) of Ky, which is a
j-simplex,

e a collapsing Ca, of a closed (n + 1 — j)-cell Ay of Ky, which is a
(n + 1 — j)-simplex,

such that there is an isomorphism
o CAO (Ko) — CAl (Kl) with CM(CAO (Ao)) = CAl (Al)

Remark 2.20. For a simple 1-complex, i.e. a trivalent graph, a generalized
WDM-move is simply, in an obvious way, a classical Whitehead move.

For a simple 2-complex, a generalized WM-move is a priori more general
than a Matveev move (see [Ma2], or also [BP], [Pi]). Indeed, whereas gen-
eralized WM-moves are defined “algebraically”, Matveev’s moves are topo-
logical moves defined on special polyhedra which are embedded in compact
3-manifolds. This embedding induces a cyclic ordering on the germs of 2-
cells around the edges of the singular graph. Roughly speaking, a Matveev
move is a generalized WM-move applied on a cell whose some neighborhood
in the complex admits an embedding in R?, and which preserves the cyclic
ordering of the germs of 2-cells around the edges of the singular graph.
However, one can see by inspection that any generalized WM-move can be
realized by a Matveev move.

A collapsing from a CW-complex K to a CW-complex K’ is a homotopy
equivalence, and thus admits a (non-unique) inverse-map, up to homotopy.
We will call splitting from K' to K such maps.

Since a collapsing is a homotopy equivalence, the following lemma is an
immediate consequence of the definition of a generalized WM-move:

Lemma 2.21. Any generalized WM-move from a simple n-complex K to
a simple n-complex K' defines a continuous map o : K — K' which is a
homotopy equivalence from K to K'.

Lemma 2.22 below shows that any WM-move between two simple n-
complexes defines a particular kind of (n + 1)-dimensional CW-complex,
called elementary foliated complex, satisfying some nice properties. These
elementary foliated complexes will be the basic pieces in the construction of
a transversely orientable codim 1-regular foliation of a dynamical (n + 1)-
complex, starting from a positive cocycle of the complex (see lemma 2.23
and proposition 3.11). They are also used in proposition 3.13.
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Lemma 2.22. With the assumptions and notations of definition 2.19, let
Cr, = (KO X [_]-)0])/ ~0, Ck, = (Kl X [07 1])/ ~1, where (1‘,t) ~i (mlvtl) if
and only ift =t =0 and x € A;.

Let Cxory, = (Cry UCK,)/ ~a, where (z,t) ~q (2',t') if and only if
t=t' =0 and a(z) =z'.

Then Ck,k, is a simple (n + 1)-complezx with two boundary components
Ky x {—1} and K; x {1} which admits a transversely orientable codim 1-
reqular foliation with compact leaves F. Moreover, this foliation F satisfies
the following properties:

1. All the non-degenerate leaves are homeomorphic either to Ko or K.

2. There is exactly one degenerate leaf, containing the only crossing of
Ck,k,, which is homeomorphic to the complex Ca,(Ko) = Ca, (K1)
(see definition 2.19).

The simple (n + 1)-complex with boundary Cx,k, will be called an ele-
mentary foliated complex.

See figure 3.

Figure 3: A generalized WM-move

Proof of lemma 2.22: We use the notations of definition 2.19. It is clear
that Cx,x, is a (n + 1)-dimensional CW-complex with two boundary com-
ponents Koy x {—1} and K; x {1}. Let us observe that, since Ky and K; are
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simple n-complexes, they satisfy the local topological property given by con-
dition (1) of definition 1.7. From the construction of Ck,k,, the following
two properties are then clear:

1. There exists exactly one crossing v, resulting from the collapses of the
cells A; of K;, which is the vertex of a cone over Ag, and also of a
cone over Aj.

2. The neighborhood in Cg,k, of any point distinct from v is homeo-
morphic to a neighborhood of some point in the cone over the (n —1)-
skeleton of the boundary of the closed (n + 1)-simplex, crossed with
the interval.

The second property above implies that any point of Cx,x, distinct
from a crossing admits a neighborhood homeomorphic to a neighborhood
of some point in the cone over the n-skeleton of the boundary of the closed
(n + 2)-dimensional simplex.

Let us now prove that some neighborhood of v in the complex is home-
omorphic to Con((dA"2)(M)_ The germs of i-cells incident to some cell in
the closed j-simplex Ay are in bijection with the germs of i-cells incident
to some cell in the closed (n + 1 — j)-simplex A;. Each pair gives rise to
a germ of (i + 1)-component incident to the crossing v. Together with the
first property given above for v, this implies that a neighborhood of v in
Ck,K, is as announced.

Thus, Ck, K, is a simple (n + 1)-complex with boundary Ky x {—1} U
K, x {1}. The other assertions are then straightforward. O

As already announced, lemma 2.23 below allows to understand the rela-
tionship between a non-negative §,-move on a non-negative cocycle u in a
dynamical n-complex K and a generalized WM-move as defined above. The
idea is the following: Lemma 2.13 associates a transversely oriented simple
(n — 1)-complex K, (resp. Kjs, (4)) to the cocycle u (resp. d,(u)). The
transverse orientation to K, and K, (,) agrees with the orientation of the
edges of the singular graph. There is a continuous deformation in K from
K, to Ks,()- The cocycles u and §,(u) only differ on the edges of Ks(;)m
which are incident to v. Then, by definition of the orientation of the edges
of the singular graph for a dynamical n-complex, this deformation realizes
a generalized WM-move.

Lemma 2.23. Let K be a simple dynamical n-complex (n > 2) which ad-
mits a non-negative cocycle u € C1(K;Z). If v is a crossing of K such that
dy(u) is a mon-negative cocycle, let K,, and Ky, () be as given by lemma
2.13. Then:
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There is a subcomplexr K1 of K containing v which is homeomorphic to
an elementary foliated compler Cr, k;, .-

In particular, the simple (n — 1)-complex Ks, () is obtained from the
complex K,, by a generalized WM-move. Moreover, if v is a type j-crossing
(2 < j < n) then this WM-move consists of the collapsing of a (j — 1)-
simplex followed by the splitting of a (n — j + 1)-simplez.

Proof of lemma 2.23: By lemma 2.13, any r-embedded complex K, is
2-sided in K. Moreover, the transverse orientation to K, agrees with the
orientation of the edges of the singular graph that it intersects. Since §,(u)
is a non-negative cocycle, the cocycle u is positive on the incoming edges
of KS)W at v. Therefore, any r-embedded complex K, intersects them
positively. Since v is a type j-crossing, there are j such incoming edges at
v. By lemma 1.10, there is exactly one j-component C of K whose germ at v
contains the germs of these j incoming edges (or, in other words, which has
v as attractor in its boundary). The above assertions imply the existence
of a closed (j — 1)-component Aq of K, contained in this j-component C
of K. Clearly, Ag cuts C in two connected components. Moreover, one
can choose a neighborhood N (v) of the crossing v in K which contains Ag.
Thus, from definition 1.1, item (1), one gets that Ap is a (j — 1)-simplex
and one of the two connected components of the complement of Ay in C' is
a cone over Ay based at the crossing v.
Since K, is 2-sided, one can then define a continuous deformation
Hy: K, x [-1,00 - K
(x t) = i)

e Fort € [-1,0], i; : K, — K is a non-degenerate r-embedding.

such that:

e The map ig is such that ig(K,) contains v and is the image under a
degenerate r-embedding of the CW-complex K’ obtained from K, by
the collapsing of Ag.

e For any t, t' in [—1,0] such that ¢t # ¢/, i;(K,,) is disjoint from iy (K,,).

Let Ck, be the subcomplex of K equal to U Hy(z,t).
(z,t)EK W x[—1,0]

The r-embedded CW-complex K' is 2-sided and admits a neighborhood
N(K') in K such that N(K') — K' has two connected components home-
omorphic to Ky x [~1,0[ and Ks, ) x]0,1]. Thus there is a r-embedding
of Ks,(y) which is disjoint from Ck,. Moreover one can choose this 1-
embedding of K, (,) such that the neighborhood N(v) above contains a
closed (n + 1 — j)-component A; of Kj (,) which is a simplex. This com-
ponent A; is contained in the component of K which has v as repellor in
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its boundary. Thus, in the same way than above, one has a continuous
deformation H11 Kow x 01 = K
@ ) = i

such that:

e For t €]0,1], ji : Ks,(u) — K is a non-degenerate r-embedding.

e The map jo is such that jo(Ks, (,)) contains v and is the image under a
degenerate r-embedding of the CW-complex K' obtained from Kj, )
by the collapsing of A;.

e For any ¢, ' in [-1,0] such that ¢ # t', j;(Ks,(u)) is disjoint from
Jv (Ks, (u))-

Let Ck;,, ., be the subcomplex of K equal to U Hy(z,t).
(.T,t)EKJU(u) ><[—1,0]

By construction, the subcomplex Ck, U Ck;, (,, is homeomorphic, by
a “fiber-preserving” homeomorphism, to the elementary foliated complex
CK,K;,(,- The proof of lemma 2.23 is then easily completed. O

3 Foliations with compacts leaves

In this section, we prove our main theorem.

Theorem 3.1. A simple n-complex K, n > 2, admits a transversely ori-
entable codim 1-regular foliation F, whose all leaves are compact and have
the same Euler characteristic, if and only if there exists an orientation of
the edges of the singular graph such that:

1. The complex K together with this orientation is a simple dynamical
n-complex.

2. There is a positive cocycle in C'(K;Z), for K equipped with this ori-
entation.

In addition, if such a foliation F exists, then all its leaves are homo-
topically equivalent. If L is any leaf of F, there is a homotopy equivalence
Y : L = L (which in particular induces an automorphism on the funda-
mental group of L) such that the complex K is homotopically equivalent to
the suspension Suspy(L).
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Let us recall that a positive cocycle of K is a cocycle which is non-

negative on the edges of the singular graph K S(L)Lg, and positive on all the
(1)

positive loops embedded in K_;, . Let us also recall that, by edges of the
singular graph, we mean the 1-components of the complex K. These are
the only 1-cells of K contained in K () The only 0-cells of K contained

sing*
in K S)Lg are the crossings, together with a set of valency 2-vertices, one in

each loop of K ;17)1 , Which does not contain any crossing. All this comes from

the chosen structures of CW-complex for our complexes.

3.1 From a regular foliation to a positive cocycle of a
dynamical complex

We assume here that one is given a codim 1-regular foliation F of a simple
n-complex K (n > 2) as in theorem 3.1. The proof of this implication
decomposes in two steps. First, one proves that there is an orientation on
the edges of the singular graph, induced by some transverse orientation to JF,
which makes K a simple dynamical n-complex (subsection 3.1.1). Then one
proves that this simple dynamical n-complex K admits a positive cocycle
(subsection 3.1.2).

3.1.1 An orientation making K a simple dynamical n-complex

We begin the proof of this part by the following proposition:

Proposition 3.2. Let K be a simple n-complex. If there exists a trans-
versely orientable codim 1-reqular foliation F of K whose leaves are compact
and have the same Fuler characteristic, then there is an orientation of the
edges of the singular graph of K such that K together with this orientation
s a simple dynamical n-complez.

Proof of proposition 3.2: By definition, the leaves of a codim 1-regular
foliation of a simple n-complex are c-transverse to the singular graph (see
definition 2.7). Thus, any transverse orientation of such a foliation F in-
duces an orientation on the edges of the singular graph. One has to check
that such an orientation satisfies the following two properties (see defini-
tion 1.7):

1. Each crossing of the singular graph is the initial and the terminal
(1)

crossing of at most n edges of K;, .

2. There is exactly one attractor and one repellor in the boundary of
each j-component which is a j-cell. The other components have no
attractor and no repellor in their boundary.
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We are first going to prove that condition (1) above is satisfied. This
will essentially relie on the fact that all the leaves of F have the same
Euler characteristic. Condition (1) is equivalent to the fact that, if i €
{0,1,n + 1,n + 2}, there is no type i-crossing in K.

Lemma 3.3. With the notations and assumptions of proposition 3.2,
There is no type 0- nor type (n + 2)-crossings in K for the orientation
induced by any transverse orientation to F.

Proof of lemma 3.3: Assume that a type 0- or type (n + 2)-crossing exists
for the orientation induced by some transverse orientation to F. Let us re-
call that the leaves of a regular foliation are r-embedded in K (see definition
2.7). In particular, they are c-transverse to Ks(gr)w forany j=1,---,n—1.
Since the orientation of the edges of the singular graph agrees with the cho-
sen transverse orientation of F, item (2) in the definition of a r-embedding
and the transversality condition above imply the existence of a leaf reduced
to this crossing. This is a contradiction with F being a codim 1-regular
foliation. O

For proving that there are no type 1- nor type (n+1)-crossing, one needs
first to prove lemma 3.4 below. The main ingredient of this lemma is the
following observation:

Let v be a crossing of K and let £ be the degenerate leaf of F containing
the crossing v. Then the germs of cells at v, which contain v either as
attractor or as repellor in their boundary, contain also a cell of any leaf in
a sufficiently small neighborhood of £ in K.

Lemma 3.4. With the assumptions and notations of proposition 3.2, as-
sume that the edges of the singular graph of K are equipped with some
transverse orientation to F.

Let L be a degenerate leaf of F, and let {vy,--- ,v.} be the type j;-
crossings (1 =1,--- 1) of K contained in L. Then, there are two leaves L
and Ly in some neighborhood N' (L) of L in K such that:

1. There are C’]’i_+1 (resp. Cﬁi;_ji) k-components of L1 (resp. L) in the
intersection of L1 (resp. of L2) with some small neighborhood N (v;)
(i=1,---,randk=0,--- ,n—1) of v; in K. These k-components
are k-cells.

2. The k-cells, k =0,--- ,n—1, of L1 and Lo which are not contained in
the union of the neighborhoods N (v;) are in bijection with the k-cells
of L distinct from the crossings {vy,--- ,v,}.
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Moreover, if K is a simple dynamical n-complex, then these two leaves
L1 and Lo can be chosen so that:

The intersection of Ly (resp. of Ls) with the above neighborhood N (v;)
of vi in K (i = 1,---,r) contains exactly one closed (j; — 1)-component
(resp. (n+1—j;)-component), which is a (j; —1)-simplex (resp. (n+1—j;)-
simplez).

Proof of lemma 3.4: By definition of a transversely orientable foliation,
each leaf is 2-sided in K. By definition of a 2-sided embedding in a simple
n-complex (see definition 2.11 and remark 2.12), there is a neighborhood
N (L) of £ in K such that

N (L) — £ has two connected components which are homeomorphic to
L_ x[-1,0[ and £ x]0,1], where £L_ x {—t} and L x {t} are r-embedded
in K for any t €]0,1].

All the leaves £_ x {—t} (resp. L4 x {t}) have crossings along the
incoming (resp. outgoing) edges of KS)W at the crossings v; of K. These
crossings are ordered along the edges of the singular graph containing them.
One chooses € > 0 sufficiently small and a small neighborhood in K of each
v; so that only the last (resp. first) crossings of £; = £_ x {—€} (resp.
Lo = L4 x {€}) along the incoming (resp. outgoing) edges at each crossing
v; are contained in this small neighborhood.

By definition of the orientation of the edges of the singular graph, the
only cells of £1 (resp. £2) which might be contained in these neighborhoods
of the crossing v; are the one intersecting the germs at v; of components in
K which contain only incoming (resp. outgoing) germs of edges at v;. Item

(2) of definition 2.7 and the transversality of F with Kgr)w j=1---,n—-1,
imply that any such germ at v; of any component in K contains a cell of
Ly (resp. L), if the € above is chosen sufficiently small. Lemma 1.4 allows
to complete the proof of items (1) and (2) of lemma 3.4.

The local topological property satisfied by a simple n-complex (item (1)
of definition 1.1) implies that if a k-component of £;, i = 1,2, is contained
in a germ of (k + 1)-component of K at v, then this k-component of £; is
a k-simplex.

Together with the property given by definition 1.7, item (1) for the ori-
entation of the edges of the singular graph, this implies the last statement
of lemma 3.4. O

One can now prove the following

Lemma 3.5. With the notations and assumptions of proposition 3.2,
There are no type 1- nor type (n + 1)-crossings in K for the orientation
induced by any transverse orientation to F.
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Proof of lemma 3.5: One chooses any transverse orientation to F. One
orients the edges of the singular graph by this transverse orientation. One
considers three leaves £, £; and Ls, as given in lemma 3.4 and uses the
notations of this lemma. Let us recall that, by convention, C’]’.c = 0 for
k > j. Lemma 3.4 implies the following equalities:

(1) x(£) =X+ > (-n*eyg,

i=1 k=1

(2) x(£) :X+r,r .
(3) x(L2) =X + > > (-1F ek, .,

i=1 k=1
where X is the alternated sum of the number of k-cells, k =0, --- ,n—1,
of £1 and L5 given by item (2) of lemma 3.4.

n
Moreover, Z (—l)kflC,’”;L is the Euler characteristic of the closed sim-
k=1

plex A™Lif n > m. If m = n + 1, the factor (—1)" is missing in the
above expression in order to have the Euler characteristic of A™. Thus,
n

> (=1)"'CE s equal to 1if n > m and to 1+ (—=1)" " if m =n + 1.
k=1

Now, since (2<j; <n) & 2<n+2-j;<n), (ji=1)=> (n+2—j; =
n+1)and (n+2—j; =1) = (j; = n+ 1), the equalities (1), (2) and (3)
can be rewritten as follows:

(1) X(£1) = X + (L+ (D" NG+ (r = N,

(2) X(£) = X +7,

(3) X(£2) = X + (14 (=1)"")Ng + (r — Np),

where N denotes the number of type j-crossings among the crossings
v; contained in L.

By assumption, all the leaves in F have the same Euler characteristic.
This is in particular true for £;, £ and £. This implies that NI = 0
and that N3 = 0. Therefore, there are no type 1- nor type (n + 1)-crossings
in K for the orientation on the edges of the singular graph induced by a
transverse orientation to F. This completes the proof of lemma 3.5. O

The following corollary is a consequence of all what precedes.

Corollary 3.6. With the assumptions and notations of proposition 3.2,
Each crossing of the singular graph of K is the terminal and initial
; (1)
crossing of at most n edges of K

sing for the orientation induced by any
transverse orientation to F.
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For proving that K, equipped with the above orientation, is a simple
dynamical n-complex, it remains to prove that there is exactly one attractor
and one repellor in the boundary of each j-component which is a j-cell
and no attractor nor repellor in the boundary of the other j-components
(2 < j < n). This comes from corollary 2.17, which completes the proof of
proposition 3.2. O

3.1.2 Existence of a positive cocycle

Let K be a simple n-complex which satisfies the assumptions of proposition
3.2. The edges of the singular graph of K are oriented, as precedingly, by
some transverse orientation to F, thus making K a simple dynamical n-
complex. One wants to prove that K, equipped with this orientation on the
edges of the singular graph, admits a positive cocycle.

Proposition 3.7. Let K be a simple dynamical n-complex (n > 2). As-
sume that K admits a transversely oriented codim 1-reqular foliation F,
whose leaves are compact, and such that their transverse orientation agrees
with the orientation of the edges of the singular graph. Then the cocycle
u € CY(K;Z) defined by any non-degenerate leaf of F (see lemma 2.18) is
a positive cocycle.

Proof of proposition 3.7: The proof relies on the following lemma:

Lemma 3.8. Let K be a simple n-complex which admits a transversely
orientable codim 1-regular foliation with compact leaves. Then all the leaves
of F are homotopic in K.

Proof of lemma 3.8: By definition of a transversely orientable codim 1-
regular foliation, all the leaves are 2-sided. By definition of a 2-sided em-
bedding and remark 2.12, all the leaves in a neighborhood of any leaf £ are
homotopic to £ in K. The conclusion follows by compactness of K. O

The union of all the non-degenerate leaves of the foliation F given by
proposition 3.7 intersects all the positive embedded loops of the singular
graph KS)W. Since ngg is finite, there is a finite family of leaves of F
whose union intersects all the positive embedded loops of Ks(;T)Lg. Since, by
lemma 3.8, all the leaves of F are homotopic in K, the cocycles associated
to the non-degenerate leaves by lemma 2.13 are cohomologous. Thus, each
leaf in the above finite family intersects all the positive loops of K ST)L ;- This
is equivalent, for the associated cocycles, to be positive cocycles. This com-
pletes the proof of proposition 3.7. O
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At this point, we have proved that, if a simple n-complex K, n > 2,
admits a transversely orientable codim 1-regular foliation F, whose leaves
are compact and have the same Euler characteristic then:

e The complex K, together with the orientation on the edges of the
singular graph induced by any transverse orientation to F, is a simple
dynamical n-complex.

e Any non-degenerate leaf of F defines a positive cocycle u € C'(K;Z).

The proof of one implication of theorem 3.1 is thus completed.

3.2 The reverse implication

The goal now is to prove that, if a simple dynamical n-complex (n > 2)
admits a positive cocycle u € C*(K;Z), then there is a transversely ori-
ented codim 1-regular foliation of K, whose leaves are compact and are all
homotopically equivalent, and such that their transverse orientation agrees
with the orientation of the edges of the singular graph.

Lemma 3.9. Let K be a simple dynamical n-complex (n > 2) which admits
a positive cocycle u € CY(K;Z). Then either K has no crossing, or there
is a crossing v of K such that 0,(u) is a positive cocycle.

The assumption that K is a dynamical n-complex allows to assure, in

the proofs of lemma, 3.9 and corollary 3.10, that there is at least one incom-
1

ing edge of K,  at each crossing of K.

Proof of lemma 3.9: This lemma relies on the following claim, which is
easy to check from the definition of a &,-move (see definitions 2.2 and 2.5).

Claim: Let u € C'(K;Z) be a non-negative cocycle and let v be any cross-

ing of K. A non-negative d,-move can be applied to u if and only if u(e) > 0
(1)

for all the incoming edges e of K;,  at v.

Assume that K has at least one crossing and that a crossing as given

by lemma 3.9 does not exist. Equivalently, by the claim above, there is
at least one incoming edge e of K s(;T)Lg at each crossing v of K such that
u(e) = 0. Let v1 be any crossing and let e;, be an incoming edge at vq, with
u(e;,) = 0. There is also, by assumption, an incoming edge e;, of Ks(;)w
at the initial crossing i(e;,) with u(e;,) = 0. The path e;,e;, is a positive
g

path in the singular graph K and w is zero on this path. By induction,
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from the finiteness of KS)LQ, one so constructs a positive loop [ in Ks(;r)w
with «(l) = 0. This is a contradiction with u being a positive cocycle and

completes the proof of lemma 3.9. O

Corollary 3.10. With the assumptions and notations of lemma 3.9, if K
has at least one crossing, then there is a (non-unique) ordered sequence of

N distinct positive cocycles u = ug = u; — -+ = uny = u such that u; is
obtained from u;_1 by a d,,-move, i = 1,--- | N. Furthermore, each crossing
of K occurs ezxactly once in the set {vy,--- ,un}.

Proof of corollary 3.10: By lemma 3.9, if u € C'(K;Z) is a positive
cocycle, there is at least one crossing v; of K such that u; = 6,, (u) is a
positive cocycle. By induction, one obtains an ordered sequence of positive
cocycles u = ug,u1, -+ ,un such that:

e For 1 <i < N, u; is obtained from u;_; by a d,,-move.
e All the crossings vy, - ,vn are distinct.

e There is no crossing v distinct from vy, ,vn so that a non-negative
dy,-move can be applied to un.

One has then two cases:
1. The set {v1,--- ,un} is the set of crossings of K.
2. There is a crossing w of K which does not belong to {vy,--- ,vn}.

In the case (2), by the claim used in the proof of lemma 3.9, the cocycle
upy is zero on an incoming edge e at w.

This implies that u is also zero on some incoming edge of K S(llr)L , at the
crossing i(e). Otherwise, a non-negative d;,)-move might be applied to ux-.
This would imply that the crossing i(e) is one of the crossings {vy,--- ,un}.
Since a non-negative d,-move has been applied to each of this crossing to
obtain the cocycle ux, and no non-negative d,,-move, w = t(e), has been
applied, this would imply that uy is positive on e. This is a contradiction
with our assumption.

By induction, as in lemma 3.9, one constructs a positive loop [ in the
singular graph such that uy(l) = 0. Since upy is cohomologous to u (see
remark 2.4), this is a contradiction with u positive.

Therefore, case (1) above is satisfied. It remains to prove that unx = u.

For any edge e of the singular graph, exactly one d;(.)-move has been applied,
which lowers the value on e of the corresponding cocycle u; (5 < N) by 1,
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and exactly one d;.)-move has been applied, which increases the value on
e of the corresponding cocycle uy (k < N) by 1. The other §,-move do
not change the value of the corresponding cocycles on e. Without loss of
generality, one can assume j < k. These remarks imply u(e) = ui(e) =
us(e) = -+ = uj_i(e), ujle) = ule) — 1 = ujpi(e) = ujpale) = -+ =
ugp—1(e), ur(e) = ugq1(e) = --- = un(e) = uj(e) + 1 = u(e). Since this
holds for any edge e, one has uy = u. This completes the proof of corollary
3.10. O

Proposition 3.11. Let K be a simple dynamical n-complex (n > 2) which
admits a positive cocycle u € CY(K;Z).

This cocycle defines a non-unique ordered sequence of N +1 simple (n —
1)-complezes Lo, - ,Ln, where N is the number of crossings in K and
such that:

1. They are disjointly r-embedded in K in a non-degenerate way, and Ly
is the simple (n — 1)-complex associated to u by lemma 2.13.

2. Each complex L; is obtained from L;—1 by a generalized WM-move for
i=1,---,N and Ly is homeomorphic to Ly.

The simple (n—1)-complexes Lo, -+ ,Ln are the leaves of a transversely
oriented codim 1-regular foliation F of K whose leaves are compact and such
that:

e Their transverse orientation agrees with the orientation of the edges
of the singular graph.

e All the non-degenerate leaves of F are homeomorphic to one of the
simple (n — 1)-complexes L1,--- , Ly and there are exactly N degen-
erate leaves.

Proof of proposition 3.11: Let us first assume that K has at least one cross-
ing. From corollary 3.10, one has a sequence of positive cocycles u = uy —
up — --- = uny = u such that u; is obtained from u;_; by a d,,-move, and
{v1, -+ ,un} is the set of crossings of K. Lemma 2.23 allows to obtain N
disjoint subcomplexes Cyuy s Cuzusy*** 5 Cun_yun Of K, which are homeomor-
phic to elementary foliated complexes Cr, i, ,CK, Kuys " s Chuy  Kuy-
These subcomplexes contain all the crossings of K, and each one con-
tains exactly one crossing. Therefore, the complement in K of Cy,, U
Cusus U+ UCyy_,uy has N connected components Bi,---,By. Each
connected component B; has two boundary components which are home-
omorphic to K,,, i = 1,--- ,N and is foliated by K,, x [0,1]. The union
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Cuny U(Kuy X [0, 1))UC0 0, U (K yy, X [0, 1)U - -UCup_un U(Kuy X [0, 1]) gives
a transversely oriented codim 1-regular foliation with compact leaves which,
by definition of an elementary foliated complex, satisfies all the properties
given by proposition 3.11. If K has no crossing, the (j + 1)-components of
K are homeomorphic either to Susprq(D?) or Suspm, (D7), =1,-++ ,n—1
(see definitions 1.1 and 1.7). The conclusion in this case is then straightfor-
ward, one just has to push an r-embedded complex K, along the positive
loops of the singular graph to obtain a foliation of K by complexes all home-
omorphic to K. Proposition 3.11 is proved. O

Proposition 3.11 together with lemma 2.21 imply that if a simple dy-
namical n-complex (n > 2) admits a positive cocycle, then there is a codim
l-regular foliation F, transversely oriented by the edges of the singular
graph, whose leaves are compact and are all homotopically equivalent (in
particular, they have the same Euler characteristic). The equivalence of
theorem 3.1 is thus proved.

3.3 Conclusion

One now completes the proof of theorem 3.1. One first proves that all the
leaves of the foliation F given by theorem 3.1 are homotopically equivalent.

Lemma 3.12. Let K be a simple n-complex (n > 2). If there is a trans-
versely orientable codim 1-regular foliation F of K, whose leaves are com-
pact and have the same FEuler characteristic, then all the leaves are homo-
topically equivalent.

Proof of lemma 3.12: From what precedes, we know that K, equipped with
the orientation on the edges of the singular graph induced by a transverse
orientation to F, is a simple dynamical n-complex. If £ is a non-degenerate
leaf of F, by definition of a transversely orientable foliation, there is a
neighborhood of £ which is homeomorphic to £ x [0, 1]. Thus all the leaves
in a neighborhood of £ are homeomorphic to £, and therefore homotopi-
cally equivalent to £. Let us now consider some degenerate leaf Lp. Let
v, , Uk be the type ji-,ja-, - - ,jk-crossings contained in Lp. Lemma 3.4
gives two leaves £_ and L in a neighborhood N(Lp) of Lp such that:

e Theleaf £p is obtained from £_ by the collapses of a (j; —1)-, (j2—1)-,
T 7(jk - 1)_Cella

e The leaf Lp is obtained from £, by the collapses of a (n + 1 — j;)-,
(’I’L +1- j?)_a ) (’I’L +1- jk)—CeH,
and the closure in £_ and £ of all these cells are distinct.
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o All the non-degenerate leaves of F in N (Lp) are homeomorphic either
to L_ or to L.

Thus Lp, £_ and £, and all the leaves of F which belong to N(Lp) are
homotopically equivalent. Therefore, by compactness of K, all the leaves of
the foliation F are homotopically equivalent. O

Let £ be a non-degenerate leaf of a foliation F as above. By cutting
K along L, one obtains a CW-complex which is homotopically equivalent
to £ x [0,1]. Thus the simple n-complex K is homotopically equivalent to
Suspy (L) (see section 1.1), where ¢ : £ — L is a continuous map which is
a composition of maps induced by the sequence of generalized WM-moves
from £ to L (see proposition 3.11). Since these maps are homotopy equiva-
lences (see lemma 2.21), the map ¢ is an homotopy equivalence and thus it
induces an automorphism on the fundamental group of £. This argument
is easily generalized to the case where £ is a degenerate leaf. The proof of
theorem 3.1 is completed. O

Theorem 3.1 and remark 2.18 together imply that a positive cocycle of
a simple dynamical n-complex K (n > 2) defines a continuous map of a
standard (n — 1)-complex which is r-embedded in K. This map appears
as a composition of generalized WM-moves. The proposition below gives a
kind of converse to this result.

Proposition 3.13. Let ¢ : K — K be a continuous map of a standard
n-complez K (n > 1), such that ) = aog.o0---00y, where o; : K;_1 — K;
(i=1,---,r), and a : K, — Ky are such that:

1. Each K; (i =1,---,r) is a simple n-complex obtained from K;_1 by
a generalized WM-move, Ky = K and « is an homeomorphism from
K, onto K.

2. The maps o; from K;—y to K; (i =1,---,r) are induced by the cor-
responding generalized WM-moves (see lemma 2.21).

Then there is a simple dynamical (n+1)-complex Ks which is homotopi-
cally equivalent to the (n + 1)-dimensional CW-complex Suspy(K). More-
over, this simple dynamical (n + 1)-complex Kg admits a positive cocycle u
such that:

o A simple n-complex K, associated to u by lemma 2.13 is homeomor-
phic to K.
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e There is an ordered sequence of generalized WM-moves defined by u
(see proposition 3.11) which is the sequence given for the definition of

.

Proof of proposition 3.13: Each generalized WM-move from K; ; to K;,
i =1,---,r, defines an elementary foliated (n + 1)-complex Ck, ,k,; (see
definition 2.19). The edges of its singular graph are oriented from K;_; to
K;. One glues Ck,_, k; to Ck;Kk,,, by the identity of K;, ¢ =1,--- ,r — 1.
The (n + 1)-dimensional CW-complex obtained, denoted by K', has two
boundary components Ky and K,. One identifies K, to Ko by a. The
(n + 1)-dimensional CW-complex obtained is denoted by K.

One has to prove that Kg satisfies all the properties of a simple dynam-
ical (n + 1)-complex.

By definition of an elementary foliated complex, each point in its interior
has a neighborhood homeomorphic to the neighborhood of some point in a
simple (n + 1)-complex. Thus, this is also true for any point in the interior
of K'. Since a is an homeomorphism, this is still satisfied for any point in
the complex Kg.

Let us now prove that the components of Kg are so that Kg is a simple
(n 4+ 1)-complex. Let C' be a i-component of K, 1 < i < n. Since K is a
standard n-complex, C' is a i-cell. We are first interested in the components
of K'.

If C is not collapsed by any WM-move in the given sequence, then C'
gives rise to a D' x [0, 1] component in K'.

Otherwise, C' gives rise to a finite set of j-components Sy,---,Sy of K’

such that, S; denoting the closure in K’ of S;:
e Foreachm=1,--- ,k—1,5,,NS,,.1 is a crossing of K'.

e The component S is a (i+1)-cell which contains exactly one attractor
in its boundary at S; N K; and S1 N Ky =C.

e For p=1to psuch that Kk =2por k =2p+ 1, Sa), (resp. Szp11) is a
(n+1—1i)-cell (resp. a (i + 1)-cell) of K'.

e The components Sa,--- ,S,_1 contain each exactly one attractor and
one repellor in their boundary.

e The component Sy contains exactly one repellor in its boundary at
SENK,_1 and S;NK, is a (n—1)-cell if k is even and a i-cell otherwise.
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Since K is the quotient of K’ under a : K, — Ky and « is an homeo-
morphism, all the assertions above imply easily the following two properties:

e The i-components of Kg are either i-cells or homeomorphic to
Suspra(D* 1) or Suspp, (D).

e Each component which is a i-cell has exactly one attractor and one
repellor in its boundary and the other components have none.

Thus Kg is a simple dynamical (n + 1)-complex. Moreover, by con-
struction, the simple n-complex K is r-embedded in Kg. The construction
and the chosen orientation of the edges of the singular graph assure that,
equipped with the good transverse orientation, it defines a positive cocycle
and that this cocycle defines the given sequence of generalized WM-moves.
This completes the proof of proposition 3.13. O

The construction we use for proving the above proposition was suggested,
for the case of 2-dimensional complexes, by G.Levitt. For this particular
case, one presents another construction in [G2].

The following corollary comes straightforward from proposition 3.13,
using the well-known result that any free group-automorphism can be ex-
pressed as a composition of Whitehead moves.

Corollary 3.14. Let O be any automorphism of the free group F,, (n > 1).
Then there is a simple dynamical 2-complex K which admits a positive
cocycle u € C*(K;Z) such that:

o The fundamental group of K is the suspension of the automorphism
O of F,.

o If K, is as given by lemma 2.13, then any sequence of Whitehead
moves defined by u on K, induces the automorphism O on 71 (K,) =
F,,, up to conjugacy in the group of outer automorphisms of F,.

In particular, from this corollary, any free group-automorphism can be
represented by a simple dynamical 2-complex.

4 Dynamical complexes, semi-flows and flows

In this section, we justify the name of dynamical n-complex by proving that
any such standard n-dimensional CW-complex carries a non-singular semi-
flow. This allows to define non-singular flows on compact (n + 1)-manifolds
when these complexes are the spines of such manifolds.
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Let us recall that a non-singular flow (¢t),cg on a n-manifold (n > 1)
is a group with one parameter ¢ € R of diffeomorphisms of the manifold
without fixed points.

A transverse hypersurface to a non-singular flow on a compact n-manifold
M™ (n > 2) is a properly embedded hypersurface in M"™ which intersects
transversely and in the same direction the orbits of the flow that it inter-
sects.

A cross-section to a non-singular flow on a compact n-manifold M™
(n > 2) is a transverse hypersurface S in M™ which intersects all the orbits
in finite time

e both in the future and the past if M™ has empty boundary or if the
flow is tangent to OM™,

e and only in the future in the other cases.

Definition 4.1. A non-singular semi-flow on a topological space X is a
semi-group with one parameter ¢ € R™ of continuous maps of X without
fixed points, i.e.:

e Forall z € X, oo(x) = x.
e Forallt,t' in RY, oy p (z) = oy(op ().
e The set {z € X ; for all t in Rtoy(z) = z} is empty.

If K is a simple n-complex, one further requires that a non-singular
semi-flow on K restricts to a non-singular flow on each open n-component
of K.

A simple degenerate (n — 1)-complex K' which is embedded and 2-sided
in K is transverse to the semi-flow if all its intersection-points with the
orbits of the semi-flow are transverse, and with the same intersection-sign,
once a transverse orientation to X' has been chosen.

A cross-section to a non-singular semi-flow on a simple n-complex K is
a transverse simple (n—1)-complex K’ which is r-embedded in K and which
intersects all the orbits in finite time. As in the usual case of a flow on a
manifold, when a non-singular semi-flow admits a cross-section, it induces
a continuous map on this cross-section, which is called the return-map of
the semi-flow on the cross-section.

In what follows, we will assume that a transverse hypersurface (resp. a
(n — 1)-dimensional CW-complex) to a flow (resp. a semi-flow) is trans-
versely oriented so that the orbits of the flow (resp. semi-flow) intersect it
positively.
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Proposition 4.2. Any standard dynamical n-complex K (n > 2) carries a
non-singular semi-flow.

Proof of proposition 4.2: This proposition relies mainly on lemma 4.3
below.

Lemma 4.3. Let K be a standard dynamical n-compler (n > 2). Then
there is a transversely oriented codim 1-regular foliation defined on K, whose
transverse orientation agrees with the orientation of the edges of the singular
graph.

Proof of lemma 4.3: Since K is standard, each n-component of K is an
open n-cell. Since K is a dynamical n-complex, each n-component has
one attractor and one repellor in its boundary. For each component C of
K, there is a continuous map hc : D' — C which is a homeomorphism
from D™ onto C (see section 2.3). Since our complexes are assumed to
admit a piecewise-linear structure, the boundary of D™ in R™! contains
a collection of 0- and 1-simplices whose images under h¢ are the crossings
and edges of the singular graph contained in C'. These 1-simplices inherit
an orientation from the orientation of the edges of K 27)19. The image of
one of the O-simplices is the repellor of C' and the image of another one
is its attractor. These are the 0-simplices whose all incident 1-simplices
are respectively outgoing and incoming. The disc D" obviously admits a
foliation by closed (n — 1)-discs such that:

e Two of these discs are reduced to the above two 0-simplices.

e All the other discs intersect transversely the boundary of ﬁn, and are
transversely oriented by the 1-simplices of oD".

e The intersection of these closed discs with D™ defines a non-singular
foliation of D™.

For each component C, one considers the image under he of such a
foliation. This clearly defines a regular codim 1-foliation F of the complex
K. The fact that, in each closed n-disc, the (n — 1)-disc of the foliation
constructed are transversely oriented by the 1-simplices of the boundary
assures that this foliation F is transversely oriented by the edges of the
singular graph. This completes the proof of lemma 4.3.0

Lemma 4.4. Let K be a simple dynamical n-complex (n > 2) which admits
a transversely orientable codim 1-regular foliation F. Then, K carries a
non-singular semi-flow transverse to F.
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Proof of lemma 4.4: Since K is compact, there are a finite number of
leaves Ly, -, L, whose neighborhoods N(L;),---,N(L,) cover K. Since
the leaves can be transversely oriented in a coherent way, one can choose the
oriented transversals (see definition in section 2.2) in these neighborhoods
N(L;) to agree at the intersections N(L;) N N(L;), i,5 = 1,---,r. These
oriented transversals glue together to give the orbits of a non-singular semi-
flow on K. This comes from the definition of “2-sidedness” and of “oriented
transversal” (see section 2.2 and definition 2.11). O

Lemmas 4.3 and 4.4 imply proposition 4.2. O

Proposition 4.5. If a simple dynamical n-complex K (n > 2) admits
a positive cocycle u € CY(K;Z), then there is a nmon-singular semi-flow
(0t)icr+ on K such that some r-embedded complex K, as given by lemma
2.13 is a cross-section to (0t),cgr+ -

Proof of proposition 4.5: Observe that a positive cocycle of a simple dy-
namical n-complex defines a transversely orientable codim 1-regular foli-
ation with compact leaves (see section 3.2). Lemma 4.4 allows to define
a non-singular semi-flow on K which is transverse to this foliation. The
following lemma, classical in its principle, allows to conclude:

Lemma 4.6. Let K be a simple dynamical n-complex. If a non-singular
semi-flow on K admits a transverse codim 1-regqular foliation with compact
leaves, then any r-embedded leaf is a cross-section to this semi-flow.

Thus, the non-singular semi-flow on K, constructed above transversely
to the foliation defined by the positive cocycle v, admits a simple (n — 1)-
complex K, associated to this cocycle as a cross-section. O

Remark 4.7. In the 2-dimensional case, we see in [G1] that any dynamical
2-complex (that is a not necessarily standard dynamical 2-complex) carries
a non-singular semi-flow. The orientation of the edges of the singular graph
gives, in some sense, the orientation of the semi-flow. The problem in the
general case is to extend a non-singular semi-flow defined in a neighborhood
of the boundary of a component which is not a cell to a non-singular flow
on the component.

We give below a definition of a spine of a manifold, which is a rather
classical notion (see for instance [BP], [Ca], [Ch3], [Mal,2]).

Definition 4.8. A simple n-complex K (n > 1) is the spine of a compact
(n 4+ 1)-manifold with boundary M if there is an embedding i : K — Mg
and a retraction rx : Mg — i(K), which is a homotopy equivalence, such
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that the manifold Mg is homeomorphic to Mk x [0, 1] quotiented by the
equivalence relation (x,t) ~ (2/,¢') if and only if ¢ = ' = 0 and rg(z) =
ri(z'). The fibers 7! (z) are (n + 2 — j)-ods centered at z, where j is the
smallest, integer for which z € K7 .

A simple dynamical n-complex which is the spine of some compact (n +

1)-manifold will be called a simple dynamical n-spine.

Remark 4.9. Let us recall, for outlining the importance of this notion of
spine, that any piecewise-linear compact n-manifold with boundary, and
thus in particular any compact 3-manifold with boundary, admits a (n —1)-
spine (see [Ca] for the case of 3-manifolds and [Mal] for the general case).
However, since, at the difference of the standard spines of Casler or the
special spines of Matveev, we admit n-components which are not n-cells,
two non-homeomorphic (n + 1)-manifolds can admit homeomorphic simple
n-spines.

Proposition 4.10 below treats the problem of reconstructing a non-singular
flow on the manifold M from some non-singular semi-flow on a dynamical
2-spine K. It is rather classical in its principle, but in different settings. The
interested reader may refer to the works of Williams or Christy (see [Chl]
or [Wi2]). However, in these works, the authors assume their complexes
to admit a smooth structure at each point, this assumptiom being due to
the fact that they were interested in the special case of hyperbolic flows on
3-manifolds.

Proposition 4.10. Let K be a simple dynamical n-spine of a (n + 1)-
manifold My . Then, for any non-singular semi-flow (0¢),cg+ on K, there
is a non-singular flow (¢¢),cg on M, transverse and pointing inward with
respect to OM g, such that the retraction rg : Mg — K given by definition
4.8 defines a semi-conjugacy between (¢t),cgp+ and (0t),;cgr+-

Proof of proposition 4.10: Let z be any point of K, and let I, = o.(z),
€ > 0 small. These small orbit-segments I, lift, by rl_(l, to oriented intervals
I, in M, which are defined to be transverse to 0M g, and pointing inward,
for any y € r' () NOMp. All these oriented intervals in My glue together
to form the orbits of a non-singular flow on Mg, which are transverse to
OMg and pointing inward. By construction, the retraction rx defines a
semi-conjugacy between this flow and (0¢),cg+. O

Remark 4.11. Proposition 4.10 above and remark 4.9 imply that one can
find two non-singular flows on two non-homeomorphic (n + 1)-manifolds
which are semi-conjugated to a same semi-flow on a dynamical n-spine, but
which are not topologically conjugated since their ambient manifolds are
not homeomorphic.
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Proposition 4.12. With the assumptions and notations of proposition 4.10,

1. If (0t),cr+ admits a transverse codim 1-regular foliation, then this
foliation lifts by rl}l to a non-singular codim 1-foliation of My , which
is transverse to OMx and transverse to (¢t),cg -

2. Any positive cocycle u € C'(K;Z) defines a cross-section S, to some
non-singular flow (¢t),cg on Mr such that Ky = ri(Sy) is a cross-
section in K to the semi-flow (0¢),cg+ semi-conjugated to (1), cp+
by ri.

In particular, the return-map of (0¢),cg+ on Ky is induced by the
return-homeomorphism of (¢t),cg on Su.

Proof of proposition 4.12: This proposition is a consequence of the follow-
ing lemma, whose proof is easy and left to the reader.

Lemma 4.13. Let K be a simple dynamical n-complex. Any simple de-
generate (n — 1)-complex, possibly non-finite, r-embedded in K, lifts, by
r;(l, to a properly embedded hypersurface in My . In particular, any cocycle
u € CY(K;Z) defines a hypersurface S, properly embedded in My, which
retracts by rix to K.

Furthermore, a codim 1-regular foliation of K lifts to a non-singular
codim 1-foliation of M, transverse to M .

This lemma and the construction of the flow (¢),.g+ imply that any
codim 1-regular foliation transverse to a non-singular semi-flow on K lifts
under rg to a non-singular codim 1-foliation of M, transverse to OMg
and to (¢¢),cg+- Item (2) comes from proposition 4.5 and this lemma. O

5 Dynamical 2-complexes

This section treats the particular case of simple dynamical 2-complexes.
As already announced in the introduction, simple 2-complexes play an im-
portant role in combinatorial group theory and topology of 3-manifolds.
One defines special foliations of dynamical 2-complexes. At the difference
of a regular foliation, a special foliation might have tangency points with
the singular graph. We give, as for regular foliations in section 3, a co-
homological criterion for the existence of special foliations with compact
leaves on dynamical 2-complexes. These special foliations allow us to ob-
tain suspension of injective free group-endomorphisms, and not merely of
free group-automorphisms as in the case of the regular foliations.
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Remark 5.1. We gather here some easy observations on simple and dy-
namical 2-complexes.

e Let K be a simple 2-complex.

1. The set of singular points of K is a 4-valent graph, that is a graph
with four edges incident to each crossing. The 2-components are
discs, annuli or Moebius-bands.

2. The simple degenerate 1-complexes r-embedded in K (and thus
the leaves of any regular foliation) are graphs with at most four
germs of edges incident to each vertex. If the embedding is non-
degenerate, the graph is trivalent, i.e. three germs of edges are
incident to each crossing.

e Assume now that K is a simple dynamical 2-complex.

1. At each crossing, there are exactly two incoming and two outgo-
ing edges of KS)LQ.
2. The boundary circles of annuli and Moebius-band components

are positive loops in K%Y The boundary circle of a disc com-

sing*
ponent decomposes as pg~! where p and ¢ are two positive paths
; (1)
in K, g

3. If u € C'(K;Z) is a non-negative cocycle, then the r-embedded
graph T, given by lemma 2.13 is unique up to isotopy in the
2-components, and twists around the cores of the annuli.

5.1 Special foliations of dynamical 2-complexes

Definition 5.2. Let K be a simple 2-complex and let I" be a simple degen-
erate 1-complex. A special embedding of T in K is an embeddingp : ' - K
satisfying the following properties:

1. For each point z € I with p(z) distinct from the crossings of K and
satisfying moreover that

e cither p(T') is c-transverse to the singular graph at p(z),

e or p(z) is a non-singular point in K,

there is a neighborhood N(z) of z in T such that pjn(,) is a homeo-
morphism from N(z) onto X x {t¢}, ¢t € [0,1], where X is as given by
lemma 1.4.
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1)

sing

2. Any point z such that p(T') is c-tangent to K
singular point in I'.

at p(z) is a non-

3. If p(z) is a crossing of K, then any germ of 2-cell of K at p(z) contains
the images under p of at most two germs of edges of I" at z. Further-
more, the interior of any germ of 2-cell intersects the image under p
of at most one germ of edge of " at x.

Definition 5.3. A codim 1-special foliation F of a simple 2-complex K is
a union of simple degenerate 1-complexes, called the leaves of the foliation,
which are specially embedded in K and such that each point of K belongs
to exactly one of these leaves.

By definition, a r-embedding in a simple 2-complex K is also obviously
a special embedding. Thus, a regular foliation of K is a special foliation
of this complex. Let us also observe that, conversely, a special embedding
which is c-transverse to the singular graph of K is a r-embedding.

Remark 5.4. All the definitions, stated for regular embeddings and foli-
ations, of being 2-sided, admitting a transverse orientation, being trans-
versely oriented,... are adapted in a straightforward way to special embed-
dings and foliations. Beware however that remark 2.12 is no more true for
special embeddings. When writing that the transverse orientation to a spe-
cial foliation agrees with the orientation of the edges at the singular graph,
we will mean at the points where the foliation is c-transverse to these edges.

Lemmas 4.4 and 4.6 remain clearly true for special embeddings and
foliations.

In section 3, we proved a theorem on the existence of a regular foliation
with compact leaves of a simple n-complex (n > 2). Here, we assume
that we are given some dynamical 2-complex and we prove a result about
the existence of a special foliation with compact leaves of this complex.
The cocycles involved are non-negative cocycles satisfying some additional
properties, but which are not necessarily positive cocycles.

We speak in definition 5.5 below of 2-sided loops. Here, a loop must
be considered as a simple 1-complex without crossings, which is specially
embedded in the given dynamical 2-complex. The notion of being 2-sided
given in definition 2.11 applies then to a loop.

Definition 5.5. Let K be any simple dynamical 2-complex. A nice non-
negative integer cocycle u € C'(K;Z) is a non-negative integer cocycle such
that:

The only positive loops [ in the singular graph for which u(l) = 0 satisfy
the following properties:
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1. They are disjointly embedded, 2-sided loops in K whose some trans-
verse orientation agrees with the orientation of the edges of the sin-
gular graph.

2. They do not belong to the boundary of any 2-component of K.

Let us recall that a positive cocycle is a non-negative cocycle which is
positive on all the positive embedded loops of the singular graph. Thus, a
positive cocycle is also a nice non-negative cocycle.

We will call non-trivial a simple n-complex which has at least one cross-
ing. We prove in a first step the following proposition:

Proposition 5.6. A non-trivial dynamical 2-complex K admits a trans-
versely orientable codim 1-special foliation F by compact graphs, whose some
transverse orientation agrees with the orientation of the edges of the singular
graph, if and only if there exists a nice non-negative cocycle u € C*(K;Z).

Proposition 5.6 treats only the case of non-trivial simple dynamical 2-
complexes. This is equivalent to throw away the dynamical 2-complexes
which have only annuli or Moebius-band components. Without this slight
restriction, the statement of this proposition would have been more com-
plicated. Moreover, with respect to special foliations, the case of trivial
complexes is not of great interest. Lemma 5.7 below treats this case.

Lemma 5.7. Let K be a trivial simple dynamical 2-complex.

1. Then, either K admits a positive cocycle or K admits no non-negative
cocycle.

2. Furthermore, if K admits a transversely oriented codim 1-special foli-
ation by compact leaves, whose transverse orientation agrees with the
orientation of the edges of the singular graph, and K does not admit
any positive cocycle, then this foliation is a foliation by circles.

3. In the situation of item (2), the complex K is homotopically equivalent
to the suspension of a degree 2*-continuous map of the circle, where
k is the number of loops of the singular graph.

Proof of lemma 5.7: Assume that there is a non-negative cocycle u €
C'(K;Z). Then, by definition of a non-negative cocycle, u is positive on at
least one loop [ in Ks(;T)Lg. Furthermore, u is also positive on all the loops

which are in the boundary of all the annuli components attached along I.
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By induction, and since our complexes are assumed to be connected, this
implies that u is a positive cocycle.

Assume now that K is as announced in item (2). If some leaf of this
foliation F intersects transversely some loop of the singular graph, then
one easily proves the existence of a non-degenerate r-embedded leaf in F.
By assumption on the transverse orientation to F, this leaf defines a non-
negative cocycle, and thus a positive cocycle by which precedes. This is a
contradiction with our assumption. Thus all the loops of the singular graph
are leaves of F. All the other leaves of F are embedded in the interior of
the components of K. Item (1) of definition 5.2 implies that they have no
crossings. Since circles are the only compact simple 1-degenerate complexes
without any crossings, this proves item (2) of lemma 5.7.

Let us now prove the last assertion of this lemma. Let us first observe
that K has no Moebius-band components, because of the transversal ori-
entability of F. Consider any loop of the singular graph. Three germs of
2-components are incident to this loop. Since it is a leaf of a transversely
oriented foliation, it is 2-sided in K. Thus, two germs are on the same side,
say the “- side”. Since F is transversely oriented, the other boundary loop
of F is on the + side. This allows to construct a transversely oriented foli-
ation C of K by circles which comes from the foliation by circles S' x {t} of
each annulus S! x [0, 1]. Let us consider the semi-flow on K whose orbits are
obtained by the gluing of the intervals {z} x [0,1], 2 € S'. This semi-flow is
transverse to the leaves of C and any leaf is a cross-section to this semi-flow
(see lemmas 4.4, 4.6 and remark 5.4). Let us consider two leaves [_ and
[+ of C which are respectively on the — side and + side of a loop of the
singular graph. The map induced by the semi-flow from [_ to [, is a degree
2-map of the circle. This easily implies that K is the suspension of a degree
2%_-map of the circle, where k is the number of loops in the singular graph.
This completes the proof of lemma 5.7. O

5.2 From a special foliation to a nice cocycle

In a first step, we assume that one has a special foliation F as given by
proposition 5.6. The strategy to prove the existence of a nice non-negative
cocycle is to examine what are the possible sets of points of c-tangency of F
with the singular graph K s(;r)w. The positive loops contained in this set are
all the positive loops of the singular graph on which the cocycle associated
to a non-degenerate leaf takes the value 0. Once checked that these positive
loops are disjointly embedded and transversely oriented by the edges of the

singular graph in K, one is done.
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Lemma 5.8. Let F be a codim 1-special foliation with compact leaves of a
simple 2-complex K.

Let Tangr be the set of points © € KW such that the leaf of F con-

sing
taining x is c-tangent to KS)W at x. We denote by T the closure in K of
Tangr.
Then each connected component of T is contained in exactly one leaf
of F. These connected components are isolated points, embedded compact
intervals and embedded loops.

Proof of lemma 5.8: By definition, any connected component of Tangr is
contained in exactly one leaf of F. The set 7 is obviously equal to the union
of the closure in K of the connected components of T'angr. Moreover, the
leaves of F are disjointly embedded. Thus, for proving the first assertion of
lemma 5.8, it suffices to check that the closure of any non-compact subset
of a leaf £ of F does not contain any point in a leaf £’ # £ of F. This
comes from the compacity of the leaves.

Let us now prove the second point of lemma 5.8. If a connected compo-
nent of 7 is contained in an open edge of K S)Lg, then this connected compo-
nent is either an isolated point or a compact embedded interval. Thus, one
only has to look at what happens at the crossings of K. Item (3) of defini-
tion 5.2 implies that any leaf I' of F contains at most two germs of edges at
any crossing v of K. One proved above that each connected component of
T is contained in exactly one leaf of F. Moreover, the leaves are disjointly

embedded. These three last assertions imply that each connected compo-
(1)

nent of 7 contains at most two germs of edges of K,

This allows to complete the proof of lemma 5.8. O

at each crossing.

Lemma 5.9. With the assumptions and notations of lemma 5.8, let us as-
sume furthermore that:

o K is a non-trivial simple dynamical 2-complez.

o F is transversely oriented, such that its transverse orientation agrees
with the orientation of the edges of the singular graph.

Then all the positive loops in T are 2-sided and transversely oriented by
the edges of the singular graph. No positive loop in T is a boundary loop of
a 2-component of K.

Proof of lemma 5.9: We denote by [ any positive loop in 7. Let us recall
that the notion of being 2-sided, and all the subsequent definitions, have
been given in the case of r-embeddings (see definition 2.11) but are extended
to the case of special embeddings in a straightforward way. The existence
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of the transverse orientation announced for the above positive loop comes
from the fact that it is contained in some leaf of F, which by assumption
is transversely oriented by the edges of the singular graph. This allows to
define a set of oriented transversals to each of these loops as desired (see
definition 2.11).

No Moebius-band component contains the loop [ in its boundary be-
cause of the transversal orientability of F. Assume now that some annulus
component contains [ in its boundary. Three germs of 2-components are
incident to each point in [. Since [ is 2-sided, two germs are on a same side,
say the — side. Assume that the above annulus component is on the — side
of [. Since F is transversely oriented, this implies that it is on the + side of
its other boundary circle. One easily check that there cannot be an annulus
component on the + side of a loop containing a crossing of the complex.
This implies that the loop of the singular graph corresponding to the above
boundary circle contains no crossing. By induction, we obtain that K is a
trivial simple n-complex. This is a contradiction with our assumption.

Therefore, no positive loop in 7 is a boundary loop of an annulus or
Moebius-band component. Since K is dynamical, a positive loop cannot be
the boundary of a disc component (see definition 1.7 and remark 5.1). One
so proved lemma 5.9. O

Lemma 5.10. With the assumptions and notations of lemma 5.9,

Let ugym be the cocycle equal to the sum of all the cocycles associated to
the non-degenerate r-embedded leaves of F (see lemma 2.13). Then usym
is a mon-negative cocycle which is positive on all the positive loops of the
singular graph not contained in T, and which is null on the positive loops

inT.

Proof of lemma 5.10: Let us recall that the non-degenerate r-embedded
leaves are the leaves which contain no crossing of K and which are c-
transverse to K S)Lg. From the first point of lemma 5.8, each connected
component of 7 is contained in exactly one leaf of F. By definition of T,
this leaf cannot be a non-degenerate r-embedded leaf. Thus, since the leaves
are disjoint, none of the non-degenerate r-embedded leaves intersect some
edge in T.

Since K is non-trivial, some non-degenerate r-embedded leaf intersects
the singular graph and thus defines a non-negative cocycle by the assump-
tion on the transverse orientation to F.

Therefore wgym, is a non-negative cocycle. From what precedes, tsym is
null on any edge contained in 7, and in particular on the positive loops in
T. The set of all non-degenerate r-embedded leaves intersect all the other
edges. Thus, sy, is positive on these edges. In particular, ugy, is positive
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on all the positive loops of the singular graph which are not contained in
T. This completes the proof of lemma 5.10. O

Let K be a non-trivial dynamical 2-complex which admits a transversely
orientable codim 1-special foliation by compact graphs, whose some trans-
verse orientation agrees with the orientation of the edges of the singular
graph.

Lemma 5.10 gives a non-negative cocycle which is positive on the positive
loops of thee singular graph which are not in 7 (see definition in lemma 5.8)
and null on the positive loops in 7. By lemma 5.8, the positive loops in T
are digjointly embedded. By lemma 5.9, they are transversely oriented by
the edges of the singular graph and do not belong to the boundary of any
2-component. All this proves one implication of proposition 5.18.

5.3 From a nice cocycle to a special foliation

We assume here that one is given a nice non-negative cocycle of a simple
dynamical 2-complex K. The proof of the existence of a special foliation
consists of a construction similar to the one used in the proof of the existence
of a transversely orientable regular codim 1-foliation of a simple n-complex
K (see proposition 3.11). We assumed there the existence of a positive co-
cycle. The difference here is that the possible existence of loops on which
the cocycle takes the value 0 forbids to foliate all the complex.

Before the construction of the foliation, let us notice in lemma 5.11 some
consequences of the properties satisfied by the positive loops /; on which a
nice cocycle takes value 0. By incoming edge at a loop [;, we mean the
edges of the singular graph which are incoming at some crossing of [;, and
which are not contained in ;. Outgoing edges at l; are defined in the same
way. Observe that, a priori, a same edge can be both an incoming and an
outgoing edge at a same loop ;.

Lemma 5.11. Let K be a simple dynamical 2-complex, which admits a nice
non-negative integer cocycle uw. Let | be any positive loop in the singular
graph such that u(l) = 0. Then:

1. The union of all the germs of 2-cells containing some germs of edges
in | decomposes as the union of two subsets of disjoint interiors as
follows:

e One is an annulus which contains exactly once each edge and
crossing of 1, and which also contains the germs of outgoing edges
at [.
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This is the + side of I.

e The other consists either of one or two annuli, also of disjoint
interior. It contains exactly twice each edge and crossing of | and
it also contains the germs of incoming edges at .
This is the — side of I.

2. If e is any incoming (resp. outgoing) edge at I, then e is not an
outgoing (resp. incoming) edge at [.

3. The loop | has at least one crossing, and thus at least one incoming
and one outgoing edge.

Proof of lemma 5.11: Item (1) comes from the fact that [ is two-sided and
transversely oriented by the edges of the singular graph of K. Item (2) is a
consequence of item (1). Let us prove item (3). By assumption, the loops [;
on which a nice cocycle takes the value 0 bound no component in K. Since
a loop of the singular graph which has no crossing is a boundary loop of an
annulus or Moebius-band component, any loop /; as above has at least one
crossing, and thus at least one incoming edge and one outgoing edge. This
completes the proof of lemma 5.11. O

Remark 5.12. With the terminology of Christy (see [Chl]) or Williams
(see [Wil]), item (1) of lemma 5.11 above is equivalent to say on one hand
that the complex K admits a smoothing along the loop ! and on the other
hand that the edges of the singular graph are oriented from the locally 2-
sheeted side of [ to the locally 1-sheeted side of [. One says that K admits
a compatible structure of dynamic branched surface along [.

Inductive process:

One considers a nice non-negative cocycle u € C'(K;Z). One applies
non-negative d,-moves, as such as this can be done, by respecting the rule
that each d,-move is applied at most once.

End of the inductive process

Lemma 5.13. Let K be a simple dynamical 2-complex which admits a nice
non-negative integer cocycle u € C1(K;Z) (see definition 5.5). Let us as-
sume that u is not a positive cocycle.

Let {ly,---,1,} be the set of positive loops of the singular graph with
u(l;]) =0,i=1,---,n. Let u_ be the cocycle obtained at the end of the
above inductive process.

Then there is a loop I_ in {l1,--- ,1,} such that u_ is positive on all the
incoming edges at l_.
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Proof of lemma 5.13: By lemma 5.11, item (3), any loop l;, contains at
least one crossing.

Let us observe that, by definition of the inductive process, any crossing
v of K satisfies one of the following two properties:

e Either no non-negative d,-move can be applied to u_.

e Or a non-negative ¢, has already been applied in the inductive process
from u to u_.

One considers the loop ;. If u_ is positive on all the incoming edges
at [1, one is done. Otherwise, there exists an incoming edge e at [, with
u—_(e) = 0.

Since t(e) belongs to the loop [ which satisfies u(l-) = u_(I—) =0, no
non-negative d;(.)-move can be applied to u or any cocycle obtained from
u by a sequence of non-negative d,-moves. Therefore, if a non-negative
di(e)-move has been applied during the inductive process, u_(e) > 0. But
u_(e) > 0 is a contradiction with our assumption on e. Thus no non-
negative d;(.)-move has been applied during the inductive process.

This implies, from our observation above, that no non-negative d;.)-
move can be applied to u_. Therefore, there also exists an incoming edge
at i(e) on which u_ takes the value 0. By induction, one constructs a
positive path p; from another positive loop in {ly,---,I,}, say l2, to the
loop Iy, with u_(p1) = 0. One iterates the process. Either one eventually
obtains a positive loop li, k € {1,--- ,n}, such that u_ is positive on all the
incoming edges at [,. Or one obtains a sequence of positive paths py,- -+, pn,
with p; going from ;41 to l;, i =1,--- ,n, l,41 =11, and u_(p;) = 0. This
implies that u_ is null on a positive loop L = y1pnYnPn—1---72p1 which
intersects the [;, where vy; is a positive path contained in I;. Since u_ is in
the same cohomology class than u (see remark 2.4), this is a contradiction
with u being a nice non-negative integer cocycle. Therefore, there exists a
loop I_ in {l1,--- ,l,} as announced. O

Lemma 5.14. With the assumptions and notations of lemma 5.13, we set
I_=e---e andv; =t(e;) fori=1,---,r.

Then, uy = (0y, 00y, 0---00,,)(u_) is a non-negative integer cocycle in
the same cohomology class than u—_. In particular, uy(e;) =0 for any edge
ei, 1 =1,---,r, inl_. Furthermore,

e For any incoming (resp. outgoing) edge e at I, uy(e) = u_(e) — 1

resp. uy(e) = u_(e) + 1). In particular, uy is positive on all the
+ +
outgoing edges at l_.

57



e For any edge e € KS)W which is neither incoming nor outgoing to

some crossing in l_, uy(e) = u_(e).

We will further set vy = 0;(u—) and write that uy is obtained from u_
by a non-negative §;-move.

Let us recall that, by lemma 5.11, item (3), the loop [_ contains at least
one crossing.

Proof of lemma 5.14: By remark 2.4, uy is cohomologous to w_. If [_

contains only one edge, then this edge is both incoming and outgoing at the

unique crossing of [_ and thus clearly u is null on all the edges in [_.
Assume now that [_ contains more than one crossing. Since [_ is em-

bedded, all the crossings vy, - - , v, are distinct. Therefore, all the outgoing
edges at vy,--- , v, are distinct. The same is true for all the incoming edges
at these crossings.

At each crossing v;, i = 1,--- ,r, there is exactly one outgoing edge in

[ which is incoming at v;11, this is the edge e;+1 (we set v,41 = v; and
er41 = e1). By definition of a §,-move, one has (dy,,, o &y;)(u)(eir1) =
(u(ejr1) — 1) +1 = 0. Therefore, uy is null on I_.

Each §,,-move increases by 1 the value of u_ on the outgoing edge at
v; which is not in /_. By lemma 5.11, item (2), an edge which is incoming
(resp. outgoing) at some I; cannot be an outgoing (resp. incoming) edge at
this same [;. Therefore, the value of the cocycle w4 on any outgoing edge e
at I_ is equal to u—_(e) + 1, and therefore positive.

For the same reason than above, the value of 4 on each of the incoming
edges e at [_ is equal to u_(e) — 1. The cocycle u_ is assumed to be positive
on all these edges. Thus u4 is non-negative on the incoming edges at [_.

Finally, by definition of a §,-move, u (e) = u(e) for any edge e € Ks(;r)w
which is not incident to some wv;, i = 1,--- ,r. Therefore, u satisfies the
announced properties. O

Lemma 5.15. With the assumptions and notations of lemma 5.13,
There is a (non-unique) ordered sequence of non-negative integer cocy-
cles u =ug = uy — -+ — un such that:

1. Each cocycle u;, i =1, --- ,N, is obtained from u;_, either by a non-
negative d,-move, v € ngng—{ll, -l }, ordp-move, 1 € {ly,--- |1, }.

2. There is exactly one non-negative 0;-move (resp. O,-move) for each
loopl e {ly,---,l,,} (resp. for each crossingv € Ks(;)m —{l, -, ln}).
In particular, uy = u and the sum of the cocycles u;, i =1,--- , N is

positive on all the edges in Kgr)lg —{l,-- 1}
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Proof of lemma 5.15: The inductive process, together with lemmas 5.13
and 5.14 allow to obtain a sequence of non-negative integer cocycles sat-
isfying item (1) of lemma 5.15. The cocycle uy obtained at the end of
this sequence is a nice non-negative integer cocycle. Thus, one can iterate
this process until it is no more possible to apply a non-negative d,-move,
v E Ksb)lg {li,---,l,} or ;-move, | € {l,---,1,} at a crossing v or a loop
[ at which such a move has not already been applied. One thus obtains a
sequence of non- negative integer cocycles satisfying item (1) and such that
each crossing v € Ksmg {li,-++,l,} or loop I € {l1,---,l,} appears at
most once in the associated sequence of non-negative d,- and §-moves. We
denote by sy, the sum of all the cocycles obtained during this process.

Assume that item (2) is not satisfied. If some J§;-move has not been
applied, then wgsym is null on some incoming edge at [. If some 4, has not
been applied, v € Ksmg {li,-+,1,}, then ugyy, is null on some incoming
edge at v. Otherwise, there exists a cocycle in the above sequence which
is positive on all the incoming edges at [ in the first case, and on all the
incoming edges at v in the second case. This implies that a non-negative
d;-move, or §,-move, can be applied to this cocycle. This is a contradiction
with our assumption.

By induction, one constructs a positive loop L with intersects some [;,
i=1,---,n and such that wsym (L) = 0. By definition wsym(e) > u(e) for
any edge e € KS)W Thus, u(L) = 0. This is a contradiction with u being
a nice non-negative integer cocycle.

An easy computation allows then to prove the last two assertions. O

Lemma 5.16. With the assumptions and notations of lemma 5.1/,

There are two r-embedded graphsI',_ and L', associated to the cocycles
u_ and uy (see lemma 2.13) such that, if K_ =T,_ x[-1,0] and K} =
[y, x]0,1], then:

1.T=K_ —K_=K,— K, is a graph specially embedded in K which
contains the loop [_.

2. The only crossings of K contained in ' are the crossings in l_.

3. Let e be any edge of I',_ (resp. T'y, ). The closure in K of e x [—-1,0]
(resp. ex]0,1]) is a non-trivial path in T' between two crossings of T'
(resp. an edge of T'). This path (resp. edge) belongs to the closure in
K of the 2-component containing e.

4. FEach crossing of T' belongs to the closure in K of ezactly one interval
{v} x [=1,0[ (resp. {v}x]0,1]), v € T',_ nK( (resp. v € Ty,

) Furthermore, I is a trivalent graph.

smg

szng
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See figures 4 and 5.

/ g N The loop I
7" .
/ in F

Figure 4: Constructing a u-foliation

Figure 5: The graphs I', I',_ and I, in a disc component

Proof of lemma 5.16: By lemma 2.13, any r-embedded graph I',_ or ',
is 2-sided in K. By lemma 5.14, the values of u4 and u_ on the edges of the
singular graph differ of at most one. Moreover, by definition of the cocycles
u— and uy, the only edges e of the singular graph for which u_(e) # uy(e)
are the incoming and outgoing edges at {_. The number of vertices of 'y,
(resp. T',_) along any edge e is equal to the value of u; (resp. u_) on e
(see proof of lemma 2.13).

This allows to choose the r-embeddings of I',_ and [',,, such that:

Ut
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(1)

e The vertices of I',  preceed, along the edges of K;, which are not

outgoing edges at [_, the vertices of [, .

This means that the first vertex of I',_ UL, along any edge of KST)W

which is not an outgoing edge at [_ is a vertex of I';,_, and the vertices
alternate along these edges.

e The vertices of I',, preceed the vertices of I',_ along the outgoing
edges at [_.

One easily checks that two such r-embeddings can be made disjoint.

By these choices of r-embeddings, the last (resp. first) vertex of I',,_ ULy,
along any incoming (resp. outgoing) edge at [_ is a vertex of I, (resp.
Luy)

This allows to consider two disjoint non-compact subcomplexes K_ =
['y_x[-1,0[and K =T, x]0,1] of K such that the closure of each interval
{z} x [-1,0[, ¢ € T',_ intersects the closure of some interval {y}x]0,1],
y € I'y,, in a unique point which belongs neither to {z} x [~1,0[ nor to
{y}x]0,1]. For z or y in Kgr)w, these intervals are contained in Ks(;)w.

Clearly, I = K_ — K_ = K, — K is a graph embedded in K. One has
to check that this embedding is a special embedding.

Any two intervals {x;} x [-1,0[, {z2} x [-1,0[, 21 and z3 in [, with
T1 # X2, are disjoint. Thus, if e is any edge of I',_, the closure in K
of e x [-1,0[ is a path in T" which belongs to the closure in K of the 2-
component containing e. Therefore, k distinct germs of edges at a crossing
v in T',_ define k distinct germs of paths at the point w in I" which be-
longs to the closure of {v} x [=1,0[. This implies that this point w is a
crossing of I'.  Since I',,_ is r-embedded in a non-degenerate way, all its
crossings are trivalent crossings which belong to the interior of some edges
of the singular graph. From our assumption on the intervals {v} x [-1,0],
v a crossing of I',,_, the crossings w of I" as above are thus trivalent cross-
ings which belong to the singular graph. There are no other crossings in
[ because two intervals {1} x [—1,0[, {2} x [-1,0[, with z; and 2z, dis-
tinct and both in T'y,_, are disjoint. Moreover, let us notice that if w is a
crossing of I interior to an edge of the singular graph, the three edges of
I' incident to w have their germs in three distinct germs of 2-cells of K at w.

Therefore, the embedding of I" in K satisfies item (1) of definition 5.2 of
a special embedding.
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One proved also above that, for any edge e of I';,_ or I, , the closure of
e x [=1,0[ or ex]0, 1] is a non-trivial path in I" between two crossings of I

From the choices of the r-embeddings of I',_ and I, , the graph I' con-
tains the loop [_. The union of the open edges in [_ form the set of points
of c-tangency of I with K S(Z%g. From the assertions of the preceding para-
graph, these points are non-singular points for I'. Therefore, the embedding
of T in K satisfies item (2) of definition 5.2.

From lemma 5.14, the values of u; and u_ on any edge of Ks(;T)Lg which
is not an incoming or outgoing edge at [_ are the same. This implies that
the only crossings of K contained in I' are the crossings of [_. They are
also crossings of I'. Two germs of edges of I' at each of these crossings are
contained in the two germs of edges of /_. The third germ of edge of I' at
a crossing of [_ is contained in the germ of 2-cell of K which is incident to
none of the two germs of edges of [_. These assertions are easy to check.
This implies that I' satisfies item (3) of definition 5.2.

All what precedes implies therefore in particular that I" is a graph spe-
cially embedded in K. Moreover, all the arguments clearly apply when con-
sidering I',,, instead of I';,_. Thus, among the properties listed in lemma
5.16, it remains only to check that, for any edge e of ', , the closure in K
of x]0,1] is an edge of I'. This comes from lemma 5.11, item (1). Indeed,

the edge e of I',, can be assumed to be contained in the + side of [_. O

Corollary 5.17. With the assumptions and notations of lemma 5.16,

The subcomplex K, = K_ U K, of K admits a transversely oriented
codim 1-special foliation with compact leaves whose transverse orientation
agrees with the orientation of the edges of the singular graph. Moreover, all
the leaves of K4 are homotopically equivalent.

Proof of corollary 5.17: The existence of a codim 1-special foliation as
anounced is straightforward from lemma 5.16. The leaves of such a folia-
tion are I'y,_ x {t}, t € [-1,0[, Ty, x {t}, t €]0,1] and I". Let us check
that they are all homotopically equivalent. From lemma 5.16, I" is a triva-
lent graph which has the same number of vertices than I',_ or I',,. The
graphs I',_ and I, are r-embedded in K in a non-degnerate way and thus
trivalent (see remark 5.1). Therefore, I', T',_ and I',, have the same Euler
characteristic and thus are homotopically equivalent. This completes the
proof of corollary 5.17. O
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Let us now complete the proof of proposition 5.6. We assume given a
nice non-negative integer cocycle u of a simple dynamical 2-complex K. We
denote by {l1,-++ 1} the loops in K(}) with u(l;) = 0.

Lemmas 5.15 and 2.23 allow to build a transversely oriented codim
1-regular foliation F, with compact leaves of a subcomplex of K, whose
transverse orientation agrees with the orientation of the edges of the sin-
gular graph. Moreover, the leaves of F, intersect all the edges of K S)Lg -
{li, -+, ln}

Corollary 5.17 allows to complete this foliation to a codim 1-transversely
oriented special foliation which contains all the crossings of K. Since no loop
[; is the boundary loop of an annulus or Moebius-band component, this fo-
liation is a foliation of K. This completes the proof of proposition 5.6.

A foliation as constructed above, that is by lemma 5.15, together with
lemma 2.23 and corollary 5.17, will be called a u-foliation.

5.4 Conclusion

In this subsection, we prove the following proposition, which is a refinement
of the reverse implication of proposition 5.6:

Proposition 5.18. Let K be a simple dynamical 2-complex which admits
a nice non-negative cocycle u € C'(K;Z).

Then u defines a transversely oriented codim 1-special foliation F, of K
satisfying the following properties:

1. All the leaves of F, are homotopically equivalent.

2. If T is any leaf of F,, there is a map ¢ : I' — I', which induces an
injective endomorphism O on the fundamental group of ', such that
K is homotopically equivalent to Suspy (k).

3. The above endomorphism is surjective if and only if u is a positive
cocycle.

Lemma 5.19. Let K be a standard dynamical 2-complex which admits a
nice non-negative integer cocycle u € CY(K;Z). All the leaves of a u-
foliation F, are homotopically equivalent.

Proof of lemma 5.19: Since K is compact, there are a finite number of
leaves of F,, whose neighborhoods cover K. By definition of a u-foliation,
these neighborhoods are of two types according to the leaf £ considered
being a regular or a non-regular leaf of F,. If £ is a regular leaf, then all
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the leaves in a neighborhood of £ are homotopically equivalent (see proof
of lemma 3.12). If £ is a non-regular leaf, then the same is true by lemma
5.16. Therefore, all the leaves of F, are homotopically equivalent. O

Item (1) of proposition 5.18 is so proved.

Definition 5.20. Let ¢ : I' — I'” be a continuous map between two graphs
I’ and I'". The map v is immersive if it is surjective and locally-injective.

Lemma 5.21. With the assumptions and notations of lemma 5.19,

Let T be any leaf of a u-foliation F,. There exists a map ¢ : T' — T such
that K is homotopically equivalent to Suspy (L), and satisfying moreover the
following properties:

1. The map ¢ is a composition of Whitehead moves, a possibly empty set
S of non-injective immersive graph-maps, and homeomorphisms.

2. The set S above is empty if and only if the cocycle v € C*(K;Z)
considered is a positive cocycle.

Proof of lemma 5.21: One considers any non-degenerate r-embedded leaf
[ of F,. By definition, if {l1,---,l,} are the positive loops of Ks(;r)w
with u(l;) = 0, then a u-foliation has exactly n specially embedded leaves
Iy, -+, which are not r-embedded. Each such leaf I'; contains the loop
l;; i = 1,---,n. Lemma 5.15 implies the existence of a finite number of
non-degenerate r-embedded leaves L1, -+ , £, whose union with these spe-
cially embedded leaves satisfies the following property:

The cocycle associated to I' defines a continuous map v : I' — I" which
is a composition of

1. continuous maps o; : L; = L;41 induced by the Whitehead moves at
the crossings of the singular graph,

2. homeomorphims h; : £; — £;+1 when both leaves £; and £;41 repre-
sent the same cocycle,

3. continuous maps g;; : £; — ['; and gj; : Tj — L,
for some i, j respectively in {1,---,r} and {1,---,n}.

Let us check this assertion. Item (1) is the case where the cocycles
associated to £; and £;11 (see lemma 2.13) are obtained one from the other
by a non-negative d,-move.
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Item (2) is clear. It remains to check item (3). By lemma 5.16, the
neighborhood N (T';) of any non-regular leaf I'; of F,, is such that N(T';) —
[; = £; x [-1,0ULi4+1%]0,1] for some index ¢ € {1,---,r — 1} and a
well-chosen numerotation.

One defines a continuous map g;; : £; = I'; in the following way:

For any point 2 € £; x {—1}, g;;(x) is the point of I'; which belongs to
the closure in K of the interval {z} x [-1,0].

One now proves that the maps g;; above can be chosen to satisfy the
announced properties. From lemma 5.16, the map g;; is such that:

1. The image under g;; of any crossing of £; is a crossing of I'; (item (4)
of lemma 5.16).

2. The image under g;; of any edge of £; is a non-empty path in the
graph I'; (item (3) of lemma 5.16).

3. The images under g;; of any two distinct germs of edges of £; at any
of its crossings v are two distinct germs of edges of I'; at the crossing
w = ¢;;(v) (consequence of item (3), lemma 5.16).

Moreover, by definition, the map g;; is surjective. Thus, the map g;; is
an immersive map. Let us prove that g;; is non-injective.

Let us consider any leaf I';. By definition, it contains the loop /; of the
singular graph. There are three germs of 2-cells incident to each edge in
this loop. Since it is 2-sided in K, two of this germs are on a same side of
l; (see figure 4). Thus, the map g;; above is 2-to-1 over [;.

Let us now define g, : Liy1 — I'; by declaring that, for any point
x € Lit1, gi'y1;(7) is the point in the closure in K of the interval {z}x]0, 1].

In the same way than for the maps g;;, lemma 5.16 implies that the
maps g;,,; are immersive maps. By item (3) of lemma 5.16, the closure
of ex]0,1], for any edge e of Iy, , is an edge of I'. This implies that these
maps ggﬁrlj are homeomorphisms. Thus, by setting g}iH = g”;_llj, one gets
the desired maps.

By cutting K along I', one obtains a complex K’ homotopically equiva-
lent to I x [0, 1]. The complex K is obtained from K’ by gluing I' x {1} with
[' x {0} by the map ¢. Thus, K is homotopically equivalent to Suspy(T).

One easily generalizes the above proof to the case where I' is any leaf
of Fy.
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Since the collection of specially embedded leaves 'y, --- , T, is empty if
and only if the cocycle u considered is positive, this completes the proof of
lemma 5.21. O

Let us now complete the proof of proposition 5.18. We need first a lemma
whose proof can be found in [G1,2]. It is a more or less straightforward
consequence of [Sta], and an analog, in the context of graphs, to an old
result of Whitehead or Nielsen on free groups (see [Wh1,2], [Ni]).

Lemma 5.22. Let f: ' = T be a continuous map of a graph I.

If f is an immersive map, then f induces an injective endomorphism on
the fundamental group of I'. This endomorphism is surjective if and only if
f is a homeomorphism.

In the case where u is a positive cocycle, item (2) of proposition 5.18 fol-
lows from theorem 3.1. Assume now that u is not a positive cocycle. Then
there are specially embedded leaves I'; containing loops [; of the singular
graph. Lemmas 5.21 and 5.22 imply that K is homotopically equivalent to
a complex Suspy(I'), where I is any leaf of F,, and ¢ induces an injective,
non surjective endomorphism on the fundamental group of the leaf. This
completes the proof of item (2) of proposition 5.18.

Theorem 3.1 proves one implication of item (3) of proposition 5.18. Let
us prove the other implication. Assume that there is a map v of a leaf T" of
F which induces a surjective endomorphism, and thus an automorphism,
on the fundamental group of I and such that K is homotopically equivalent
to Suspy(I'). Lemmas 5.21 and 5.22 imply that  is a positive cocycle. This
completes the proof of proposition 5.18.

6 Remarks

6.1 Connectedness of the leaves

From our assumption on the connectedness of the complexes considered in
this paper, when one is given a leaf of a foliation, this leaf is assumed to be
connected. However, when one is given a positive cocycle u of a dynamical
n-complex K (n > 2), an associated r-embedded complex K, (see lemma
2.13) is not necessarily connected. The fact that u defines a regular foliation
with compact leaves of K allows to prove that a positive cocycle u defines
a connected r-embedded complex K, if and only if the cohomology class of
u is indivisible, that is there exists a loop [ in K with u(l) = 1.
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As in the case of positive cocycles, one easily shows that a nice non-
negative integer cocycle defines a connected r-embedded complex if and
only if its cohomology-class is indivisible.

6.2 Mapping-tori of surface homeomorphisms

In the context of spines of 3-manifolds, one can prove the following topo-
logical analog to corollary 3.14 of proposition 3.13:

Any compact 3-manifold with boundary M?® which admits a fibration
f over the circle admits a dynamical 2-spine K with a positive cocycle
u € C'(K;Z) such that ix([u]) is in the cohomology class of H'(M?3;Z)
defined by f, where [u] denotes the cohomology-class of u in H'(K;Z) and
iy + HY(K;Z) — H'(M?;Z) the isomorphism induced by the inclusion i of
K in M3,

Indeed, any such 3-manifold is the mapping-torus of a homeomorphism h
of a compact surface with boundary S. Up to isotopy, this homeomorphism
can be given by a composition of Whitehead moves and of a homeomorphism
¢ applied on a spine I' of S, in such a way that each Whitehead move
and the homeomorphism ¢ preserve the embedding in S. From such a
decomposition, one easily checks that proposition 3.13 gives a dynamical
2-spine K of M?>. The properties of K listed in proposition 3.13 assure that
K is as announced above.

6.3 Effectivity of the cocycle-criteria

The criteria given by theorem 3.1 and proposition 5.6 for the existence of
a foliation with compact leaves of a simple n-complex are effective, that is
one can easily check, by hand or by a computer, if a given simple n-complex
admits a positive cocycle. Let us briefly describe the process for the search
of positive cocycles. Assume that you are given some simple 2-complex
K. Check if the edges of its singular graph admit an orientation which
makes it a dynamical 2-complex. Since the singular graph is finite, this is a
finite process. In a second step, consider the integral matrix whose lines are
the images of the 2-components of the complex by the second boundary-
operator, and the columns are the edges of the singular graph. Supress
from this matrix the lines corresponding to the Moebius-band components.
Let us denote by Mg the resulting matrix. Search for the non-negative
integer solutions to the system MprX = 0. A classical result asserts that
these non-negative solutions are generated by a finite number of them, i.e.
there are n such solutions Si,---,S), of this system such that, if S is any
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n
non-negative integer solution, then § = Z AiSi, A > 0. Each solution S;
i=1
does not necessarily define a cocycle of the 2-complex K, but, in any case,
one easily shows that 2 % S; will define a cocycle. Thus, for testing if there
is a positive cocycle, it suffices to consider the sum 2% Y | S;. There is a
positive cocycle in C'(K;Z) if and only if this sum is one.

In the case where K is n-dimensional (n > 2), one has to check moreover
whether the solutions 2 % S; define cocycles of the complex. This is handled
by an easy computation, choosing first a structure of CW-complex for K
and then considering the matrix of the second boundary-operator for this
structure. Each solution 2 % S; defines integer weights on some edges of the
1-skeleton of this structure. One has just to check if some integer weights
can be defined on the other edges to be in the kernel of the above matrix.

The search of nice non-negative integer cocycles is done in the same way.

Let us observe that all what precedes implies in particular that, on
a given simple dynamical n-complex K, there might be an infinite num-
ber of indivisible non-negative cohomology classes (it is necessary that
rk(H,(K;Z)) > 1).

Examples

Example 1: In this example, we assume given a trivalent graph with two
vertices, together with a cyclic ordering at each of these vertices. We con-
sider a sequence of two Whitehead moves from this graph to an homeo-
morphic one. Moreover, the two Whitehead moves and the homeomor-
phism preserve the above cyclic orderings. Up to homeomorphism, there
is a unique orientable compact surface with boundary which admits this
graph, equipped with these cyclic orderings at its vertices, as a spine. We
leave the reader check that this surface S is the torus with one boundary
component. The above sequence of Whitehead moves and homeomorphism
defines a continuous map of the graph, induced by a homeomorphism A of
S. In fact, this homeomorphism is induced by the classical automorphism
< i } > of the torus.

We apply proposition 3.13 for constructing a suspended dynamical 2-
complex of the induced automorphism on the fundamental group. Since the
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Whitehead moves and the homeomorphism preserve the cyclic orderings
of the edges at the vertices, one gets a simple dynamical 2-spine of the
3-manifold which is the suspension of the homeomorphism h of S. This
manifold is the complement in S® of the figure eight-knot.

Let us describe this construction. The edges of the graph are labelled
with 1, 2 and 3. When one edge is collapsed by a Whitehead move, the
symbol attached to the new edge created is the same than the original one,
with a prime. The homeomorphism « is defined by «(2') = 3, a(3') =1
and (1) = 2.

Since there are two Whitehead moves, the singular graph of the sus-
pended dynamical 2-complex is a 4-valent graph with two crossings.

The second picture in figure 6 illustrates what happens to each edge
along the process, the graph I' having been cut at its vertices. It allows
to find the 2-components of the complex, together with a decomposition of
their boundary in 1-simplices.

Since the edge 1 is collapsed by no Whitehead move, it gives rise to a
rectangle. The two other edges are collapsed. Thus, each of them gives rise
to two triangles: these are the cones over the edges 2, 2' = o !(3) and 3,
3" = a7!(1). The vertex common to the two triangles with bases 2 and 2’
is a crossing of the complex, and the same is true for the vertex common to
the two triangles with bases 3 and 3'. For obtaining the desired suspended
2-complex, one identifies the top and the bottom of two “bands” when this
top and bottom carry the same letters.

The suspended 2-complex has two 2-components. The boundary of each
2-cell inherits a decomposition in 1-simplices which are copies of the edges
of the singular graph along which this 2-cell is attached. For finding this
decomposition of the boundary of each 2-cell, let us notice that one took
care of not putting the two crossings at the same level in this second picture
of figure 6. Since all the edges of I' are incident to both vertices of I, it
suffices then to subdivide the vertical boundaries of the “bands” at the level
of the crossings to obtain the desired decomposition of the boundary of the
2-cells in 1-simplices. These 1-simplices, copies of the edges of the singular
graph, are oriented from top to bottom in this picture.

The dynamical 2-complex K is showed in the third picture of figure 6.
We also drawed a r-embedding of our original graph I' into K. The inter-
ested reader can easily check that the associated cocycle is a positive one.
Let us notice that K admits a compatible structure of dynamic branched
surface (along its singular graph) (see remark 5.12).

This dynamic branched surface first appeared in [Chl]. It is dual to the
decomposition in two tetrahedra of the complement in S? of the figure-eight
knot given by Thurston in its notes (see [Thl]).
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Figure 6: Example 1

Example 2: Figure 7 presents a simple dynamical 2-complex which admits
a compatible structure of dynamic branched surface (see remark 5.12). This
complex admits a positive cocycle and we show a r-embedded graph associ-
ated to such a cocycle. One easily checks, using criterions of embeddability
of Christy or Benedetti-Petronio (see [Ch2], [BP]), that this complex does
not embed in any compact 3-manifold.

Xx=5y=z=t=1

Figure 7: Example 2
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Example 3: Figure 8 gives a dynamical 2-complex which does not admit
any positive cocycle. There are only non negative cocycles which are not
positive. For instance, the solution X» = 2, X7 = 2, X = Xy = 1 gives
such a cocycle. It remains, in the complement of the edges with positive
weight, the positive loop X3X19X5. As the example 2, this 2-complex does
not admit any embedding in a compact 3-manifold.

Xg

X1 Xg X
t g W L

X10 ‘

< Q £
P¥e

Figure 8: Example 3
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