Percolation on the Bethe lattice
Scaling function & data collapse for cluster no. density

Critical Phenomena and Percolation Theory: II

Kim Christensen

Complexity & Networks Group
Imperial College London

Joint CRM-Imperial College School and Workshop
Complex Systems
Barcelona
8-13 April 2013
Outline

1. Percolation on the Bethe lattice
 - Onset of percolation: Critical occupation probability
 - Average cluster size
 - Transition to percolation
 - Cluster number density

2. Scaling function & data collapse for cluster no. density
 - General scaling ansatz for cluster no. density
 - Scaling function & data collapse for Bethe lattice
 - Scaling function & data collapse for $d = 1$
A Bethe lattice is a tree where each site has z neighbours:

$$z = 3$$

- Branch
- Sub-branch

$l = 0$, generation number
$l = 1$
$l = 2$
$l = 3$, generation number
Bethe lattice has no loops: Unique path between any sites i & j.

- Consider a percolating infinite cluster in the Bethe lattice.
- Perform a walk, where retracing of steps are forbidden.
- Each step has $z - 1$ new sites (sub-branches).
- In average, $p(z - 1)$ sites occupied.

Onset of percolation when

$$p(z - 1) = 1 \iff p_c = \frac{1}{z - 1} = \begin{cases} 1 & \text{for } z = 2; (d = 1) \\ 1/2 & \text{for } z = 3. \end{cases}$$

p_c decreases with increasing coordination number. Sensitive to lattice details. **Non-universal** quantity.
Assume $p < p_c$. Let “center” site be occupied. Average cluster size to which this site belongs:

$$\chi(p) = \text{contribution from center site} + \text{contribution from } z \text{ branches}$$

$$= 1 + zB.$$ \hfill (1)

$B =$ contribution to average cluster size from a given branch

$$= (1 − p) \cdot 0 + p \cdot (1 + (z − 1) B) \quad \text{parent site of branch is empty/occupied}$$

$$= p + p(z − 1)B.$$

Solve for B and insert in Eq. (1) above:

$$\chi(p) = \frac{1 + p}{1 − p(z − 1)}$$

$$= \frac{p_c(1 + p)}{p_c − p} \quad \text{with } p_c = \frac{1}{z − 1}$$

$$\rightarrow p_c(1 + p_c)(p_c − p)^{-1} \quad \text{for } p \rightarrow p_c^-$$
Percolation on the Bethe lattice
Scaling function & data collapse for cluster no. density

Onset of percolation: Critical occupation probability
Average cluster size
Transition to percolation
Cluster number density

$z = 3$
Percolation on the Bethe lattice
Scaling function & data collapse for cluster no. density

Onset of percolation: Critical occupation probability
Average cluster size
Transition to percolation
Cluster number density

\[z = 3 \]
Percolation on the Bethe lattice
Scaling function & data collapse for cluster no. density

Onset of percolation: Critical occupation probability
Average cluster size
Transition to percolation
Cluster number density

\(z = 3 \)

branch
sub-branch
Percolation on the Bethe lattice
Scaling function & data collapse for cluster no. density

Onset of percolation: Critical occupation probability
Average cluster size
Transition to percolation
Cluster number density

\[\chi(p) \]

Graph showing the scaling function \(\chi(p) \) as a function of occupation probability \(p \). The graph illustrates the critical occupation probability at which percolation occurs, with a sharp transition indicated by the vertical dashed line.
Exponent characterizing the divergence is independent of coordination number.

Universal
Probability center site belongs to percolating infinite cluster:

\[P_\infty(p) = p \cdot \text{(prob. at least one branch connects to percolating cluster)} \]
\[= p \cdot (1 - \text{prob. none of } z \text{ branches connect to percolating cluster}) \]
\[= p \cdot (1 - Q_\infty^Z(p)). \]

\[Q_\infty(p) = \text{prob. a branch DOES NOT connect to percolating cluster} \]
\[= (1 - p) + p \cdot Q_\infty^{Z-1}(p) \text{ parent site of branch is empty/occupied} \]

For \(z = 3 \), solve quadratic equation for \(Q_\infty(p) \):

\[Q_\infty(p) = \begin{cases} 1 & \text{for } p \leq p_c \\ \frac{1-p}{p} & \text{for } p > p_c. \end{cases} \]
Percolation on the Bethe lattice
Scaling function & data collapse for cluster no. density

Onset of percolation: Critical occupation probability
Average cluster size
Transition to percolation
Cluster number density

\(z = 3 \)

branch
sub-branch
Percolation on the Bethe lattice
Scaling function & data collapse for cluster no. density
Onset of percolation: Critical occupation probability
Average cluster size
Transition to percolation
Cluster number density

\[P_\infty(p) = \begin{cases}
0 & \text{for } p \leq p_c \\
 p \left[1 - \left(\frac{1-p}{p} \right)^3 \right] & \text{for } p > p_c.
\end{cases} \]
Percolation on the Bethe lattice
Scaling function & data collapse for cluster no. density

Onset of percolation: Critical occupation probability
Average cluster size
Transition to percolation
Cluster number density

\[P_\infty(p) = \begin{cases}
0 & \text{for } p \leq p_c \\
6(p - p_c)^\beta & \text{for } p \to p_c^+; \beta = 1.
\end{cases} \]

Exponent characterising the pick-up is independent of coordination number.
Universal
Cluster number density:
Consider a cluster of size s. Define the perimeter t of cluster:
$t = \text{no. of unoccupied nearest-neighbours of cluster.}$

\[
n(s, p) = \sum_{t=1}^{\infty} g(s, t) (1 - p)^t p^s.
\]

Clusters might not have unique geometry or orientation:
$g(s, t) = \text{no. of different } s\text{-clusters with perimeter } t.$

For $d = 1$
\[
g(s, t) = \begin{cases}
1 & \text{for } t = 2 \\
0 & \text{otherwise}
\end{cases} \Rightarrow n(s, p) = (1 - p)^2 p^s.
\]
In Bethe lattice there is a unique relationship between s & t: $t = 2 + s(z - 2)$; For $z = 3$ we have $t = 2 + s$:
Percolation on the Bethe lattice
Scaling function & data collapse for cluster no. density

Onset of percolation: Critical occupation probability
Average cluster size
Transition to percolation
Cluster number density

\[n(s, p) = \sum_{t=1}^{\infty} g(s, t) (1 - p)^t p^s = g(s, 2 + s) (1 - p)^{2+s} p^s. \]

Trick to avoid enumerating \(g(s, 2 + s) \) by considering ratio:

\[
\frac{n(s, p)}{n(s, p_c)} = \left[\frac{1 - p}{1 - p_c} \right]^2 \left[\frac{(1 - p) p}{(1 - p_c) p_c} \right]^s \\
= \left[\frac{1 - p}{1 - p_c} \right]^2 \exp \left(s \ln \left[\frac{(1 - p) p}{(1 - p_c) p_c} \right] \right) \\
= \left[\frac{1 - p}{1 - p_c} \right]^2 \exp \left(-s / s_\xi \right),
\]

where we have defined the characteristic cluster size

\[
s_\xi(p) = \frac{-1}{\ln \left[\frac{(1-p) p}{(1-p_c) p_c} \right]} = \frac{-1}{\ln \left[1 - 4(p - p_c)^2 \right]} \rightarrow \frac{1}{4} (p - p_c)^{-2} \text{ for } p \rightarrow p_c
\]
Exponent characterising the divergence is independent of coordination number. Universal
Percolation on the Bethe lattice

Scaling function & data collapse for cluster no. density

Onset of percolation: Critical occupation probability
Average cluster size
Transition to percolation
Cluster number density

\[P_\infty(p) \text{ prob. site } \in \text{ infinite cluster} \]
\[\sum_{s=1}^{\infty} sn(s, p) \text{ prob. site } \in \text{ any finite cluster} \]
\[P_\infty(p) + \sum_{s=1}^{\infty} sn(s, p) = p \]
The cluster no. density & the characteristic cluster size:

\[n(s, p) = \left[\frac{1 - p}{1 - p_c} \right]^2 n(s, p_c) \exp \left(-\frac{s}{s_\xi} \right) ; \]

\[s_\xi(p) = -\frac{1}{\ln \left[\frac{(1-p)^p}{(1-p_c)^{p_c}} \right]} . \]

\[\sum_{s=1}^{\infty} s n(s, p) = p - P_\infty(p) \quad \text{finite for all } p, \text{ also at } p = p_c \]

\[\sum_{s=1}^{\infty} s^2 n(s, p) = \chi(p) \sum_{s=1}^{\infty} s n(s, p) \to \infty \quad \text{for } p \to p_c; \text{ diverges at } p = p_c \]
Ansatz: \(n(s, p_c) \propto s^{-\tau} \) for \(s \gg 1 \):

\[
\sum_{s=1}^{\infty} s n(s, p_c) = \sum_{s=1}^{\infty} s^{1-\tau} \quad \text{finite} \Rightarrow \tau > 2
\]

\[
\sum_{s=1}^{\infty} s^2 n(s, p_c) = \sum_{s=1}^{\infty} s^{2-\tau} \quad \text{infinite} \Rightarrow \tau \leq 3
\]

The Bethe lattice has a cluster number density

\[
n(s, p) \propto s^{-5/2} \exp \left(-s/s_\xi\right) \quad \text{for } s \gg 1, p \to p_c,
\]

\[
s_\xi(p) \propto (p - p_c)^{-2} \quad \text{for } p \to p_c,
\]
At $p = p_c$, $n(s, p_c) \propto s^{-5/2}$ for $s \gg 1$
For $p \neq p_c : n(s, p) = \begin{cases}
 s^{-\tau} & \text{for } 1 \ll s \ll s_\xi \\
 \text{decays rapidly} & \text{for } s \gg s_\xi
\end{cases}$
General scaling ansatz for cluster no. density:

\[n(s, p) \propto s^{-\tau} G(s/s_\xi) \quad \text{for } p \to p_c, \; s \gg 1, \quad (2) \]

\[s_\xi(p) \propto |p - p_c|^{-1/\sigma} \quad \text{for } p \to p_c, \]

Critical exponents: \(\tau \) and \(\sigma \).

Scaling function \(G \) with dimensionless argument \(s/s_\xi \).

The scaling ansatz Eq. (2) allows a \textbf{data collapse} because

\[s^\tau n(s, p) \propto G(s/s_\xi) \quad \text{for } p \to p_c, \; s \gg 1. \]

Plotting the transformed cluster no. density \(s^\tau n(s, p) \) vs. the re-scaled cluster size \(s/s_\xi \), all the data fall onto the graph of the scaling function \(G \).
Scaling function & data collapse for Bethe lattice:

\[n(s, p) \propto s^{-5/2} \exp\left(-s/s_\xi\right) \quad \text{for } p \to p_c, s \gg 1 \quad (3) \]

\[s_\xi(p) \propto (p_c - p)^{-2} \quad \text{for } p \to p_c \]

The argument \(s/s_\xi \) in the scaling fct is a re-scaled cluster size:

\[G_{\text{Bethe}}\left(s/s_\xi\right) = \exp\left(-s/s_\xi\right), \]

Eq. (3) allows a data collapse: \(s^{5/2}n(s, p) = G_{\text{Bethe}}\left(s/s_\xi\right) \).

Plotting \(s^{5/2}n(s, p) \) vs. \(s/s_\xi \) the curves collapse onto the graph for the scaling function \(G_{\text{Bethe}} \). Another example of universality.
Data collapse of cluster no. densities for perc. on Bethe lattice:

\[n(s, p) \]

- \(p = 0.35 \)
- \(p = 0.45 \)
- \(p = 0.4842 \)
- \(p = 0.495 \)
Data collapse of cluster no. densities for perc. on Bethe lattice:
Data collapse of cluster no. densities for perc. on Bethe lattice:

\[G_{\text{Bethe}}(x) = \exp(-x) \]
Scaling function & data collapse for $d = 1$:

$$n(s, p) = (p_c - p)^2 \exp \left(-\frac{s}{s_\xi} \right)$$

$$= s^{-2} \left[s(p_c - p) \right]^2 \exp \left(-\frac{s}{s_\xi} \right)$$

$$= s^{-2} \left(\frac{s}{s_\xi} \right)^2 \exp \left(-\frac{s}{s_\xi} \right) \quad \text{for } p \to p_c^-$$

$$= s^{-2} G_{1d}(s/s_\xi) \quad \text{for } p \to p_c^- \quad (4)$$

$$s_\xi(p) = \frac{-1}{\ln p} \to (p_c - p)^{-1} \quad \text{for } p \to p_c^-$$

The argument s/s_ξ in the scaling fct is a re-scaled cluster size:

$$G_{1d} \left(\frac{s}{s_\xi} \right) = \left(\frac{s}{s_\xi} \right)^2 \exp \left(-\frac{s}{s_\xi} \right),$$

Eq. (4) allows a data collapse because $s^2 n(s, p) = G_{1d} \left(\frac{s}{s_\xi} \right)$. Plotting $s^2 n(s, p)$ vs. s/s_ξ the curves collapse onto the graph for the scaling function G_{1d}. Another example of universality.
Data collapse of the cluster no. densities for $d = 1$ percolation:

\[n(s, p) \]

- \(p = 0.4 \)
- \(p = 0.905 \)
- \(p = 0.99 \)
- \(p = 0.999 \)
- \(p = 0.9999 \)
Data collapse of the cluster no. densities for $d = 1$ percolation:
Data collapse of the cluster no. densities for $d = 1$ percolation:

$$G_{1d}(x) = x^2 \exp(-x)$$