Borel* Sets and Borel Reductions

Vadim Kulikov

September 27, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Unless I say otherwise....

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Unless I say otherwise....

•
$$\kappa^{<\kappa} = \kappa > \omega$$
 regular,

Unless I say otherwise....

•
$$\kappa^{<\kappa} = \kappa > \omega$$
 regular,

• Topology generated by $\{[p] \mid p \in \kappa^{<\kappa}\},\ [p] = \{\eta \in \kappa^{\kappa} \mid p \subset \eta\},\$

Unless I say otherwise....

•
$$\kappa^{<\kappa} = \kappa > \omega$$
 regular,

- Topology generated by $\{[p] \mid p \in \kappa^{<\kappa}\},\ [p] = \{\eta \in \kappa^{\kappa} \mid p \subset \eta\},\$
- Borel sets: Basic open sets closed under κ-intersections and complements.

Unless I say otherwise....

•
$$\kappa^{<\kappa} = \kappa > \omega$$
 regular,

- Topology generated by $\{[p] \mid p \in \kappa^{<\kappa}\},\ [p] = \{\eta \in \kappa^{\kappa} \mid p \subset \eta\},\$
- Borel sets: Basic open sets closed under κ-intersections and complements.
- Equivalent to "basic open sets closed under κ-untersections and κ-unions.

Unless I say otherwise....

•
$$\kappa^{<\kappa} = \kappa > \omega$$
 regular,

- Topology generated by $\{[p] \mid p \in \kappa^{<\kappa}\},\ [p] = \{\eta \in \kappa^{\kappa} \mid p \subset \eta\},\$
- Borel sets: Basic open sets closed under κ-intersections and complements.
- Equivalent to "basic open sets closed under κ-untersections and κ-unions.

A model with domain κ in a relational vocabulary is naturally coded as an element of 2^κ turning the space of models into the generalised Baire space. Denote the model coded by η ∈ 2^κ by M_η.

- A model with domain κ in a relational vocabulary is naturally coded as an element of 2^κ turning the space of models into the generalised Baire space. Denote the model coded by η ∈ 2^κ by M_η.
- A set $A \subset 2^{\kappa}$ is closed under isomorphism if

$$\forall \eta \in A \forall \xi \in 2^{\kappa} (M_{\xi} \cong M_{\eta} \rightarrow \xi \in A)$$

Disjunctions and conjunctions of size κ , quantification of size $< \kappa$.

(Lopez-Escobar-Vaught-Friedman-Hyttinen-Kulikov)

A set $A \subset 2^{\kappa}$ is Borel and closed under isomorphism if and only if the set $\{M_{\eta} \mid \eta \in A\}$ is definable in $L_{\kappa^{+}\kappa}$.

Trees

 A λμ-tree is a tree whose every node splits to at most λ many nodes and has no branches of length μ. Such a tree can be viewed as a downward closed subtree of λ^{<μ}.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Trees

 A λμ-tree is a tree whose every node splits to at most λ many nodes and has no branches of length μ. Such a tree can be viewed as a downward closed subtree of λ^{<μ}.

(日) (同) (三) (三) (三) (○) (○)

 Both formulas in L_{κ⁺κ} and Borel sets have codes consisting of κ⁺ω-trees (blackoard.)

• A set is nowhere dense if it is closed and its complement is dense.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A set is nowhere dense if it is closed and its complement is dense.
- A set is meager if it is contained in a κ-union of nowhere dense sets. This is an ideal by the Baire theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A set is nowhere dense if it is closed and its complement is dense.
- A set is meager if it is contained in a κ-union of nowhere dense sets. This is an ideal by the Baire theorem.
- A set A ⊂ κ^κ has the Property of Baire if there is an open O ⊂ κ^κ such that A △ O is meager.

- A set is nowhere dense if it is closed and its complement is dense.
- A set is meager if it is contained in a κ-union of nowhere dense sets. This is an ideal by the Baire theorem.
- A set A ⊂ κ^κ has the Property of Baire if there is an open O ⊂ κ^κ such that A △ O is meager.
- Borel sets have the property of Baire.

CUB-filter

(Halko-Shelah)

The CUB filter $\{\eta \in 2^{\kappa} \mid \eta^{-1}\{1\} \text{ contains a cub}\}$ doesn't have the Property of Baire.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Borel* and $M_{\kappa^+\kappa}$

A set A is Borel^{*} if there is a $\kappa^+\kappa$ -tree t with assignment $h: \ell(t) \to O(\kappa^{\kappa})$ such that $\eta \in A$ iff Player II has a winning strategy in the game $G(t, h, \eta)$.

Borel* and $M_{\kappa^+\kappa}$

The language $M_{\kappa^+\kappa}$ consists of formulas defined by $\kappa^+\kappa$ -trees in the same way as $L_{\kappa^+\kappa}$ is defined through $\kappa^+\omega$ -trees.

Open Question

Is it consistent that a set A is Borel* and closed under isomorphism iff it is definable in $M_{\kappa^+\kappa}$?

 Δ_1^1, Σ_1^1

 Σ₁¹ is the class of sets that are projections of Borel sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\Delta^1_1, \Sigma^1_1$$

 Σ¹₁ is the class of sets that are projections of Borel sets

• Δ^1_1 is the class of sets that are Σ^1_1 and complement is Σ^1_1

$$\Delta^1_1, \Sigma^1_1$$

 Σ¹₁ is the class of sets that are projections of Borel sets

- Δ^1_1 is the class of sets that are Σ^1_1 and complement is Σ^1_1
- Fact: Borel $\subsetneq \Delta^1_1 \subseteq \mathsf{Borel}^{\boldsymbol{*}} \subseteq \Sigma^1_1$

$$\Delta^1_1, \Sigma^1_1$$

 Σ¹₁ is the class of sets that are projections of Borel sets

- Δ^1_1 is the class of sets that are Σ^1_1 and complement is Σ^1_1
- Fact: Borel $\subsetneq \Delta^1_1 \subseteq \mathsf{Borel}^{\boldsymbol{*}} \subseteq \Sigma^1_1$

Δ^1_1, Σ^1_1

- (Friedman-Hyttinen-Kulikov) If V = L, then Borel*= Σ₁¹. There is a Wedge-reduction from every Σ₁¹-set to CUB.
- (Hyttinen-Kulikov) There is a < κ-closed κ⁺-c.c. forcing such that in the extension the isomorphism on linear orders is not Borel*.

Open Question ($\kappa^{<\kappa} = \kappa$) Is it consistent that $\Delta_1^1 = Borel^*$?

CUB-filter

The CUB-filter is a canonical example of a Borel* set that is not Borel.

Definition

Let $\lambda < \kappa$ and $A \subset \kappa$. In the cub-game CUB (λ, κ, A) the Players climb up the cardinal and *II* wins if they hit A at the limit.

Game characterisation

Huuskonen, Hyttinen, Rautila, (& Shelah) We say that the λ -game characterisation holds for κ if for all $A \subset \kappa$

$II \uparrow CUB(\lambda, \kappa, A) \iff A \text{ contains a } \lambda\text{-cub.}$

Essentially λ -game characterisation for κ can only fail if $\kappa = \lambda^+$ and λ is a Mahlo cardinal.

CUB is a.a. Borel*

Suppose λ -game characterisation holds for κ . Then λ -CUB is a Borel* set with the tree of height $\lambda + 1$.

Conjecture

If $\kappa^{<\kappa} > \kappa$, then it is consistent that CUB is Borel^{*}, but not Σ_1^1 . (Shelah-Väänänen proved that CUB can be definable in $L_{\kappa\kappa}$ when $\kappa^{<\kappa} > \kappa$).

Borel Reductions

If *E* and *E'* are equivalence relations, a function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ is a Borel reduction of *E* to *E'* if it is a Borel function and for all $\eta, \xi \in \kappa^{\kappa}$

$$(\eta,\xi)\in E\iff (f(\eta),f(\xi))\in E'.$$

Research Program: Study the partial order \leq_B

Model theoretic motivation will become more clear in the next talk by Miguel Moreno.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Define E^{λ}_{μ} to be the equivalence relation on λ^{κ} where two functions are equivalent if they coincide in μ -cub.

Denote by $E_{\rm NS}^{\lambda}$ the same equivalence relation where they coincide on a cub (not μ -cub).

some results and questions

(Friedman-Hyttinen-Kulikov)

It is consistent that $E_{\omega}^2 \leqslant E_{\omega_1}^2$

(Hyttinen-Kulikov)

If
$$V=L$$
, then E^κ_ω is Σ^1_1 -complete

Open Question

Is it consistent that
$$E^3_{\omega} \leq_B E^2_{\omega}$$
 or $E^{\kappa}_{\omega} \leq_B E^2_{\omega}$?

Open Question

Is it consistent that $E_{\omega_1}^2 \leq_B E_{\omega}^2$?

Borel* Sets and Borel Reductions

 $E_{\omega}^{\kappa} \leqslant E_{NS}^{2}, \ \kappa \geqslant \aleph_{2}$

Three independently discovered proofs of the consistency of $E_{\omega}^{\kappa} \leq E_{\rm NS}^2$ last weekend. I present one of them (mine).

(Kulikov)

Suppose V = L and κ is weakly compact. Then

$$E_{\omega}^{\kappa} \leqslant E_{\rm NS}^2$$

Corollary

If V = L and κ is weakly compact, then the equivalence on $P(\kappa)$ modulo NS is Σ_1^1 -complete.

Proof

Claim (Dual Diamond)

Suppose V = L and κ is weakly compact. Then there is a sequence $\langle D_{\alpha}, f_{\alpha} \rangle_{\alpha < \kappa}$ such that

)
$$D_lpha \subset lpha$$
 is stationary in $lpha,$

• if (Z,g) is a pair such that $Z \subset S_{\omega}^{\kappa}$ is stationary and $g \in \kappa^{\kappa}$, then the set

$$\{\alpha \in S^{\kappa}_{\mathsf{reg}} \mid Z \cap \alpha = D_{\alpha} \text{ and } g \upharpoonright \alpha = f_{\alpha}\}$$

is stationary.

Proof

Given dual diamond $\langle D_{\alpha}, f_{\alpha} \rangle_{\alpha < \kappa}$, define $f : \kappa^{\kappa} \to 2^{\kappa}$ by $f(\eta)(\alpha) = 1$ if $\alpha \in S_{\text{reg}}^{\kappa}$ and $\eta \upharpoonright \alpha$ is cub-equivalent to f_{α} ; otherwise set to 0.

Blackboard.

For the purpose of the proof we define triple $\langle D_{\alpha}, f_{\alpha}, C_{\alpha} \rangle$. Suppose $\langle D_{\beta}, f_{\beta}, C_{\beta} \rangle$ is already defined for $\beta < \alpha$.

- For the purpose of the proof we define triple $\langle D_{\alpha}, f_{\alpha}, C_{\alpha} \rangle$. Suppose $\langle D_{\beta}, f_{\beta}, C_{\beta} \rangle$ is already defined for $\beta < \alpha$.
- Define $\langle D, f, C \rangle$ to be the *L*-smallest such that
 - $D \subset \alpha \cap S^{\kappa}_{\omega}$ is stationary,
 - $f: \alpha \to \alpha$,
 - $\mathcal{C} \subset \alpha \cap S_{\mathrm{reg}}^{\kappa}$ is cub,
 - $\forall \beta < \alpha (D \cap \beta \neq D_{\beta} \text{ or } f \restriction \beta \neq f_{\beta})$

and set $D_{\alpha} = D$, $f_{\alpha} = f$, $C_{\alpha} = C$ if such exists and otherwise $D_{\alpha} = f_{\alpha} = C_{\alpha} = \emptyset$.

Counterassumption: (Z, g, C) is the *L*-least counterexample. Let *M* be elementary submodel of L_{λ} , $\lambda > \kappa$ s.t.

• $|M| < \kappa$

•
$$\alpha = M \cap \kappa \in C$$
,

• $Z \cap \alpha$ stationary in α ,

•
$$Z, g, C, S^{\kappa}_{\omega}, S^{\kappa}_{\mathsf{reg}}, \kappa \in M$$

possible by the reflection property of weakly compact (as in the last lecture yesterday by Hazel Brickhill)

Mostowski collapse $G: M \to L_{\gamma}, \gamma > \alpha$. Now $G(Z) = Z \cap \alpha, G(g) = g \upharpoonright \alpha, G(C) = C \cap \alpha, G(\kappa) = \alpha$. The sequence $\langle D_{\beta}, f_{\beta} \rangle_{\beta < \alpha}$ is definable in L_{γ}

Let $\varphi(Z, g, C, \kappa)$ say "(Z, g, C) is the *L*-least triple such that

- $Z \subset S^\kappa_\omega$ is stationary,
- $g: \kappa \to \kappa$,
- $C \subset \cap S_{\operatorname{reg}}^{\kappa}$ is cub,
- $\forall \beta < \kappa (D \cap \beta \neq D_{\beta} \text{ or } f \restriction \beta \neq f_{\beta})$

But this formula relativises to L_{γ} and all notions are sufficiently absolute, so relativsed it says that (Z, g)reflects to $\alpha \in C$ which is a contradiction with the assumption that (Z, g, C) was a counterexample.