New bounds on Klarner’s constant

Gill Barequet
(Dept. of Computer Science, Technion, Israel)

Abstract: Polyominoes are edge-connected sets of cells on the square lattice. The study of polyominoes originated in statistical physics and is now a popular field in combinatorial geometry. A major goal in this area is to determine the limit growth rate of polyominoes, also known as “Klarner’s constant” and usually denoted by λ. Until recently, the best known lower and upper bounds on λ were 3.98 and 4.65, resp.

We bounded λ from below by investigating the growth rates of polyominoes on “twisted” cylinders. Using a supercomputer, we estimated the growth rate of polyominoes on a cylinder of perimeter 27, proving that $\lambda \geq 4.0025$ and thus braking the “mythical 4 barrier”. We also developed a new technique for showing that $\lambda \leq 4.5685$, which is the first improvement of the upper bound on λ for over 40 years.

The first work was done jointly with Günter Rote (FU, Berlin) and Mira Shalah (Technion, Haifa). The second work was done jointly with Ronnie Barequet (Tel Aviv University).